
Vacancy State Detector Oriented to
Convolutional Neural Network,
Background Subtraction and

Embedded Systems

Isabelle de Moura Corrêa - a39509

Thesis presented to the School of Technology and Management in the scope of the

Master in Information Systems.

Supervisors:

Prof. Dr. Pedro João Soares Rodrigues

Prof. Dr. Erikson Freitas de Morais

This document does not include the suggestions made by the board.

Braganca

2018-2019

ii

Vacancy State Detector Oriented to
Convolutional Neural Network,
Background Subtraction and

Embedded Systems

Isabelle de Moura Corrêa - a39509

Thesis presented to the School of Technology and Management in the scope of the

Master in Information Systems.

Supervisors:

Prof. Dr. Pedro João Soares Rodrigues

Prof. Dr. Erikson Freitas de Morais

This document does not include the suggestions made by the board.

Braganca

2018-2019

iv

Dedication

To my parents, Neiva Romana de Moura and José Carlos Rocha Corrêa.

v

Acknowledgment

First of all, God allowed all of this to happen throughout my life, and not only in

these years as a college student but at all times, he is the greatest teacher anyone can

know.

To my parents, Neiva and José, for love, encouragement, and unconditional support.

Thank you all my family, who, in the moments of my absence dedicated to higher edu-

cation, have always understood that the future is made from this constant dedication to

the present.

To the Polytechnic Institute of Braganca and the Federal Technological University of

Paraná, its faculty, management, and administration provided the window today with

a glimpse of the upper horizon, and its trust in the merit and ethics present here. In

particular to Professors Pedro João Soares Rodrigues and Erikson Freitas de Morais, for

all their support, dedication, patience, and knowledge transfer.

In particular, I thank all my friends for their support all these years and for being my

family in Ponta Grossa and Braganca, always available to help me at all possible times.

vi

Abstract

Much has been discussed recently related to population ascension, the reasons for this

event, and, in particular, the aspects of society affected. Over the years, the city govern-

ments realized a higher level of growth, mainly in terms of urban scale, technology, and

individuals numbers. It comprises improvements and investments in their structure and

policies, motivated by improving conditions in population live quality and reduce environ-

mental, energy, fuel, time, and money resources, besides population living costs, including

the increasing demand for parking structures accessible to the general or private-public,

and a waste of substantial daily time and fuel, disturbing the population routinely. There-

fore, one way to achieve that challenge is focused on reducing energy, money, and time

costs to travel to work or travel to another substantial location. That work presents a

robust, and low computational power Smart Parking system adaptive to several environ-

ments changes to detect and report vacancy states in a parking space oriented to Deep

Learning, and Embedded Systems. This project consists of determining the parking va-

cancy status through statistical and image processing methods, creates a robust image

data set, and the Convolutional Neural Network model focused on predict three final

classes. In order to save computational power, this approach uses the Background Sub-

traction based on the Mixture of Gaussian method, only updating parking space status,

in which large levels of motion are detected. The proposed model presents 94 percent of

precision at the designed domain.

Keywords: Smart Parking, Deep Learning, Background Subtraction.

vii

Resumo

Muito se discutiu recentemente sobre a ascensão populacional, as razões deste evento

e, em particular, os aspectos da sociedade afetados. Ao longo dos anos, os governos

perceberam um grande nível de crescimento, principalmente em termos de escala urbana,

tecnologia e número de indivíduos. Este fato deve-se a melhorias e investimentos na es-

trutura urbana e políticas motivados por melhorar as condições de qualidade de vida da

população e reduzir a utilização de recursos ambientais, energéticos, combustíveis, tempo-

rais e monetários, além dos custos de vida da população, incluindo a crescente demanda

por estruturas de estacionamento acessíveis ao público em geral ou público-privado. Por-

tanto, uma maneira de alcançar esse desafio é manter a atenção na redução de custos de

energia, dinheiro e tempo para viajar para o trabalho ou para outro local substancial.

Esse trabalho apresenta um sistema robusto de Smart Parking, com baixo consumo com-

putacional, adaptável a diversas mudanças no ambiente observado para detectar e relatar

os estados das vagas de estacionamento, orientado por Deep Learning e Embedded Sys-

tems. Este projeto consiste em determinar o status da vaga de estacionamento por meio

de métodos estatísticos e de processamento de imagem, criando um conjunto robusto de

dados e um modelo de Rede Neuronal Convolucional com foco na previsão de três classes

finais. A fim de reduzir consumo computacional, essa abordagem usa o método de Back-

ground Subtraction, somente atualizando o status do espaço de estacionamento em que

grandes níveis de movimento são detectados. O modelo proposto apresenta 94 porcento

da precisão no domínio projetado.

Palavras-chave: Smart Parking, Deep Learning, Background Subtraction.

viii

Contents

1 Introduction 1

1.1 Problem Description . 1

1.2 Objectives . 3

1.3 Document’s Structure . 4

2 Literature Review 5

2.1 Smart Parking . 5

2.2 Background Subtraction . 10

2.3 Deep Learning . 15

2.3.1 Activation Functions . 18

2.3.2 Training Processes . 21

2.3.3 Optimization Methods . 25

2.3.4 Evaluation Metrics . 26

2.3.5 Convolutional Neural Networks . 28

2.3.6 MobileNet . 29

2.4 Related Works . 30

3 Development Methodology 33

3.1 Programming Languages, Libraries and Devices 33

3.1.1 Python . 33

3.1.2 OpenCV . 34

3.1.3 TensorFlow . 34

ix

3.1.4 Keras . 34

3.1.5 Anaconda . 35

3.1.6 Sci-Kit Learn . 35

3.1.7 Flask . 35

3.1.8 Raspberry Pi . 35

3.2 Data Pre-Processing . 36

3.2.1 Data Acquisition . 36

3.2.2 Data Set Acquisition . 38

3.2.3 Data Augmentation . 40

3.3 Proposed Convolutional Neural Network Model 41

3.4 Proposed Vacancy State Model . 47

4 Analysis and Result’s Discussion 53

4.1 Proposed Vacancy State Model Analysis 53

4.1.1 Manual Detection of Vacancy Limits 54

4.1.2 Automatic Detection of Vacancy Limits 55

4.1.3 Movement Detection Approach . 58

4.1.4 Convolutional Neural Network Model 59

4.1.5 Practice Model Evaluation . 67

5 Conclusions 71

5.1 Final Considerations . 71

5.2 Future Works . 72

A Proposed CNN Model A1

B Model Evaluation Source Code B1

C Training Process C1

D Proposed CNN Model Source Code D1

x

List of Tables

2.1 Smart City areas description, reproduced from [10]. 6

3.1 Proposed image data set structure and it number of images. 39

3.2 Proposed data augmentation process . 41

3.3 Proposed MobileNet Required Parameters. 43

3.4 Proposed Convolutional Neural Network. 43

3.5 Proposed Model Training. 45

3.6 Proposed Checkpoints for training. 45

4.1 Evaluation . 58

4.2 Training and Validation Metrics. 63

4.3 Model Comparision . 63

4.4 Validation evaluation metrics. 65

4.5 Test evaluation metrics. 66

A.1 Proposed MobileNet Transfer Learning Model A1

C.1 Training process for train data set . C1

C.2 Training process for validation data set. C1

xi

List of Figures

2.1 Common Smart Parking System, reproduced from [15]. 9

2.2 Tendency technologies in the Smart Parking domain, reproduced from [6]. . 9

2.3 Digital image represented as a) colour intensities, b) matrix of visual in-

tensities and c) numeric matrix, adapted from [18]. 12

2.4 Background Subtraction process, adapted from [20]. 13

2.5 Neural Network structure, adapted from [23]. 16

2.6 Feed Forward and Feed Back (Recurrent) Networks, reproduced from [26]. 17

2.7 Step (Threshold) Activation Function, reproduced from [26]. 19

2.8 Sigmoid Activation Function, reproduced from [26]. 19

2.9 Hyperbolic Activation Function, reproduced from [26]. 20

2.10 Rectified Linear Unit (ReLU) Activation Function, reproduced from [26].. . 21

2.11 Learning Rate, adapted from [26]. 22

2.12 Underfitting, Appropriate Capacity and Overfitting behaviors, reproduced

from [21]. 22

2.13 Fully-Connected model and Dropout method, reproduced from [30]. 23

2.14 Samples of Data Augmentation, reproduced from [26]. 24

2.15 Confusion Matrix and its respective functions. 27

2.16 Convolution sample. 28

2.17 Convolutional Neural Network structure, reproduced from [26]. 29

2.18 MobileNet Convolution’s process, reproduced from [41]. 30

3.1 Raspberry Pi’s sctructure integrated with RaspCam, reproduced from [54]. 36

xii

3.2 Data extracted from IPB. 37

3.3 Proposed image data set structure. 38

3.4 Data set labeled cut sample. 39

3.5 Images set from proposed data set. 40

3.6 Convolutional Neural Network behaviors, reproduced from [27] 47

3.7 Corner Detection and bounding box drawing process. 49

3.8 Selective Search and bounding box drawing process. 50

3.9 Movement detection through Background Subtraction method, adapted

from [59] . 51

3.10 Proposed vacancy state detection architecture. 52

4.1 Manual vacancy detection. 54

4.2 Automatic vacancy detection through Corner Detection method. 55

4.3 Vacancy’s mean region through Corner Detection and Linear Regression

methods. 56

4.4 Automatic Vacancy Detection through Selective Search method. 57

4.5 a) describes a vacancy with little movement, b) increasing in movement

detection at vacancy c) increasing in movement detection at vacancy, and

c) decrease in movement detection at the vacancy 59

4.6 Training and Validation loss values. 61

4.7 Train and Validation Accuracy values. 62

4.8 Validation’s Confusion Matrix. 65

4.9 Test’s Confusion Matrix. 67

4.10 Vacancy Detection and its predicted labels. 67

4.11 Prediction percentages. 68

4.12 Sample of Camera Position. 69

xiii

xiv

Chapter 1

Introduction

Chapter 1 briefly presents the introductory information for this research, starting

with a the problem description, its general and specific objectives, and the document’s

structure.

1.1 Problem Description

Over the years, the cities have continuous and decentralized population growth, due

to improvements in some management areas, such as the economy, governance model,

quality of life, city structure, mobility structure, and several other areas. On account

of this growth, the traditional city model has to be renewed, creating another definition

known as Smart City [1]. That concept represents a city that has urban development

based on technological advancements to solve short and long term issues, mainly reducing

environmental and living costs.

Therefore, population growth imposing extra time and resources costs in urban ac-

tivities, such as mobility and transportation routines. What processes should provide

accessibility and efficiency in several daily activities, reducing time costs to travel to

work, school, entertainment places, or other substantial locations, it allows improvements

in life quality [2]. In this way, Smart Cities treated mobility operations through Smart

Mobility systems.

1

Mobility issues it is found in almost all the big cities, and according to researchers,

in New York, in the year 2014, nearly 40 percent of the cost time in traffic situations

are caused by the search of vacancy [3]. Comprising the mobility processes importance

and thinking in developing technologies turned to reduce the city pollution levels, saving

traffic time and resources, the Smart Parking concept comes to improve the parking spaces

management, providing automatic, safety, and fast arrivals and departures of vehicles [4].

Therefore, Smart Parking should provide convenience and speed solutions in search of

parking spaces, creating a suitable environment for the city needs [2]. That concept is

directly evolving into the Internet of Things (IoT), where devices will communicate and

interact with each other through ubiquitous computing [5].

Thus, Smart Parking solutions should be allowing the main parking spaces manage-

ment processes, because those environments are dynamic and non-controlled, such as the

vacancy allocation, prices, or infrastructure. It is common to find drivers that are not

satisfied by the management of the current space, due to that kind of solution provide

expensive or slow processes [6].

The research proposes several types of systems using the most exciting technologies,

such as Multi-Agents Systems (MAS), Computer Vision Systems (CVS), or other varia-

tions [6]. Each one of these technologies must provide a different solution, as MAS deals

with the sensors position, vacancy structure, and managing using automated agents, in

that case, CVS treated the visual solutions, such as detecting and allocate vacancies

through image sequences.

Thinking in providing visual solutions without the installation and maintenance of

sensors, the Computer Vision systems are the focus in represents the real scenarios through

the video analysis. It is due to the capacity of this kind of system to process dynamic

and real-time information, such as environments with much-moving objects, like great

avenues, high stores, or great parking spaces [7].

