

Monitoring fructooligossacharides production using Aspergillus aculeatus by HPLC-ELSD

Aelina Lama^a, Sara Silvério^b, Ana C.A. Veloso^{b,c}, Lígia R. Rodrigues^b, Teresa Dias^a, António M. Peres^{d,*}

^aCentro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal ^bCEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ^cInstituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal ^dLaboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal *peres@ipb.pt

INTRODUCTION

- Fructooligosaccharides (FOS) are dietary sugars quite
 used as food ingredients being incorporated as dietary
 fibers in food products.
- ✓ FOS are present in plants and fruits at low concentrations and with varying individual relative proportions.
- ✓ FOS extraction from natural sources may not be

AIMS

- ✓ To monitor FOS production by HPLC-ELSD.
- ✓ To evaluate the influence of initial sucrose concentration and/or fermentation temperature

on the FOS yield and FOS production profiles.

 \checkmark To identify the experimental conditions that may enhance the production rate of specific FOS.

economically viable and so, FOS production by fermentation using fungi can be an alternative.

 FOS may have a positive health impact, the beneficial health effects depend on the relative FOS composition (nystose-rich diet promotes a higher anti-hydroxyl radical activity compared to a kestose-rich preparation).

Fermentation assays

Cuture medium: 400 ml Czapek liquid medium (modified) OXOIDE CM0095 (sodium nitrate 2.0 g/L, potassium chloride 0.5 g/L, magnesium glycerophosphate, 0.5 g/L, ferrous sulfate 0.01 g/L, potassium sulfate 0.35 g/L and sucrose 30 g/L)

Inocolum: 10⁵ spores/mL of *A. aculeatus*

Fermentations: rotary shaker at 22 or 27°C for 96 h under agitation (100 rpm). Samples taken at 0, 24, 48, 72, 96 h

HPLC-ELSD (sugar quantification)

✓ In this work, it was intended to produce FOS using Aspergillus aculeatus at different sucrose

initial concentrations (88 to 265 g/L) and at temperatures from 22 to 27°C.

RESULTS

BIOMASS (A. aculeatus: 2²-full factorial design)

- Initial sucrose concentration had a significant and positive statistical effect over the final biomass content (*P*-value = 0.0214, two-way ANOVA)
- ★ Temperature and the interaction [sucrose concentration] × [temperature] not statistically significant at a 5% significance level (*P*-value ≥ 0.6550, two-way ANOVA).

Biomass
$$(g) = 5.81 + 0.03 \times \left[Sucrose, \frac{g}{L}\right] + 0.06 \times \left[Temperature, {}^{\circ}C\right]$$

✤ Maximum fungi biomass (16.4±1.5 g corresponding to a biomass concentration of 55±5 g/L) could be

Conditions:

Eluent

 \rightarrow Acetonitrile/H₂O (70:30, v/v)

Flow

\rightarrow 0.9 mL/min

Detector

\rightarrow ELS (Gain 2; 50°C; 3.3 bar)

expected for an initial sucrose concentration of 176.5 g/L, 27°C and 100 rpm.

— FOS yield (g FOS produced/g of initial sucrose) -

Maximum yields of FOS produced by the extracellular enzymes during the sucrose fermentation with *A. aculeatus* were in the order of 51 to 59% (in agreement with yields found in the literature: 55 up to 68%), showing low variability, possibly demonstrating the low influence of sucrose concentration (in the range of 165-265 g/L) and/or temperature (22 to 27 °C)

Typical chromatographic profile of a fermentation broth

with *A. aculeatus* with sucrose as carbon source:

CONCLUSIONS

- Fermentation temperature did not significantly affect neither the *A. aculeatus* biomass growth neither the FOS yield.
- The initial sucrose concentration significantly influenced biomass growth.
- The initial sucrose concentration did not significantly affect the maximum FOS yield obtained.
- The preliminary results pointed out that fermentation conditions may lead to different FOS production profiles, which could be further studied to increase.

Acknowledgements

This work was financially supported by Project POCI-01–0145-FEDER-006984 – Associate Laboratory LSRE-LCM, Project UID/BIO/04469/2013 - CEB and strategic project PEst-OE/AGR/UI0690/2014 – CIMO all funded by FEDER - Fundo Europeu de Desenvolvimento Regional through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT - Fundação para a Ciência e a Tecnologia, Portugal.