But systems capable of detecting the interesting object should be adaptive to the

most several environmental conditions, dealing with illumination, shadow, and object

status (insertion, removing, and overlapping) changes in real-time [8]. That process is not

2

trivial, and to consider all of these conditions, it is worth use Background Subtraction, a

process that segment the moving objects to the stable objects.

From this process, it is possible applying Deep Learning methods to propose robust

technologies to detect interesting objects with more accuracy [7]. Moreover, Computer

Vision systems also integrate Artificial Intelligence to make decisions, such as choosing

the closest free vacancy in a parking space, saving up-time, and generate environment

reports about the scenario analysis [9].

The present work has as the main objective to develop a robust Smart Parking visual-

based system adaptive to several environment changes, that detect vacancy status through

the junction of Background Subtraction and Deep Learning methods, focused on ensure

lower computational power costs, and suitable for Embedded Systems.

1.2 Objectives

The main objective of this work is to develop a robust Smart Parking system adap-

tive to several environments changes to detect and report vacancy status in a parking

space through Computer Vision and Deep Learning methods. In this context, this work

presents a solution to identify vacancy spots status, recognizing it’s spaces, and classify-

ing in “Occupied Spot” or “Available Spot” reporting the result to the final user. This

classification intends to identify positive and negative objects; positive labels encompass

cars and motorcycle vehicles in several positions; it classifies negative ratings as persons,

animals, bicycles and any other label, making parking management service as automatic

as possible.

As a study case, the Polytechnic Institute of Braganca made available record video

information about parking located at ESTIG; this space provides an challenge in terms

of viewing: the vacancies delimitation. Data provided by IPB is from the year 2019 in

sunny weather. This work proposes solutions for these specific objectives:

• Get a trustworthy Images Data Set for Vehicle Recognition;

3

• Develop a robust Vehicle Detector Model using Convolutional Neural Networks;

• Improve this Vehicle Detector using the Mixture of Gaussian as Background Sub-

traction method to Motion Detection;

• Study a robust Vacancy State Detector using Selective Search and Harris Corner to

define vacancies position automatically;

• Develop a solution for Parking Status Detection;

• Make this solution stable to work out in Embedded Systems; and

• Report these results to the user.

To successfully conclude this proposals, it is directives proved to be the most impor-

tant activities and challenges: research Deep Learning, Computer Vision and Background

subtraction methods; raise the main requirements to implement the vacancy detector

system, such as implementation architecture, programming language, and environment

structure; integration of the developed methods and implementation in the chosen archi-

tecture; applying the method in the test scenarios and verifying these results; and improve

the method based on this extracted results.

1.3 Document’s Structure

The present work it is organized as follows: Chapter 2 describes the Literature Review,

explaining about Smart Parking systems, Background Subtraction and Deep Learning

methods, also, in that chapter is described the Related Works; Chapter 3 presents the

Development process to conclude that research; Chapter 4 clarifies the Analysis and

Discussions of Results; and Chapter 5 describes the Conclusions and Future Works.

4

Chapter 2

Literature Review

Chapter presents introductory concepts of this research, as well common terms in the

Smart Parking, Background Subtraction, Image Processing, and Deep Learning areas,

also presenting its related works.

2.1 Smart Parking

Over the years, the population has been steadily concentrating in urban locations,

occasion increase in the average size of the population, and urban areas. That growth

due to improvements in several city areas, such as surveillance, technology, economy, and

according to researchers, has the forecast of 85 percent of growth into the next 30 years

[10]. With this event, the city model has to be renewed to deal with new daily and long

term issues [1].

The Smart City concept segments these problems in six different categories: Smart

Environment, Smart Economy, Smart Governance, Smart Mobility, Smart People, and

Smart Living. Also, that concept represents a city that has urban development based

on technological advancements, focused on reducing mainly environmental, management,

and urban life costs, since saving environmental resources has become an increasingly

debated topic.

5

Into this term it is possible to deal with almost the city problem types and classifica-

tions, as issues based on the city structure are treated by the Smart Environment area,

even as economy issues can be treated by the Smart Economy area, governance issues can

be treated by the Smart Governance area, mobility issues can be treated by the Smart

Mobility area, there are also the Smart People and Smart Living areas, ensuring people’s

quality of life [10]. Table 2.1 shows Smart City function in these areas.

Table 2.1: Smart City areas description, reproduced from [10].

Smart City Areas Most Common Functions
Environment Attractive to natural options;

Reduce pollution;
Increase environmental protection;
Sustainable resource management.

Economy Encourage entrepreneurship;
Flexibility of the labor market;
International embeddedness;
Increase economic stages.

Governance Improvements in public and social services;
Transparent governance;
Political strategies;
Better perspective conditions.

Mobility Availability of ICT-Infrastructure;
Improvements in terms of sustainable Innovative, and safe transport
systems;
Reduce environmental needed resources.

People Encourage qualification level;
Social and ethnic plurality;
Better long term quality of life.

Living Improve social, touristic, cultural, health, and individual safety and
facilities.

According to Table 2.1, the Smart Cities term becomes to model a new society, focused

on applying technology and policies as the primary resources to reduce environmental

costs, improve public transport systems, and providing long term quality of life [10].

Thus, the Smart City concept evolves systems integration through ubiquitous computing,

allowing different systems to communicate, providing an integrated urban environment

[5].

Based on this integrated urban environment, the Internet of Things (IoT) can describe

6

the ubiquitous network as sensors or devices capturing the environment behaviors and

actuators computing, monitoring, controlling and actuating into the environment, making

it possible to create new automatic solutions to the city organization strategies, advantage

time, energy and other resources cost [2].

Also, that concept allowing the development of some automated systems, using remote

computers and devices through several system types, as Multi-Agents Systems (MAS),

Global Positioning System (GPS), Wireless Sensor Network Systems (WSNS), Computer

Vision Systems (CVS) or other variations to work when the environments are dynam-

ics and non-controlled, such as mobility analysis with too much objects motion, solving

complex parking issues [6].

In that way, some crucial function into the Smart Cities it is the mobility services

allowing accessibility and efficiency in several daily activities, such as travel to work,

school, or entertainment places. The population growth affects the operation of these

services, causing traffic congestion, extra time costs to drive and expensive time, fuel,

energy, and money costs mainly in search of vacancies, a usual day-to-day event [11].

Thus, surveys indicate that 95 percent of usual vehicle time usage, it is at the park,

and just 5 percent of this time it is in motion or driving since people usually use this

patrimony to travel to work, leaving it at a park [12]. Therefore, Smart Cities has Smart

Mobility area, and to improve the Smart Mobility World, the researches describe nine

central regions to manage the urban environment and each one of these areas has a

significant function in the city organization as described below:

• Driving Safety: it consists in to develop and update technologies to safe and secure

mobility in iterations with other vehicles, preventing traffic-accidents;

• Smart Traffic Lights: it consists in to develop and update technologies to provide

better lightning structure, reducing and improving the traffic flow;

• Sharing and Urban Mobility: it consists in to develop and update technologies to

improve sustainability in urban transport through sharing vehicles;

7

• Electric Mobility: it consists in to develop and update technologies to save environ-

mental resources;

• Green Mobility: it consists in to develop and update technologies to minimize the

environmental impact;

• Smart Payment: it consists in to develop and update technologies to change the

conventional payment methods reducing time;

• Intelligent Transportation: it consists in to develop and update technologies to

reduce the need for more transportation infrastructure; and

• Smart Parking: it consists of to develop and update technologies to automatize the

arrival and departure of vehicles in parking spaces, saving time, fuel, and reducing

city pollution and congestion.

Mobility issues it is found in almost all the big cities, and the vacancy search in

traffic situations can be the most expensive activity considering time, fuel, energy, and

pollution as the primary resources [3]. Reduce it is resources, provide convenience and

speed solutions in traffic congestion, improvements in people’s stress and energy levels,

and offer a significant reduction in search time of parking spaces. It is a solution that

must be developed by the Smart Parking area, providing a suitable environment for the

city needs [13].

The Smart Parking systems can be divided into four main categories, they are Park-

ing Guidance Information System (PGSI), it provides surveillance and monitoring traffic

systems in static or dynamic environments; Transit Based Information Systems (TBIS)

focuses on providing park-and-ride facilities through real-time information; E-parking pro-

vides an alternative to reserve parking spaces, reporting to the user that information; and

Automated Parking deal with the automatic allocation of parking spaces [4].

The Smart Parking system is not only used to help drivers in daily activities but

also vehicle park management. Recently, Parking Companies has implemented systems

to manage the environment, such as allocate cars in a better vacancy to the company

8

or report to the drivers if their vacancy is available [14]. Figure 2.1 shows how Smart

Parking Systems usually works based on the Internet of Things and Embedded Systems.

Figure 2.1: Common Smart Parking System, reproduced from [15].

As described by Figure 2.1, a usual Smart Parking system needs a purpose, as to

take control of a parking space. To be able to produce this solution, it is needed a

controller device and at least one agent device (see A and B devices respectively), the

controller device it will be able to communicate to agent device to ask if it is an available

vacancy and the role of agent device it answers the vacancy spot status. All of this

communication usually, it is through an inter-network installed into the place [16]. Based

on this proceeding, Figure 2.2 shows the several tendency technologies adopted in smart

parking researches from 2001 to 2016.

Figure 2.2: Tendency technologies in the Smart Parking domain, reproduced from [6].

9

According to Figure 2.2, the tendency of technologies applied in Smart Parking do-

mains presents that systems based on Fuzzy Logic and Multi-Agents are the most common

solutions in this area. But, that solution has limitations in terms of installation costs and

infrastructure issues, such as difficulty and complexity of finding the professional manu-

facturer or in structure analysis to find the best device positions [6]. Thus, systems that

do not need all of this infrastructure support should be a better solution considering these

issues and costs.

As Figure 2.2 illustrates, Computer Vision-based systems also tend in this period.

That kind of system can be accurate within use several devices, such as sensors or displays,

and can report this information using IoT concept, through easy device communication

[2]. Also, robust Computer Vision systems analyze video information in adaptive ways

and in real-time, that is, in the most varied and non-controlled environments, such as in a

day or night lights, sunny or rainy weather, or in complex environments as much object’s

motion [8].

Thinking in developing a system focused on Smart Parking solutions, owing to reduce

time, fuel, environment and money resources, this research develops a vision-based real-

time system effortless to install processes and mainly low cost solution, only using a

vision-based device, able to verify and update vacancy spaces status through Embedded

Systems and Internet of Things concepts.

2.2 Background Subtraction

In the past, tracking and detecting systems have limited computational power to create

real-time applications. In this way, the most common solution was restricting themselves

to work in controlled environments and scenes [8]. Recently, the computational power

provides better conditions, through increasingly memory capacity and processing power,

enable to the Visual Surveillance researches to rapidly increasing and automatic processing

methods in real-time [17].

10

Currently, the real challenge is developing automated systems through Computer Vi-

sion, able to detect and track moving objects, succeeding translating their behaviors to

the computer. Computer Vision methods are designed to solve potential observations

problems and modeling the real world, interpreting visual information offering autonomy

to the computer to detect, decide, and to recognize objects classes [18].

Robust tracking and detection systems it is used in several applications, like surveil-

lance, monitoring, and support services, estimates of areas with more movement, object

recognition, sound detection, and to solve various potential image problems, like vehi-

cle collision detection [8]. Thus, that type of system can act in different areas, such as

vigilance, medicinal, or entertainment, just adapting it is methods to each purpose.

To be able to produce this solution, the Computer Vision area needs one image or sets

of images as video sequences. Images it is computationally represented by a frame tensor,

or set of colors into coordinated coordinates, usually known as pixels. Thus, a frame is

computationally represented as a tensor or matrix of height per width length, and each

one of these coordinates or pixels it is model as Equation 2.1, making a set of color or a

history of colors, in video situations [8].

{X1, ..., Xt} = {I(x0, y0, i)|1 < i < t} (2.1)

These frame structure also is visible in Figure 2.3, where it is defined by a bi-dimensional

function of discrete and integer spacial coordinates (x, y), being proportional to the colour

intensities or bright. Figure 2.3.a) shows a graphic representation of image, the closer to

the x and y plane, the darker the image becomes; Figure 2.3.b) shows a matrix of visual

intensities, and Figure 2.3.c) represents a numeric 2-D, when 0, 0,5 and 1 correspond to

black, gray and white, respectively [18].

According to these model, a pixel X it is represented by a colors set I(x0, y0) and

a set of frames it is represented by {X1, X2, X3, . . . , Xt}, where the index assumes video

frame rate value. This set of pixels, when analyzed with it correspondent pixel from next

frame, makes a color history, and these values can be studied as a probabilistic Gaussian

11

a) b) c)

Figure 2.3: Digital image represented as a) colour intensities, b) matrix of visual intensities
and c) numeric matrix, adapted from [18].

distribution [8].

Computer Vision systems must be sensitive to changes in the object status, as move-

ment variation, insertion, removal, and object overlapping. This approach assumes the

observations are independent at each pixel and can be applied to pixel regions to improve

the results. Also, this system needs to be efficient in detecting shadows, illumination, and

short or long term changes [17]. The main issues in the tracking process are described in

the sequel.

• Movement detection: the background model should be adaptive to changes in the

object status and positions, like insertion, removal, overlapping, and shadow; and

• Illumination changes: the background model should be adaptive to gradual light

changes on the scene.

Thus, in several scenarios, when the state of the objects (intensity changes in the

same pixel position) undergoes alterations in a set of ordered frames, there are known as

foreground, and the static (multimodal) distributions of intensities over time are known

as background. That classification process is commonly known as background subtraction

or background extraction [8].

Through the analysis of a set of ordered frames and the application of the background

subtraction method, it is possible to model the scenario background, considering the

most several conditions of the object states in the scene and obtain an average image,

12

complementing the error between these two picture categories [8]. So, the scene model

process should adaptive get the set of frames updating it is pixel values when an object

is considered part of the foreground.

Background Extraction assumes that each pixel frame values are in history structure,

based on this technique always be applied to frame sequences. The positions classified

foreground suffer post-processing, where another classification is stored [19]. The research

objective should work with the most relevant rating, like using the background to restore

images or using the foreground to detect movement, as shown in Figure 2.4. This process

could enables the system to reduce the computer power consumption if applied as an

automatic movement detection criterion, only using processing power when it criterion is

true.

Figure 2.4: Background Subtraction process, adapted from [20].

The background subtraction method has an image segmentation process; the most

common types are the Subtraction, the unimodal, and multimodal distributions. In the

first approach, the model detects changes between two image frames; the current video

frame f(x, y, ti) and the scene static average image f(x, y, tj). If the difference is smaller

than a defined threshold, that pixel composes the background, otherwise, comprises the

foreground indicating object motion [18].

This model cannot be useful in scenarios that have too much illumination changes

13

because it is susceptible to small alterations, resulting in a non-realistic background model.

Also, it assumes that all frames are of the same size and with an ordered sequence of frames

[19].

The second type can be modeled by a single distribution, sustaining the most relevant

pixel values in the same position and assuming that the intensity of each pixel values was

above the unimodal distribution. According to the intensity, value moves away to the

distribution mean, that value does not compose the background, representing an object

in motion. However, this model also cannot handle illumination changes, because it is

susceptible to small alterations in the scene, also resulting in a non-realistic background

model [19].

The Multimodal Distribution creates more than one unimodal distributions of pixel

values to the same position, enable the system to create an average cost of the n bet-

ter distributions, representing the most relevant values. In this approach, works with

some distributions, it is enough to represent all the scenes variations, like leafs or waves,

composing the better alternative to solving the small alterations problem [8].

When the scenario changes in a short period on a set of ordered frames, the alterations

in the background are not permanent [14]. In this case, probably some objects will be

overlapped in the same pixel value, such a movement in waves, sky, or leafs. To these

cases, some models who treat a single distribution are not adequate. Observing this

problem, a mixture of these values can be a potential solution [8].

Considering that property, Stauffer, and Grimson describe in their work a solution

using the term Mixture of Gaussian Distributions, observing the same pixel values in

a period and using three or five distributions per value [8]. To each frame update, it

will be necessary to verify if the current pixel value matches with some preview ordered

distribution updating all the positions.

That preview distributions represent the mean of the Gaussian wave, allowed that

each pixel is classified in one of these mean distributions. If it does not match, just the

last distribution will be replaced by that pixel value, but with a lower weight and high

deviation. In this way, the method adaptation power could get all the changes in the

14

scenario. That mixture of distributions is also known as pixel history.

This pixel history is composing by the coloration means of each pixel in RGB format,

the density probability function, the weight value, the matching value, and the distribu-

tion standard deviation [8]. Without the match value, its components are represented in

a normalized format (from zero to one) according to the property of a Gaussian distribu-

tions. Also, all of these components belongs to just one Gaussian distribution, describing

as mixture of Gaussian the set of distribution components.

2.3 Deep Learning

Has long been arguing about it machine intelligence, thinking, and automated sys-

tems subjects. This discussion become possible through technology development focused

on helping humans to execute since daily activities to substantial hard activities. Thus,

enable computer systems to act into several areas, as research support, medical diagnos-

tics, investment solutions, or pattern recognition, creates a new environment, lighter and

less physically costly for humans [21].

Based on it is discussions, Artificial Intelligence (AI) is a research field aiming at

solving fundamental human tasks challenging to describe all processes, as to recognize

faces, words, voice, or solve math problems. For example, there is no way to explain how

you look for some people face and remember their name and information, unless through

the Neuroscience field because there are no steps to describe and follow [21].

This process is challenging due to it is an automatic function of human brains, as

Neuroscience describes, it could be possible because the human brain has hundreds of

nerve connections searching information all the time, constituting a cognitive system

based in neurons sharing information through the synapses, that enables a neuron pass

electrical and chemical signals from one cell to another. Therefore, AI enables systems to

emulate some of it is connections, creating a set of methods that allows machines to find

out necessary patterns to conclude specific tasks [21].

Thus, most indicated challenges in AI are solved through pattern recognition, such

15

as image data patterns to face detection. Therefore, Deep Learning describes different

patterns sets with multiple learning levels as biological neurons works, presenting a struc-

ture based on graphs with learning processing layers increasingly complex, as illustrated

in Figure 2.5 [22].

These Deep Learning models work through artificial neurons, artificial connections,

and input and output values. It is Artificial Neurons represent vertices focused on learn-

ing thought train data, Artificial Connections represent edges to share results into each

neuron, and input or output values represent possible input data and solutions. These

structure in layers present three functions: the first layer extract patterns of the input

value, the second layer get results from the previous layer as input values, and the last

layer shows its correspondent output values.

Figure 2.5: Neural Network structure, adapted from [23].

Moreover, an input value goes through the analysis by the first layer; the second layer

analyzes previous layer output; the third layer does the same process (if it exists), until

the output layer, which produces a final answer to the problem. Into this structure, the

first layer represents the Input Layer term, second, third, and other possible layers before

the last layer, are represented by the Hidden Layers term, and the final layer is represented

by the Output Layer term [22].

Each neuron represented into a Deep Learning model works with simple math equa-

tions connecteds, creating an environment of parallel computing. These math equations

are described as Activation Functions and the intelligence behind this structure it is in the

16

weights update process, described in the subsection Training Processes. That means that

each neuron has five directives: input values, a sum component, an activation function, a

weight, and output associated [22].

There are three most common paradigms that this models can assume: Supervisioned

describes a model that presents a correct or defined answers to each input value; Non

Supervisioned describes a model with structured in answer classes, aiming to find common

parameters and aggroup it into labels; and Hybrid models presents a model using both

paradigms [24]. The Complexity evaluation of these models commonly based on the time

associated with estimating the solution though train data patterns, regardless of whether

the answer is correct [25].

Moreover, it is possible to aggroup these models by Feedforward and Feedback terms.

Feedforward consists of a static, only presenting one direction (forward) and no memory

network, known as Multiple Layer Perceptron (MLP), designated just to produce one

output, independent to the previous model state; thus, this model does not present loops

[26]. On the other hand, Feedback or Recurrent models represent dynamic and dependent

networks, that modify it is neurons inputs using previous model state and neurons results,

being structured with loops. These structures are shown in Figure 2.6 [26].

Figure 2.6: Feed Forward and Feed Back (Recurrent) Networks, reproduced from [26].

As Figure 2.6 describes, Feedforward Networks only share neuron results in one direc-

tion, making each neuron output being shared to the next layer as input, while Feedback

Networks allows as many loops as needed to get solutions closer to expect output, being

17

able to feedback neurons and update weight as necessary [27].

2.3.1 Activation Functions

Deep Learning models present different approaches to produce outputs closer to the

expected results, as process images or text data; present a binary or multi labeled outputs;

and set up its neurons in using different technologies. Due to this, Activation Functions

are present within each neuron to ensure the mathematical set up that allows the complete

execution of the training processes, presenting nonlinear, monotonous, and differentiable

properties. That makes consistent results and could be created by the weights addition

into the input data.

Step Function

Therefore, the process of associate a weight to each neuron input data represented

as w1x1 it was developed to demonstrate data importance level. This feature becomes

a threshold when the thought of as weighted sum equation, only accepting values char-

acterized by the function ∑
w1x1, returns 0 or 1 according to the equation described in

Equation 2.2 [26].

y = f(x) =


0,∑j wjxj ≤ 0

1,∑j wjxj > 0
(2.2)

This function it is called Step or Threshold Function and belongs to the Non-Linear

Activation Functions subject, due to the fact that independent of the input, the only

possible solutions assumes 0 or 1, that is when y assumes 1 and x assumes values greater

than 0 or y assumes 0 and x assumes negative values, as shown in Figure 2.7, the only

possible results it is 0 or 1 [28].

18

Figure 2.7: Step (Threshold) Activation Function, reproduced from [26].

Sigmoid Function

Sigmoid Function becomes to standardize neural networks that present output directly

affected by weight or bias small changes, generating an arbitrary result that could affect

the entire network structure. Sigmoid Neurons allows changes into their weight or bias

values, just affecting their node result, being able to produce any amount between 0 and

1, according to the expression α(wx + b), when α match to the function sigmoid [26]

expressed by Equation 2.3.

α(z) ≈ 1
1 + e−z

(2.3)

Therefore, it is possible assumes that values of α directly imply small weight changes

of Sigmoid Neurons presenting a linear output or a differential equation, increasing pre-

dictability of each network neuron [26]. Thus, Sigmoid values restrict themselves to an

interval of 0 or 1 according to the function resenting by Figure 2.8:

Figure 2.8: Sigmoid Activation Function, reproduced from [26].

19

Hyperbolic Function

Hyperbolic function presents different comportment between Perceptrons Networks

but performs a similar function of Sigmoid, restrict themselves to an interval of -1 and

1 output values [26]. Consistently improve Sigmoid function through a faster saturation

or approximation of their values, comprising the Hiperbolic Tangent described in Figure

2.9:

Figure 2.9: Hyperbolic Activation Function, reproduced from [26].

Softmax Function

Softmax Function presents the probability of input values to adequate output to a

previously established class, due to it operation, the Softmax function is commonly used

in the last layer, producing the output value. Therefore, its neurons outputs it is restrict

to an interval of 0 and 1, 0 for smaller matches, and 1 for more significant matches. The

matches value it is based on the probability of the input value belongs to each one of the

final classifications, and it is denoted by Equation 2.4:

φi = ezi∑
j εgroupezj

(2.4)

where z represents the vector of outputs, i represents the index of each output node,

and j represents the index of all group nodes. Making with that output presents in math

way the hierarchy classes of each input value, depending on the outputs of antecedent

neurons; that is, it depends on the recognized patterns [29]. It function it is commonly

indicated to image classification, based on its feature of demonstrate the possibility of

20

each input being considered closer to each expected final classification.

Rectified Linear Unit Function

In view of Sigmoid, Hyperbolic and Softmax functions that are commonly used in

output layers, the Rectified Linear Unit (ReLU) constitutes values for hidden layers,

presenting different processes, as an approximation to some value just it is present into

the negative domain to 0, while in the positive domain their values are not restricted, as

described in Figure 2.10 [26]. It indicates that after weights initialization process, almost

50 percent of output values assume zero.

Figure 2.10: Rectified Linear Unit (ReLU) Activation Function, reproduced from [26]..

2.3.2 Training Processes

The weights update process it is organized according to train data patterns, it usually

starting using randomly or small values, modifying it on each iteration to get solutions

closer to the expected result, providing loss minimization metric. The process to improve

weights update increase the weights interval, searching for typical values. Thus, the

Learning Rate coefficient significantly increase the range may cause too large values, as

represented in Figure 2.11, increasing the loss rate [26].

21

Figure 2.11: Learning Rate, adapted from [26].

Therefore, Neural Networks (NN) does not have a criterion that prevents the creation

of many layers; it must be created according to the problem needs, allowing the NN

to make sophisticated decisions about the subject [21]. But, too many iterations not

ensure appropriate results for unknown patterns, characterizing the Overfitting term, as

Underfitting represents a model that does not provide suitable results, drawing a straight

line between their answers [27]. Both methods are shown in Figure 2.12, as well as the

appropriate capacity of the models.

Figure 2.12: Underfitting, Appropriate Capacity and Overfitting behaviors, reproduced
from [21].

To prevent it is overfitting issues, it is recommended to decrease the complexity of the

model, reducing active layers, neurons, or epochs numbers. It could be possible mainly

22

four ways: manually removing it is neurons; using dropout function; using early stopping

feature, and through kernel regularization [21]. The process to remove it is the chosen

number of neurons could be done in the model creation process through not adding new

layers, but does not ensure the most trustworthy solution or balanced model.

The dropout method presents the process of drop a chosen percentage of connections

between their neurons randomly; it consists of selecting the percentage and each neuron

that it is dropped without human iteration providing an increase in chances to have

a balanced model. Figure 2.13 shows the dropout method applied during the training

process, removing the sealed units with X [30].

Figure 2.13: Fully-Connected model and Dropout method, reproduced from [30].

Early Stopping method provides the model’s validation loss control through stop early

the training process, instead of making a fixed number of iterations. This method stops

when the validation data set loss coefficient assumes minimal and almost equal loss values,

as shown in Figure 2.11. That makes the model take indefinite time to conclude the

training process, but allows that the model solution approaches the maximum of the

expected result and stop when this happens [26].

Reduce on Plateau represents the theory of Furthermore time essential measures lose

effectiveness. This concept is adapted to Deep Learning to stop the learning rate when a

specific metric has stopped improving. The metric could be chosen between the evaluation

metrics, producing improvements in terms of model evaluation [31].

23

The method of penalizing the weight matrix on each artificial neuron is known as

Kernel Regularization and assumes that a Neural Network with smaller weights best

presents smaller domain solutions, adding the regularization term into the cost function.

Kernel Regularization presents two categories: L2, which forces the weight tensors to

decay towards zero value and L1, that penalize the absolute weight tensors, reducing to

zero [32].

Batch Normalization comprises the technique that uses very high learning rate values,

may have been less careful during weight initialization. Usually, it is used one batch by

iteration, due to the amount of computational processing required. Batch Normalization

provides the uses of several small pieces of samples by repetition, taking advantage of the

parallelization capability, as Graphics Processing Unit allows, accelerating the learning

process [26].

Another possible solution for Overfitting is the amount of sample data that a Deep

Learning model has access; still, it directly affects it is chances of getting closer to the

expected results or accuracy evaluation. Therefore, use techniques to increase the data

set provides changes in terms of colors and geometry transformation, to manipulate train

data, offering as many samples as the machine learning professional find enough, as dis-

posed into Figure 2.14 [26].

Figure 2.14: Samples of Data Augmentation, reproduced from [26].

Therefore, Neuron Networks models aiming to produce a set of weights that makes

the model get closer solutions to the expected results. During the training process, the

results it is rated by the difference of train outputs and the expected outputs, commonly

denoted by Equation 2.5, where T represents the train set; also, j represents the model

output iteration, characterizing Backpropagation term [26].

24

E = 1
2

∑
k∈Tr

m∑
j=1

(yj(xk, w)− djk)2 (2.5)

Moreover, humans apply relevant knowledge from previous learning experiences. Aim-

ing to use this method from computer systems, Transfer Learning is a technique that

provides a new purpose for previously trained models. It consists of the improvement

of learning through the transfer of knowledge from a related purpose that already been

learned. As an example, it is possible to train a Deep Learning model on a base data

set for vehicle detection and repurpose to a second network and data set from wheels

detection [33].

Based on Transfer Learning, Fine-Tuning presents a solution to be able to increase or

decrease the learning rate needed into each network layer, providing network optimization

to minimize loss rates in different network domains. It consists of the implementation

of Transfer Learning with the replacement of activation functions as needed to solve a

previously classification problem to become the newest NN structure able to the new

classification domain [26].

2.3.3 Optimization Methods

Optimization methods allow the research for minimum and maximum values for in-

crease performance through choose variable learning rate values for different desired do-

mains and solutions. It consists of the utilization of parallelism to improve the computer

process of solving math equations in a lot [26].

Stochastic Gradient Descent (SGD) reduces minimum local occurrence through mini-

batches of samples reducing the learning variance, becoming the model a highly paral-

lelable method [do Nascimento, 16]. Adam, it is a method that comprises an efficient

stochastic optimization based on low memory usage and calculating individual adaptive

learning rates for each batch samples [26].

Furthermore Adam is an adaptive learning rate method, that uses the estimation of

the first and second moments of the gradient to adapt the learning rate, being moment the

25

expected value for a variable in the N potence. In a probabilistic way, the moment zero

demonstrates the total probability, the moment one represents the probability mean, the

second moment describes the distribution central variation, the third and four moment

represents the distribution asymmetry and kurtosis, respectively.

2.3.4 Evaluation Metrics

A robust Neural Network is represented by values to their accuracy and loss functions,

as a percentage of hits and loss. In terms of a normal distribution, accuracy function

presents measures that approach decimally the value 1, assuming 0 to pour measures

and 1 to suitable measures. The same can be described as loss function, but it is valued

opposite, considering 1 to pour measures and 0 to useful standards [21], as presents Figure

2.11.

These train metrics represents it is functions to the percentage of hits and misses

to train patterns recognition, validation metrics represents the same percentage in sets

destined to validate train patterns and test metrics represents the percentage of hits and

misses to unknown patterns and NN should be able to future, by input set increment,

learning and improve it is accuracy [21].

There is some significant terms in order to evaluate the system, P (Positives) represents

output set that it is classified as positives; N (Negatives) represents output set that it is

classified as negatives; TP (True Positives) consists into the correctly outputs classified as

positives; TN (True Negatives) consists into the correctly outputs classified as negatives;

and FN (False Negatives) it is the number of incorrect output classified as negatives [34].

All through the evaluation process, two other metrics it is considered: precision and

recall. Precision regards the percentage of outputs correctly classified as true on the

classified data set, and it is denoted by Equation 2.5. In another way, Recall or Sensibility

represents the percentage of output correctly classified as accurate into the classified

data set, denoted by Equation 2.6 [34]. F1-Score (F-Score or S-Measure) represents the

measures of the test accuracy, considering precision and recall as essential features, it is

26

equation it is described as Equation 2.7 [35].

Precision = TP

TP + FP
(2.6)

Recall = TP

TP + FN
(2.7)

F1Score = 2 ∗ Precision ∗Recall
Precision+Recall

(2.8)

Confusion Matrix or Error Matrix comprises the visualization of an algorithm through

the matching of predicted classes and actual classes. This method is denoted by reports

of false positives, false negatives, true positives, and true negatives, also demonstrating

accuracy, precision, recall, and f1-score. As demonstrated in Figure 2.15, it is created

a correlation matrix, presenting the number of inputs classified as positive and negative

[36].

Figure 2.15: Confusion Matrix and its respective functions.

The model evaluation presents several metrics, and depending on the model domain,

it is solutions could be binary or categorical, as True or False, and the percentage of each

input value has into the solutions set. Thus, Categorical Cross-Entropy represents a loss

function for problems where one result can be correct, and it is probably is compared by

27

the distribution of predictions, producing only one correct answer [37].

Moreover, the Cross-Validation method consists of a technique that, at the end of

each training epoch, model it is subject to an unknown data set, aiming to maximize

neural network capacity, indicating the better iterations number to adjust their weight

values. Therefore, the test data set is set up into two groups: validation, which provides

Cross-Validation application and test, that offers models evaluation. The weight adjust

process consists of determinate the iteration that has fewer error values in the test set.

According to this method, the samples need to be disposed of in just one data set [38].

2.3.5 Convolutional Neural Networks

Humans successfully classify and recognize objects, persons, or animals based on vi-

sion, low-level features as formats, corners, lines, curves, or colors [39]. Motivated by

image object detection and classification through image analysis Convolutional Neural

Networks emulate this human capacity, computationally processing images as tensors

and denoted by HxWxD, where H represents image height, W to image width and D to

image channels or dimensions [26].

In this concept, tensors usually represent the image color intensity in all it is coordi-

nates; it consists of three dimensions or channels for color images: red, green, and blue

intensities. By default, a Convolutional Neural Network presents as first feature the Con-

volution Layer. It consists when using a convolution kernel, to go through image pixel to

pixel applying the multiplication of kernel value and pixel intensity, as shown in Figure

2.16 [26].

Figure 2.16: Convolution sample.

Moreover, apply its is convolution technique enables to obtain low-level characteristics,

28

as a demonstrated corner in Figure 2.16. This first process is represented as the second

image part, where 0 represents no accounted intensity values, and the third image part

represents the tensor kernel to be multiplied. The main feature extracted it is represented

as an Activation Map, the probability of each pixel to demonstrate it is low-level image

features [39].

Therefore, each Activation Map it is processed by one neural unit and presents the

probability of images to contain a specific low-level feature. This process has, as a conse-

quence, a very high-resolution feature map, making possible decreasing the network speed

[40]. Thus, the Pooling method aiming to reduce the amount of generated data, through

a downsampling process, providing an increase in network speed, a low-resolution feature

map [26].

Once Convolutional Neural Networks extracts low level features from input images

and combine features for speed improvements, next process it is combine several hidden

layers using ReLU function and fully-connected layers providing discover most relevant

features into the input image, that may assist in the final classification, as shown in Figure

2.17 [26].

Figure 2.17: Convolutional Neural Network structure, reproduced from [26].

2.3.6 MobileNet

Differently from Convolutional Neural Networks, MobileNet presents a Google pro-

posed architecture for suitable mobile and embedded based vision systems. It comprises

a light Deep Learning model due to the significant reduction in layers parameters through

Dephtwise Separable Convolution. This concept also deals with depth dimension, or the

number of channels, requiring a three-channel input image; providing the newest process

29

for convolution. Its process consists of factorizing the kernel into three MxNx1 different

kernels, as shown in Figure 2.18 [41].

Figure 2.18: MobileNet Convolution’s process, reproduced from [41].

Through this process, each kernel iterates one channel of the image, and generates one

intermediate convolution image with the same number input of channels, being smaller

than the normal convolution process. The second process consists of producing a final

image through a pointwise kernel, to get an image of 1 channel. MobileNets comprises an

efficient model focused on speed and accuracy improvements [41].

2.4 Related Works

Motivated by the failure in object distinction provided to the background extraction

technique, Friedman and Russel have to propose a pixel classification in distinct classes.

That project identifies and highlights shadows, improving the vehicle’s identification in

tracking problems. In this research, they concluded that the application of the mixture

of Gaussian is not capable of producing excellent results in scenarios with extreme illu-

mination variations [42].

In your research, Ridder, Munkelt, et al. proposed the utilization of an adaptive

background estimation with the Kalman filter, making the model sensitive to illumination

changes in the scene. That application does not consider several object movements; also,

the authors concluded that detection does not depend on the pixel position and that the

smaller image resolution, the better the result will be [43].

Aiming to create a robust system of adaptive tracking, sensitive to objects overlap,

30

illumination changes, objects iterations (insertion, removal, movement) and shadows in

scene, current failure of the traditional methods of object detection, Stauffer and Grimson

pattern a color values of a determined pixel according to the mixture of Gaussian and ob-

tained a classification with heuristic evaluation in background, re-adjusting the classifiers

[8].

That works concluded the better probabilistic method of tracking objects in this epoch,

but this process could be slow learning and cannot distinct moving shadows and mov-

ing objects [8]. Thinking in improving the mixture of the Gaussian technique, Kaew-

TraKulPong and Bowden present a study that reinvestigating all the equations and the

equations positions on the code, updating the Stauffer and Grimson work and allows the

system to learn faster with more accuracy on distinguishing movement or shadow [44].

This method could be founded in the OpenCV Library, known as BackgroundSubtrac-

tionMOG2.

Another essential background subtraction approach was self-organization through neu-

ral networks. That work can handle scenes with objects movement and illumination

changes, including into the background object shadows. Also, it can deal with different

types of video. Using this technique, the researchers concluded that improvement in the

processing speed and accuracy in surveillance systems [17].

In order to produce a mobile system based on vacancy state indication, Valipour, et.

al [45]. develop a system that reaches about 99 percent of accuracy based in VGGNet-F

Neural Network. The proposed architecture uses the manual vacancy detection method,

and provides a solution for mobile applications using the server as processor of input

images get through the camera devices. The accuracy achieved by Valipour work it is

based on its VGGNet-F structure and has as future works the vacancy automatic detection

feature.

Motivated by uses the MobileNet structure through Transfer Learning and Almeida

Parking Images Data Set [46] as an IoT based parking system, Jose and Veni [47] pro-

poses reaches about 88 percent of accuracy and indicates as significant challenges the

illumination changes and the vacancy occlusion due to the perspective distortion. The

31

accuracy achieved by this work it was considerably bellow that the Valipour proposes,

and its based on the data set size and Transfer Learning architecture. Motivated by ex-

periments in Parking Data Set, Amato et. al. [7] reaches about 2 percent of accuracy

evaluation above Jose and Veni model, using a AllexNet based model and detecting its

vacancy spots through manual input coordinates.

32

Chapter 3

Development Methodology

Chapter presents the development process obtained to conclude the proposed work,

including the used tools, data analysis and the model development.

3.1 Programming Languages, Libraries and Devices

This section presents the most relevant used tools, starting by the chosen programming

language, its libraries, devices and frameworks.

3.1.1 Python

Python is a high level, multi-platform, interpreted, and interactive programming lan-

guage, poorly used as extension language to process application quickly and produce easy

to use scripts. Moreover, Python is an open-source language, that comprises a community

of open source libraries, especially in Machine Learning, Deep Learning areas due to clear

syntax, easy understanding and efficient data structures, reducing maintenance costs [48].

That work presents Python in it is version 3.6, together with the below-described libraries.

33

3.1.2 OpenCV

Open Source Computer Vision Library or OpenCV is a multi-platform and open-source

library developed to produce applications in the Computer Vision area, owing Linear

Algebra, Data Structure, Digital Image Processing, and Video modules, Furthermore it

presents image detection and recognition algorithms. OpenCV was developed in C/C++

but also enables support for Python, Java, and Visual Basic. In this work, OpenCV is

used in image/video processing, allowing discovers in object detection and recognition

area [20].

3.1.3 TensorFlow

TensorFlow is an open-source library developed to produce solutions in terms of quickly

numeric computing, enable us to integrate applications using one or more Central Process-

ing Units (CPUs), Graphical Processing Units (GPUs), or mobile dispositive. TensorFlow

was developed by Google Brain Team, aiming to produce solutions in Machine Learning

and Deep Learning areas through math operations and multi-dimension tensors [49]. In

this work, it was used the implementation of the TensorFlow base and Tensorflow GPU

aiming to produce an efficient Deep Learning model.

3.1.4 Keras

Keras is a high-level Neural Networks API, written in Python and supported by the

TensorFlow library. Keras enables the creation of Deep Learning models through the quick

and easy way, focused on test its methods in the as short time as possible, supported by

CPU or GPU. Keras also support several model architectures, data generation, layers

types, activation functions, learning rate methods, regularizers, optimizers, evaluation

metrics, and including Convolutional Neural Networks and applications as support for

MobileNet [50]. In this work, Keras was used to support Deep Learning methods studied

in the literature.

34

3.1.5 Anaconda

Anaconda is an open-source multi-platform distribution for Python and R program-

ming languages aiming to produce Data Science and Machine Learning applications,

through simple environment management and deployment, including Anaconda Naviga-

tor GUI and command-line interface. Through Anaconda, it is possible to create several

environments and install through conda or pip different libraries on each deployment en-

vironment. This distribution enables installation of Jupyter Notebook or Spyder GUI for

Python and R development, making possible integration of languages and devices [51].

3.1.6 Sci-Kit Learn

Sci-Kit Learn is a Python open-source library focused on solve problems in terms

of supervisioned and non-supervisioned algorithms. Moreover, Sci-Kit Learn presents

functions and modules to evaluate these models, also allowing the comparison and report

of these algorithms [52]. In this work, this library is used to evaluate and report the

proposed model in terms of accuracy, precision, recall, f1-score, and confusion matrix.

3.1.7 Flask

Flask comprises a Python Web Micro-Framework, providing essential framework ser-

vices, as sharing information through network and routes, does not need to allocate several

computational resources [53]. This framework provides to this work a quick solution to

be able to present exciting results in a short time.

3.1.8 Raspberry Pi

Raspberry Pi is a multi-platform single-board computer commonly used in the Internet

of Things are to be able to acquire, process, and report data through a potential CPU

and network services. This device provides a solution on low-cost and could be integrated

into modules, as RaspCam V2 and Movidius specific devices [54]. Figure 3.1 presents a

35

Raspberry with integrated RaspCam.

Figure 3.1: Raspberry Pi’s sctructure integrated with RaspCam, reproduced from [54].

Raspberry Pi 1 presents a system on chip BCM2835, ARM1176JZF-S processor of

700 MHz, GPU video-core IV, 512 MB in RAM, and input/output connections. As a

complement, currently, Raspberry Pi 3B+ presents a system on a chip, a 1.2 GHz 64-

bit quad-core processor, ARMv8 GPU, 1 GB DDR2 of RAM and Bluetooth 4.1 [54].

It reduces the computer provides needed processing for acquiring, process, and report

information about the proposed system.

3.2 Data Pre-Processing

This work proposed a solution using Raspberry Pi 3B+, RaspCam V2 to acquire,

process and report data, and a machine to implement and train Deep Learning models

in a Python environment by remote access. The machine presents the follows features:

Linux Ubuntu 18.04.1, Intel(R) Core(TM) i7-5930K CPU@3.50GHz, memory of 32GB,

and two available GPUs GP102 (GeForce GTX 1080 Ti).

3.2.1 Data Acquisition

The data disposed of by Polytechnic Institute of Braganca (IPB) is divided into videos

from the Higher School of Technology and Management (ESTIG) parking space. This

36

data is in format MP4 with 25 frame rate per second (fps), and represent images of

movement in the park, recorded through Raspberry setup environment proposed for this

work, being authorized by a confidentiality agreement between the master’s student and

IPB moderator.

The essential challenge provided by this park is that it does not presents divisions

between each vacancy space, and due to that challenge, it is not possible to estimate

the exact positioning of each parking lot, as disposed of in Figure 3.2. Also, according

to the positioned camera, the vacancies spot have an angulation that does not favors

its visualization, making the situation of as the vehicles its position, a clear view of the

vehicle will not be possible, requesting extra attention during the analyzes.

Figure 3.2: Data extracted from IPB.

This step aiming to extract attributes that influence into the classification model,

developing a use case to apply the proposed solution. Making these data understandable,

there is some information about the data acquisition: it was acquired 2 videos, totaling

12 recorded hours in 25 fps. It is substantial to make it clear that this set of images does

not belong to the data set created to train the Convolutional Neural Network described

in the following subsection, considering a solid framework for testing.

37

3.2.2 Data Set Acquisition

The data set disposed to conclude this work presents 62740 images divided into three

different classes: cars, motorcycles, and negative images. The vast majority of images

come from the Open Images DataSet V3, that contains 15851536 boxes on 600 categories

of images, and the resultant images come from researches on Google platform though

specifics terminologies, namely ‘car dataset’, ‘motorcycle dataset’, ‘vehicle dataset’, ‘park-

ing dataset’, ’bicycle dataset’, ‘people dataset’, and ‘animals dataset’. Through the ’park-

ing dataset’ term, it was found, in special, the PKLot Dataset [46], that provides images

of occupied and available vacancies from parking spaces.

The established classes of images on this data set it was decided to consider categories

of objects that may belong to the environment of a parking lot. The inclusion of people

and animals into this data set belongs to the goal of reaching not only vehicle images, as

found in these environments, making the system sustainable to several environments.

The disposition of images it was established according to the Cross-Validation tech-

nique together with the Softmax activation functions, that requires three classes of image

sets plus as many as possible classes of objects to being recognized: train image set, val-

idation image set, and test image set, Furthermore presents the same classes of images:

cars, motorcycles, and negatives. The data set structure is disposed in Figure 3.3.

Figure 3.3: Proposed image data set structure.

38

The negatives image data set comprises Furthermore the images that do not belong to

cars and motorcycle image classes, like people, animals, and bicycles. Also, the quantity

of images disposed into each set is shown into Table 3.1, representing about 70 percent

for a train set, 15 percent for the validation set, and 15 percent for test set as described

in the literature as indicated percentage. It is substantial that the validation image set

belongs to the train set, according to the Cross-Validation concept, and the test set must

not own images from the train set.

Table 3.1: Proposed image data set structure and it number of images.

Data Set Structure Image Classes Number of Images
Car 6156

Train Data Motorcycle 8290
Negatives 26989

Car 2596
Validation Data Motorcycle 1768

Negative 6127
Car 2596

Test Data Motorcycle 1773
Negative 6445

3 9 62740

Furthermore it was needed to get images from Open Images Dataset V3, that also

enable the downloads it is labeled, which contains the positioning of each object of interest

into each image. Due to this process, it was needed to clip each image and save it into the

respective path, according to it labels, in the specific region of interest as demonstrated

in Figure 3.4.

Figure 3.4: Data set labeled cut sample.

39

The proposed images data set is represented in Figure 3.5, demonstrating images of

all classifications, that it is used to recognize positives and negatives objects of interest.

As the first place, the positive objects consists into the cars and motorcycles classifica-

tions, besides the negative objects it is represented by bicycles, persons, dogs, and cats

classifications.

Figure 3.5: Images set from proposed data set.

Furthermore, as previously described, this images data set was composed in the pro-

posed model to successively train a Convolutional Neural Network to recognize objects of

interest, supporting the model of vacancy state detection, through presenting the proba-

bilities of such objects in the scene.

3.2.3 Data Augmentation

Starting from the data set defined in the previous subsection, it was applied Data

Augmentation method to prevent Overfitting issues. The data Augmentation process

consisted of the realization of mathematical morphologies in each data structure. Firstly,

40

it was applied image normalization en each structure; second, it was applied five param-

eters into the train data set:

• Random image rotations of 20 degrees;

• An image movement to 20 percent have been performed according to the longitudinal

and transverse axes;

• A horizontal flip into these images; and

• Extension of the morphological bounds, in terms of color and shapes.

These applications it was enabled during the training process, creating this modified

set into Convolutional Neural Network memory, which does not save these images, and

Keras API provides the process through ‘ImageDataGenerator’ method, as described in

Table 3.2.

Table 3.2: Proposed data augmentation process

Images Data Set Data Augmentation Process Parameter
Train Data Set Rescale 1./255

Rotation Range 20
Width Shift Range 0.2
Height Shift Range 0.2
Horizoontal Flip 0.2

Validation Data Set Rescale 1./255
Test Data Set Rescale 1./255

As described, motivated by producing a model that is less likely to potentiate the

overfitting problem, the data augmentation proposed it is based on mathematical trans-

formations that comprise the distribution and differentiation of the images arranged in

the data set proposed in the previous section.

3.3 Proposed Convolutional Neural Network Model

The Keras API supports several Deep Learning models through Application topology,

as well as providing previously trained models on ImageNet data set, as Xceptron, VGG16,

41

ResNet50, InceptronV3, or MobileNet. This section presents the MobileNet model used to

conclude the proposed work, as well it is necessary adaptations to get expected solutions

and classifications.

As previously described, this work proposed a vision-based vacancy state detection

through Convolutional Neural Networks, Background Subtraction, and Embedded Sys-

tems. Motivated in provides a solution for vacancy state detection, it was needed produce

a robust Deep Learning model that has the features of detecting the state of a parking

space, considering changes in lighting and movement in the scenes and also providing the

application of this model in a mobile device, as permitted by Internet of Things area.

Firstly, it was necessary to produce a robust Deep Learning model, focused on clas-

sify parking vacancies in ‘occupied’ or ‘available’ states. Using Convolutional Neural

Networks, it is possible to develop a model that differentiates these types of vacancies

through Computer Vision. It consists of the acquisition of parking images and processing

this data through a Neural Network, which may return the probability that objects of

interest compose the input image.

The choose of use a MobileNet comes from their potential application in mobile devices,

due to it be inexpensive in computational terms. The MobileNet structure described in

literature is built on 28 depthwise separable convolution layers except for the first layer

that it fully convolutional.

However, the Keras MobileNet presents 93 layers distributed into 1 Input Layer, 91

Layers divided between sets of Pooling, 2-D Convolution, Depthwise 2-D Convolution,

Dropout, BatchNormalization, and ReLU, Furthermore 1 Softmax Layer and 1 Reshape

Layer. The proposed model, including the MobileNet structure it is described in Appendix

A.

Keras makes this model available bellow, making it possible to include or exclude

its last layers through ‘include top’ param, also making it possible choose the training

weights data set through ‘weights’ param, and making it possible choose the data input

shape through ‘input shape’ param, disposed of in Table 3.3.

42

Table 3.3: Proposed MobileNet Required Parameters.

MobileNet Input Parameter Parameter

Include Top Layers True

Import Weights From ImageNet

Input Shape (rows, cols, channels)

Image Rows 96

Image Cols 96

Image Channels 3

This approach re-train the MobileNet through the Transfer Learning and the Fine

Tunning methods; after download it models, it was necessary to deactivate the final

layers, to include the proposed Convolutional Neural Network. This process proposes the

exclusion of the last 5 layers of this model based on remove the final dropout, convolution,

activation and reshape layer, keeping the last MobileNet reshape layer providing an entry

parameter for the newest proposed layers. Thus, it was chosen two other layers to ensure

the correct model finalization: a fully connected layer with the ReLU activation function

and a fully connected layer with a Softmax activation function, disposed of in Table 3.4.

Table 3.4: Proposed Convolutional Neural Network.

Proposed Layer Parameter Value

MobileNet Last 5 Layers Trainable False

Dense Input Size 512

Kernel Regularizer L2 0.0001

Activity Regularizer L1 0.0001

Activation Function ReLU

Dense Output Size 3

Activation Function Softmax

To prevent overfitting issues, the added hidden layer receives 512 input values, a value

described by the , furthermore it uses the technique of kernel regularization, apply L2

43

and L1 regularizer both assuming 0.0001 learning rate metric, based on the regularization

of weights and outputs from proposed network. The proposed model have several other

configure set, presenting the current model as the suitable to manage it parking domain.

Aiming to replicates the model on 2 available GPUs, it was used the ‘multi gpu model’

function, also disposed of by Keras API. This provides in running different parts of the

same model on different devices, and for that, it is needed that the model has parallel

architecture. It can be achieved by using a TensorFlow function named ‘device’, to include

and merge the different parts of the parallel model.

Moreover, the ‘multi gpu model’ method consists into divide the model’s inputs into

multiple mini-batches, apply a model copy on each mini-batch being executed on a ded-

icated GPU, and concatenate the results on CPU into one batch. As described into

literature, the recommended number of batches must to be set up according to the num-

ber of GPU used devices and its image size, in this case, the batch size its 64 and the

number of mini-batches of 32 samples.

With the assurance that the model can be paralleled, the next step is to format the

way the model will be compiled. It comprises the Keras ‘compile’ function, and requires

an optimizer, a loss function, and an evaluation metric, as described bellow. As described

in the previous section, Adam optimizes the model based on the first and second order

gradient, and the ‘categorical cross entropy’ loss function provides a multi-class output

and accuracy metric. The proposed work determines a learning rate for Adam of 0.0001.

After the model was developed, it is needed to choose the Keras ‘fit generator’ function,

which enables choose the number of epochs, steps for each epoch, steps for validation

data, data samples, and callback functions, as shown in bellow. Steps are denoted by the

number of samples in data set divided by the defined data set batch, in this case, the

chosen batch size comprises the value 64. The training process its disposed of in Table

3.5.

The callbacks proposed into this work are available on Keras by: ‘ModelCheckpoint’

(MC), ‘ReduceLROnPlateau’ (RLROP), ‘EarlyStopping’ (ES) and ‘CsvLogger’ (CSVL)

methods, providing control on the training process stopping it when the metrics have to

44

stop to improving, in order to improve weights update, reducing and minimizing the loss

rate. Moreover, The CSVLogger saves the model training progress.

Table 3.5: Proposed Model Training.

Model Training Parameter Parameter Description Value
Training Data Train Path -

Steps Per Epoch Training Samples / Training Bach Size 647
Validation data Validation Path -
Validation Steps Validation Samples / Validation Bach Size 163

Epochs Number of Epochs 30
Callbacks MC, RLROP, and ES -

The proposed ModelCheckpoint saves the model after every epoch that contains the

formatting options, as save the best model only in the epoch that the current monitor

value presents minimization. The proposed ReduceLROnPlateau reduces the learning

rate when the metric validation loss has stopped improving, with a factor of 0.2, and

patience of 4 epochs. Furthermore the proposed EarlyStopping also stopping the train

when the validation loss has stopped improving, under the same values to factor and

patience. The proposed structure is shown in Table 3.6.

Table 3.6: Proposed Checkpoints for training.

Checkpoint Parameter Value
ModelCheckpoint Monitored Metric Validation Loss

Save Best Model Only True
Mode Minimum

Reduce LR on Plateau Monitored Metric Validation Loss
Factor 0.2
Patience 4

Minimum Learning Rate 0.0001
Early Stopping Monitored Metric Validation Loss

Factor 0.2
Patience 4
Mode Minimum

In order to evaluate the proposed model, this work proposed two evaluation ap-

proaches: validation and test. Both of these approaches considering four scenarios: a)

predictions for the input samples from data generation, b) model evaluation on data gen-

erator, c) classification report according to evaluation metrics, and d) plotting of confusion

45

matrix Furthermore the history demonstration presents how the model behaves during

the training process.

The history demonstration belongs to Keras ‘History’ callback method and provides

information about the model behavior on each training epoch, highlighting two validation

and test evaluation metrics: accuracy and loss functions. This method memorizes this

information, and it is possible to plot a graph to evidence these values posteriorly.

The model evaluation on the data generator belongs to Keras ‘predict generator’

method and returns a list of predictions for a single batch of samples. Through this

prediction list, it is possible to obtain the highest value and rank it according to the

expected results. The model evaluation on the data generator belongs to Keras ‘evaluate

generator’ method, and test the model on a single batch of samples, showing accuracy

and loss function results.

The classification report belongs to the Sci-Kit Learn API metrics and build a text

report through the model evaluation, showing the results of the leading classification

metrics. This work considers as main classification metrics the precision, recall, and f1-

score. Just like the previous method, the confusion matrix belongs to Sci-Kit Learn API

metrics, and compute the evaluation of the classification accuracy. These four presented

methods it is disposed of in Appendix B for testing evaluation.

Through the proposed model, it is possible to recognize positive and negative images

with significant accuracy and loss rates, as demonstrated in the next chapter. Also, Figure

3.6 shows how is the expected model operation. When an image input is provided, the

model process the input features, classify it according to the learned features and produce

a probability result, that allows classifying its input data as an existing classification.

46

Figure 3.6: Convolutional Neural Network behaviors, reproduced from [27]

In this case, Figure 3.6 provides a positive example that ensures, according to the

model, 95 percent of chances of the input values belong to the classification ‘Car’. There-

fore, this model proposes a default input shape named as ‘channels last’ data format

(height, width, channels) of size 128x128x3 as recommended in the Keras MobileNet

structure.

3.4 Proposed Vacancy State Model

To solve the parking spot status detection, this works propose a model that integrates

Convolutional Neural Networks models, Background Subtraction models, and Embedded

Systems solutions. With the development of the data set, and the model considering it

completed training, it is needed to develop a solution that integrates these subjects, allow-

ing the application of the detection model in complex scenes and ensuring its operation

through a mobile device.

These work propose, as a third step, the image data acquisition process. This pro-

cess consists of to develop a vision-based system focused on extract, process, and report

parking vacancy information. The first challenge consists in a no marked park inside of

the ESTIG’s space, and it situation enables each park user to choose the parking va-

cancy position, according to though common sense to keep as many vacancies as possible

available.

The second presented challenge about this park is that the acquisition device is set up

to detect as many visibility suitable vacancies as possible, witch evidence the inclination of

47

each vacancy clearer, forced by the camera position. It is considered a challenge based on

the detection of each spot cause visibility between each vacancy to be reduced, implying

into researches to provide the most suitable vacancy positions for space.

As a first and most suitable option, it is the manual vacancy position detection. It

enables the park’s manager to include the number of vacancies manually as space allows,

ensuring the when it is founded a park’s user that does not park properly, the spaces

occupied by this user will be established as occupied spot state. These process, allows the

parking management to contact the user, and also enable the parking for other vehicles

to disable into this occupied vacancies, through the criterion of lack of space.

In the literature, it is common to detect parking vacancies the uses of a region-based

Convolutional Neural Network, known as the RCNN model, to extract region proposals

to identify the position of the interest object into the input image, in this case, a vacancy

spot. In that way, each one of its proposals regions it is computing though CNN features

to classify its regions [55].

This proposal has three most significant requirements that can become possible issues:

the first one, it is that this process takes a considerable amount of time to classify all these

founded regions, once it process is based on Corner [18] or Selective Search [56] detection

methods; second problem it is that this solution can not be implemented in real-time,

based on the first requirement; and third the process to detect corner positions does not

be able to learn, enables not suitable region proposals candidates [55].

To provide improvements over the RCNN model, it was developed the Fast-RCNN

and the Faster-RCNN structures, that instead of the region proposals, it enables the

creation of a convolutional feature map, predicting the region proposals, proposing a less

computationally costly solution [57] [58].

With the motivation to apply some of these procedures within this work, it is proposed

to develop a vacancy position detector method that allows the search of vacancies without

losing the characteristic of real-time operation, as being an activity apart from this work

proposes. Thus, the second method proposed to detect vacancy position comes from the

use of Corner and Selective Search methods as the first process after the data acquisition,

48

introducing a semantic segmentation process.

In order to detect the parking vacancy position, the first approach was after the first

real-time data acquisition, and a Corner detection method it is applied, fitting to propose

several regions of interest (ROI). Through this ROI’s, it was possible to apply the CNN

developed model, which classifies each one of its regions, considering as positive the car

and motorcycle detection. In this way, this work provides two essential features: the

detection of corners and the Convolutional Neural Network model proposed.

In parallel, it was applied to the Selective Search detection method, fitting to pro-

pose different regions of interest, to produce a different result from the Corner detection

method. Figure 3.7 and 3.8 shown both processes, and through these methods, it was

studied the most assertive process that does not take high processing time, and its results

it is disposed into the next chapter.

Figure 3.7: Corner Detection and bounding box drawing process.

In this way, through the parking vacancy detection process, the system can continue

the primary processing, there is vacancy status detection. Therefore, in order to presents

a robust method, also was proposed, as the third structure, the corner fitting method,

that makes the detection of corners and produce a region-based where vehicles are most

likely to be parked. Also, it was chose a vacancy interval of sizes to produce Figure 3.7

and Figure 3.8.

49

Figure 3.8: Selective Search and bounding box drawing process.

For this approach it was used the Linear Regression between these corners, providing

a possible line of parking into the input image. The only requirement of its process it is

that some parking vacancies have to be occupied in the time of the processing, this result

it is disposed into the next chapter.

In order to crowd these processes, this works proposes two described approaches: a)

the manual vacancy state detection, and b) the semi-manual vacancy state detection.

And as previously described, after the vacancy position detection, the main processes it

was approached: the vacancy state detection. The biggest challenge into this problem

is the computational power consumption, which usually reaches high levels, hindering its

integration into mobile devices. The model choose was though according to the reduction

of this computational consumption and the vacancy state model proposes complementing

this goal.

It is possible to reduce computational consumption through computational practices,

and as the most relevant chosen practice, it is the Background Subtraction method. This

method provides autonomy to apply into several non-controlled scenarios considering as

essential features: illumination and movement changes. It allows the system to automatic

classification the most indicated moments to use the Convolutional Neural Network model

proposed, aiming to detect vacancies status.

50

As previously described, there are two proposed vacancy status classifications: ‘oc-

cupied spot’ and ‘available spot’. Once the model always updating the vacancy status

every second, the computational power has reached high values, making that the model

classification takes longer to complete and presents the solution. The proposed model

describes the use of Background Subtraction only to make the CNN model classify the

region of interest when there is movement, as shown in Figure 3.9.

Figure 3.9: Movement detection through Background Subtraction method, adapted from
[59]

In that way, the proposed system receives as input a parking image, and for each

vacancy spot, it is detected, as the first place, what is the vacancy classification. This

process of vacancy classification it is provided by the Convolutional Neural Network pro-

posed, classifying into ‘occupied spots’, the spots that have ranked as positive objects

(car or motorcycle classes), and the ‘available spots’ are there it is classified as negative

objects.

Once the vacancy classification is completed, this result is reported to the service,

and the next classification process will only start when a movement interval is detected

into the vacancy spot. This movement interval comprises five consecutive seconds or five

51

successive frames (for frames per second rate equals to 1), named by this work as vacancy

memory, based on a mean for each vehicle park process.

This vacancy memory comprises how much movement it is detected for each vacancy

spot, being considered true when the value access five consecutive changes detected.

Therefore, the number of memories matches the amount of vacancies spots detected.

Thus, as described in Figure 3.10, the vacancy state solution comprises the vacancy de-

tection, the classification of a vacancy spot through CNN model classification, and the

interval of checks that the system implements. Through this approach, the system does

not need sensors and can be applied to a mobile device.

Figure 3.10: Proposed vacancy state detection architecture.

It process of memory movement detection integrated with the vacancy detection en-

ables that the system does not always be looking for an update each vacancy status,

providing as the main resource the computational cost reduction. Thus, it provides the

integration with the Internet of Things and Embedded Systems concepts, allowing the

process to be applied into a mobile device.

52

Chapter 4

Analysis and Result’s Discussion

Chapter presents the proposed model feature analysis, presenting comparisons between

works found in the literature review.

4.1 Proposed Vacancy State Model Analysis

Designed to construct a real-time vision-based application to the proposed Convolu-

tional Neural Network, the vacancy state model was implemented in a real scenario, and

comprises five determinate sections: the vacancy detection, the movement detection, the

memory vacancy feature, the CNN model application, and the complete vacancy detection

application, including its physical structure.

As first impression, the central propose of this work it is determine the park vacancies

status, considering occupied spots or available spots through CNN, Background Sub-

traction, and presents support to Embedded Systems. Moreover, the proposed vacancy

detection methods complements this work to improve the chance of proper system opera-

tion. Therefore, considering the first section, it was preliminary study two essential types

of vacancy detection: the manual detection and the automatic detection.

53

4.1.1 Manual Detection of Vacancy Limits

In terms of dispose manual detection results, it was provided as park manager first

competency, the demarcation of parking spaces available in the observed scenario. Its

process comprises the uses of the OpenCV Library to allow the system to be able to

capture the amount of vacancies included by the user in real time as the user requests. It

provides the needed autonomy to the system be prepared for the following processes.

Figure 4.1 presents the vacancy bounding box selection and the system real application

of its selected vacancy, as complement the manual vacancy detection method it is shown

the following described processes:

• In order to select a bounding box it is needed to the user position the input device

over the desired space and select the area;

• In order to confirm the desired area, the user must press the enter key;

• In order to correct the desired area, the user must to return to the step one; and

• In order to terminate the vacancy selection action, the user must to press the enter

key.

Figure 4.1: Manual vacancy detection.

54

4.1.2 Automatic Detection of Vacancy Limits

In terms of dispose of results of the automatic detection case study, as previously

described, it was proposed the Corner Detection, the Linear Regression [60], and the

Selective Search methods. Both methods aims to study efficient ways to implement auto-

matic detection of the vacancy position as complement of the proposed status detection

domain, and were based on Region Convolutional Neural Networks modeling structure.

As the first method studied, the Corner Detection presents important features, it

comprises the method of extract interest points on way to modeling the observed scenario,

may indicate motion detection or object recognition. The corner detection application in

this work proposes a solution to recognize possible vacancy position through scenario

interest points, as described in Figure 4.2, and can be an input parameter for the desired

procedure.

Thus, Figure 4.2 shows the original scenarios and its obtained vacancy detection re-

sults, considering the bounding box inclusion, in order to represent positive classified

regions. In other words, each designed region describe a position where the proposed

CNN model predict as positive classification, not showing in this image the negative

classifications.

Figure 4.2: Automatic vacancy detection through Corner Detection method.

Looking at the Figure 4.2 it is possible to realize that the large margin of vacancies

55

detected is according to the specification belonging to one of the positive classifications,

described as car or motorcycle objects. Although, this figure also describes its possible

issues and challenges: false negative objects, as the box marked as blue in the top right

image corner.

It occurs due to the large colour change between image background and foreground,

indicating the position of an object, along with the failure to recognize the object through

the model due to the distance the camera is located. In other words, it was detected

a corner, a region is drawn over its object, and this region it is erroneously predicted

as positive object. Therefore, its possible realize that the most lighter regions presents

more efficient results, precisely because of its easy identification compared to the image

background.

In order to complement the first method, the proposed objective for Linear Regression

it is considering the detected corners as input parameters, allowing the system to plot

an average between the arranged points, according to the Figure 4.3, formalizing an area

of positive predicted objects. Due this process, it was possible realize that the region of

interest can be considered as solution when analyzed in order to comprises all available

vacancy positions.

Figure 4.3: Vacancy’s mean region through Corner Detection and Linear Regression meth-
ods.

The demarcation of parking spaces available in the observed scenario comprises the

uses of the OpenCV Library to allow the system to be able to capture the amount of

56

vacancies included by the user in real time as the user requests. It provides the needed

autonomy to the system be prepared for the following processes. In that case, the study of

automatic detection of vacancy positions proposes a solution based on no human-iteration,

based on reaches lower loss evaluation levels.

Furthermore, the Selective Search method becomes as an alternative to Corner Detec-

tion based on computing hierarchical grouping of similar regions based on color, texture,

size and shape compatibility. This method could not present assertive objects locations,

due to each specific object usually contains at least 2 segmented parts, thus, the regions

predicted based on its method provide an analysis of objects that have very high overlap

with actual objects.

The third solution proposed to region detection by this work, the Selective Search

method and its results are disposed in Figure 4.4, describing the most relevant regions

predicted as positive objects in the observed domain. As it is possible visualize, some

purposed regions are determined over other regions, allowing the process of regions inter-

section, creating a bigger one region based on each positive classification.

Figure 4.4: Automatic Vacancy Detection through Selective Search method.

Therefore, also it is possible realize that these intersected regions take positions in front

of other vacancies, making it impossible to separate and delimited each vacancy. This

57

challenge occurs due to the Selective Search, used in Region CNN models it is indicate

in domains which the object of interest does not is presented in right angles. In terms of

evaluation, Table 4.1 presents a final brief discussion of the obtained results for vacancy

limits detection.

Table 4.1: Evaluation

Proposed Method Obtained Features Seconds
Manual Detection Individual vacancies -
Corner Detection Individual vacancies 15

Corner + Linear Regression Region of interest of all vacancies 20
Selective Search Detection Individual vacancies 40

As described in Table 4.1, the manual vacancy limits detection proposes a faster and

suitable solution that needs to set up each vacancy limit as the first time, and update

it vacancy over demand. According to the obtained results for automatic vacancy limits

detection, the Corner Detection presents the shortest time required, and when compared

the Selective Search method requires an increase of 25 seconds. As described, this method

occurs at least once in the beginning of the proposed vacancy state detection method,

does not removing the proposed real time feature.

4.1.3 Movement Detection Approach

The movement detection process comprises the application on Background Subtraction

Method based on Gaussian Distribution Mixture aiming to reduce the computational

power consumption through the evaluation of vacancy status alteration candidates. Due

to this evaluation, the system has autonomy to consider or not consider a possible vacancy

status update, monitoring movement in each vacancy position and comprising the time

metric of 5 seconds of movement to being considered a possible candidate. Figure 4.5

describes a real application of a vacancy movement analysis.

58

a) b)

c) d)

Figure 4.5: a) describes a vacancy with little movement, b) increasing in movement
detection at vacancy c) increasing in movement detection at vacancy, and c) decrease
in movement detection at the vacancy

Considering the vacancy marked as red (occupied spot) in Figure 4.5, it was possible

analyse that the in following figure sections occurs a event characterized in this proposed

work as large amount of movement of 5 seconds. From that process, the proposed CNN

model recognize if it vacancy has a positive or negative classification, and through this

result, the vacancy it is marked as green, in other words, the vacancy state just changed

to available spot.

It method allows the system autonomy in terms of enables the model prediction pro-

cess, filtering the demand of computational consumption to actuate only in real vacancy

status update situations, ensuring the vacancy status detector method suitable to embed-

ded solutions, considering a threshold of movement over then 1500 pixels.

4.1.4 Convolutional Neural Network Model

In order to represent the results obtained through the proposed Convolutional Neural

Network, this section is presented into three steps: the proposed data set, the CNN model

structure, and the obtained model results. In what consists of the data set development,

it is essential to ensure the balanced it is the set. In this case, as previously described,

the data set consists into at least two resources, being the first, the Open Images Dataset

59

3.0, that contains nine millions of images for train, and about 600 classes, a strongly

recommended data set by the literature, and being the second resource, the acquisition

of open images through the internet search.

The proposed data set currently contains 41435 images for training patterns, 10491

images for validation patterns, and 10814 images for test patterns, being structured ac-

cording to the Cross-Validation method, that provides 70 percent of data for training, 15

percent for validation, considering as resources obtained through the training set, and 15

percent of data for test, considering the test data does not belong to the training set. Also,

the number of images from each class, it is balanced according to the other classifications,

having an average amount of 3000 of positive images.

The proposed model structure is adapted to receive as train input the described data

set, and according to the moment of the training process, it was applied significant meth-

ods in order to avoid overfitting issues and ensure the loss function presents no significant

increase. In the first place, the data augmentation method is provided on the way to

generate several possibilities of transformations into the data set, aiming to ensure sev-

eral possible cases of adaptation of these input images and the environment changes. The

data augmentation it is instantiated before the training process, and the generates images

remain in the model’s training memory, never being digitally saved.

As described, the training process presents four other methods to avoid overfitting

issues as well as to maintain the loss range closer to 0, as Kernel Regularization by L2

and L1 paradigms, the Dropout method, the Early Stopping callback, and the Reduce

on Plateau callback. These methods provided that the chosen metric, in this case, loss

validation metric, does not reach large values keeping as close as possible to 0, and the

loss function produced into this work assumes the graphical representation disposed of in

Figure 4.6.

60

Figure 4.6: Training and Validation loss values.

This graphical representation of loss metric, shown that according to the number

of epochs, the model loss evaluation presents two categories, the training loss, and the

validation loss metrics. It is essential to realize that the training loss comprises it metric

evaluation during uses of the train data set for the training process, and the validation

loss metric presents its results to the validation data set, also for the training process.

According to Figure 4.6, it is possible to realize that both the training loss metric

reaches large values in the first place, over 0.6, and it finishes the training lower than

0.2, representing 0.4 rates of improvements, and presents again about 66 percent in the

training loss evaluation. This process of training loss evaluation usually stay lower if

the model structure and the data set structure are appropriate to the designed domain,

as large training loss values demonstrate the percentage of error about each 100 rated

images.

Therefore, the validation loss metric reaches 0.5 as the first value, and finish its pro-

cess about 0.25, representing 0.25 rates of improvements, and presenting again about 50

percent in the validation loss evaluation. Furthermore the model validation loss presents

a significant feature, in this epoch intervals, the loss never reaches higher values than

already seen. This feature demonstrates the Early Stopping, and the Reduce on Plateau

61

functionalities does not allow the gradual increase of the metric.

The loss metric presents the useful standards, and as closer to 0, the model lies more

suitable to the designed domain. Table 7 shows the loss metric more accurately, and

Appendix C demonstrate more specific details for each training epoch. Once the training

loss allows the evolution of a more suitable model, the accuracy metric presents the model

evaluation based on its hits.

It comprises the characteristic of as closer to 1, and the model presents a greater

chance of producing true positive results. Figure 4.7 shows the training and the validation

accuracy metrics, evaluated according to the training epochs, and as graphical represented,

the training accuracy assumes values lower than 0.88 as the first epoch, and finish it higher

than 0.96, presenting almost 10 percent of accuracy improvements.

Figure 4.7: Train and Validation Accuracy values.

Furthermore, the validation accuracy metric starts with a rate higher than 0.9 and fin-

ishes its process about 0.94, presenting again about 4 percent of accuracy improvements.

Its accuracy evaluation graph demonstrates that the validation accuracy is in an accept-

able interval, moreover, could be better crafted using methods for accuracy improvements.

This proposed work does not present a solution for better accuracy evaluations, being fo-

cused on the acquisition of suitable intervals for loss evaluation. Table 4.2 describes more

accurately these metrics. Therefore it was possible to compare these results with works

62

found in the literature to present solutions into the accuracy evaluation.

Metrics Loss Accuracy
Training 0.1757 0.9673
Validation 0.2479 0.9371

Table 4.2: Training and Validation Metrics.

In terms of evaluations through comparative results, in terms of validation evaluation,

it was used the Keras API ‘predict generator’ method, providing the loss and accuracy

evaluation, through a randomly set of images based on the validation data set. It process

comprises the score evaluation into ten steps, during 12 seconds per stage, according to

the used system, and results in 0.21001765 for loss evaluation and 0.96009375 for accuracy

evaluation.

In terms of evaluations through comparative results, this work proposes a brief con-

frontation between some significant models proposed in the literature and the proposed

model in this work. Table 4.3 describes three relevant works found into the literature,

that represent the use of three different CNN, and it is possible realize the MobileNet

not compete in terms of accuracy but presents significant results in terms of networks

indicated for mobile devices.

Table 4.3: Model Comparision

Model Title Description Obtained
Accuracy

Parking-stall vacancy indicator system, based
on deep convolutional neural networks [45].

VGGNet-F and Manual
Detection of Vacancy Limits

99%

Car parking occupancy detection using smart
camera networks and deep learning [7].

AllexNet and Manual
Detection of Vacancy Limits

90%

Vacant Parking Lot Information System
Using Transfer Learning and IoT [47].

MobileNet and Manual
Detection of Vacancy Limits

88%

Proposed Model. MobileNet and Study of
Vacancy Limits Detection

methods

94%

According to this evaluation, the training process presents other important metrics,

and it is disposed of in Tables 4.4, 4.5, and Figures 4.8 and 4.9. These metrics are described

63

as loss, accuracy, precision, recall, f1-score, and confusion matrix rates for validation and

test evaluations.

In terms of validation evaluation, it was used the Keras ‘predict generator’ method,

providing the loss and accuracy evaluation, through a randomly set of images based on

the validation data set. It process comprises the score evaluation into ten steps, during

12 seconds per stage, and results in 0.21001765 for loss evaluation and 0.96009375 for

accuracy evaluation. That is, for every single batch of input images, it was provided an

average of losses and accuracies, demonstrating the validation data set evaluation.

Another set of methods used to model evaluation are disposed of in Table 8, and rep-

resents the rates of classification errors and hits, considering True Positive, True Negative,

False Positive, and False Negative classifications. As the first method, the precision metric

represents the number of positive classifications correctly classified; the recall represents

the number of positive expected results correctly classified, and the f1-score represents

the average between precision and recall.

In this way, according to the Table 4.4, for positive classifications in the validation

evaluation, the precision demonstrates 92 and 95 percent, the recall 93 and 87, and the

f1-score 93 and 91 percent. Thus, the precision average reaches 94 percent of correctly

positive classifications. At the same time, the recall average reaches 90 percent of correctly

expected positive classifications, and the f1-score average reaches 92 percent of harmonic

mean between the last metrics.

Considering the smart parking domain, classified as ‘available spot’, an ‘occupied spot’

represents the most significant error since a park’s user will be indicated by the system to

park in a vacancy that is already filled than the indication of a filled vacancy when it is

available. In the first case, indicate an occupied vacancy could prejudice the user in terms

of time costs when the second case prejudices the parking managing with an inoperative

vacancy.

Based on its scenarios, the first most suitable factor for the smart parking domain, it

is the precision, once false positive situations may be harmful to the user. At the same

time, the second most suitable factor analyses the situation of false negatives, where the

64

case may be harmful to the manager, providing to an available vacancy the classification

of occupied, being directly related to the recall metric. According to this discussion, the

94 percent mean for precision and the 90 percent mean for recall are best-suited metrics

for this work concerning its domain.

Class Precision Recall F1-Score Support
Car 0.92 0.93 0.93 2596

Motorcycle 0.95 0.87 0.91 1768
Negative 0.94 0.96 0.95 6127

Micro AVG 0.94 0.94 0.94 10491
Micro AVG 0.94 0.92 0.93 10491
Micro AVG 0.94 0.94 0.94 10491

Table 4.4: Validation evaluation metrics.

Therefore, the model evaluation needs to be performed accordingly to its domain or

final objective, providing considerable solutions based on the seriousness of the problem.

Moreover, the confusion matrix represents the positive and negative classifications graph-

ically, and the validation confusion matrix it is disposed of in Figure 4.8, considering the

true labels and the predicted labels, representing 9831 true positive classifications against

593 false positives and negatives classifications.

Figure 4.8: Validation’s Confusion Matrix.

65

According to the validation evaluation, the test evaluation provides a new set of metrics

based on the test data set, that is, an evaluation over images unknown by the model,

evidence to the model a real application. Thus, the loss and the accuracy metrics while

analyzed through the test data set, and it is possible to realize that these values approach

the validation results, with an absolute difference of 0.03101672 for loss function and

0.02103125 for accuracy function.

Therefore, in terms of suitable metrics according to the designed domain, the precision

and recall metrics are disposed of in Table 4.5, demonstrating for positive classifications

the values of 0.91 and 0.94 to individual precision rates, and representing 0.94 and 0.88

for recall individual rates. This evaluation set comprises an average of 92.5 percent for

precision classifications, and 91 percent for recall evaluation, realizing an absolute differ-

ence between validation and test evaluation of 1.5 percent to precision rates and 1 percent

to recall rates.

Class Precision Recall F1-Score Support
Car 0.91 0.94 0.92 2596

Motorcycle 0.94 0.88 0.91 1768
Negative 0.95 0.96 0.95 6127

Micro AVG 0.94 0.94 0.94 10814
Micro AVG 0.94 0.92 0.93 10814
Micro AVG 0.94 0.94 0.94 10914

Table 4.5: Test evaluation metrics.

Thus, the generated confusion matrix for test data set and test evaluation it is disposed

of in Figure 4.9, representing 10164 true positives classifications against 650 false positives

and negatives classifications. Considering the confusion matrix evaluation for validation

and test metrics, it is possible to realize that this metric presents 94,3 percent of correctly

classified labels for validation matrix and 93,9 percent of correctly classified labels for test

matrix.

66

Figure 4.9: Test’s Confusion Matrix.

4.1.5 Practice Model Evaluation

To demonstrate its discussions in a practice way, Figure 4.10, 4.11 and 4.12 presents

the model operation in real visual-based tests. Thus, Figure 4.10 shows the real camera

position at ESTIG’s park, representing the previously described challenges. In that case,

it was disposed three parking spaces acceptable predicted for the model as occupied spots

represented in red boxes, and three other positions predicted as available spot represented

in green boxes on different backgrounds, obtained through the manual detection of vacancy

limits and the proposed CNN model, in order to demonstrate its predicted values.

Figure 4.10: Vacancy Detection and its predicted labels.

67

Furthermore, Figure 4.11 zooming the model predicted accuracy for each previously

described position in Figure 4.10, representing a model practice application even consid-

ering the difficulties and challenges. Therefore, it is possible analyse in Figure 4.10 a

possible available spot marked as blue, in this case, one solution could be uses a depth

method to detect if there is a vacancy possibility.

Figure 4.11: Prediction percentages.

As previously described, the challenges comprises the angulation of the disposed va-

cancies, which could present issues in terms of vehicle or vacancy occlusion, and the no

vacancy space demarcations issue, that provides significant difficulties in detecting vacan-

cies according to the users may not park property. Considering these challenges, Figure

4.12 describes a parking space which the is camera slightly positioned to comprises a wide

area and spaces without much variation in terms of angle.

In order to filtering the CNN model predictions, the chancing of an object being

considered as an object of interest or candidate to positive classification it was evaluated

by one different metric, the model’s percentage of confidence. It metric proposes to an

object being considered as positive classification, its evaluation needs to present values

over to 0,7. The source code of its process it was described in Appendix D.

To ensure better solutions in terms of percentage of confidence into the model applica-

tion, are disposed two significant requirements acquired through the results analysis: the

uses of more cameras, and the cameras favorable position study, in order to get a wide

68

Figure 4.12: Sample of Camera Position.

area as possible, does not allowing situation with vacancy overlapping. Its challenges

could be solved based on Figure 4.12, demonstrating an suitable camera position over the

parking.

Therefore, this proposed method was studied to get suitable solutions to parking

spaces with no vacancy delimitation and in adaptive camera positions, presenting better

results when applied using the manual vacancy detection. Also, even though the vacancy

state detector model is adapted to reduce the computational expenses, it was needed a

structure different of the Rapberry Pi 3B+ used on this work, based on its controlled

memory device of 1 GB.

This process could present better solutions if implemented using the Google Coral [61],

a USB accessory featuring the Edge TPU that brings ML inference to existing systems,

allowing its suitable implementation in Rapberry Pi 4, a newest Raspberry device as

substantial difference 4GB of integrated memory.

In order to get around this challenge, the solution applied into this work was the

Raspberry Pi 3+, integrated to the the RapCam, get the parking images of a 1 frame per

second rate, makes the needed image preprocessing, and report its images to the server,

that conclude the solution, reporting to the user. The system uses the Flask Framework

and proposes the sharing information of 1 fps through the Base64 conversion method,

aiming to doesn’t sustain the local images on the device, freeing up disk space.

69

70

Chapter 5

Conclusions

Chapter present the conclusions of the study conducted in the chapters mentioning the

elements that give importance to the work and finally the description of future suggested

work.

5.1 Final Considerations

In this work it was presented a model to classification of vacancy states in parking

spaces, focused on reduce computational power consumption and to be enable to apply

in embedded systems. Detailing in special the challenges founded during the develop-

ment that requires several processes to obtain the final model, since the data acquisition,

the Convolutional Neural Network model structure, the model evaluation, the vacancy

detection, the middle processing structures and its application on a raspberry pi. Accom-

plishing the study objectives it was presented the analysis of the model evaluation and

its comparison between the literature articles.

As it is possible realize, the section of Analysis and Results Discussion, the proposed

model demonstrates a suitable solution to the parking institutions to identifying occupied

and available spots. The proposed Convolutional Neural Network model precision presents

about 94 percent for almost all evaluation metrics, although the model presents suitable

results to the precision and recall metrics, analyzed as the most relevant metrics in order

71

to avoid the false positives and false negatives situations.

The false positive and false negative situations in the parking domain concluded

through this study was considered the situation of an occupied vacancy was characterized

as an available vacancy, indicating to the user an erroneously candidate to park, wasting

time, and in the same time, the negative situation presents an available vacancy predicted

occupied, wasting parking space and money.

The Polytechnic Institute of Braganca disposes its parking space to the exploration

and provide the studied challenges through the camera perspective distortion and the no

marked positions, allowing study in terms of vacancy position detection, complementing

the previously defined objectives, as the Corner Detection, the Linear Regression and the

Selective Search methods. With regard to this methods, the study concludes that it is

possible implement an integrated or an individual methods for automatic detection in

parking situations where the camera position it is favorable.

Thus, the model also presents a solution in term of its lower cost to implementation, as

described in the previously sections through the chosed MobileNet Convolutional Neural

Network and the Background Subtraction method, focus on detect movement on each va-

cancy, preventing computational expenses. Also, the model presents a lower cost solution

based on its application through Embedded Systems, making the domain an Internet of

Things solution. Including, the process of Transfer Learning and stop training which it

reaches high values for loss validation, presents a robust method in this domain.

As commonly presented in literature, the solutions in Smart Parking area based on

Computer Vision and Embedded Systems keeping the focus on mobile Convolutional

Neural Networks, once that solution provides the IoT integration whitin lose so many

values in terms of accuracy metrics.

5.2 Future Works

Regards the proposed model, it was propose the reformulation of the crated data set

including another final classes, aiming to produce suitable and balanced Convolutional

72

Neural Network input, as the study of CNN model parameters, and updated in terms of

the vacancy position detection.

The vacancy position challenge needs to being stable, considering the camera perspec-

tive the most relevant proposed increase. This work does not provide solutions in terms

of vacancy occlusion by a vehicle in front of the vacancy, being park into the street.

Also, the application of the developed model in a mobile device that provides increases

in terms of memory could make that the system just need of a raspberry pi to obtain the

expected results, without any server help.

A most ambitious future work provides the integration of this system to a front-end

solution, allowing its application in real scenarios through mobile applications to the final

user, the driver. For conclude this future work, it was needed a back-end and front-end

framework, moreover an special application for mobile devices, proposing a more relevant

study.

73

Bibliography

[1] R. Giffinger and H. Gudrun, “Smart cities ranking: An effective instrument for the

positioning of the cities?”, ACE: architecture, city and environment, vol. 4, no. 12,

pp. 7–26, 2010.

[2] R. Faria, L. Brito, K. Baras, and J. Silva, “Smart mobility: A survey”, in 2017

International Conference on Internet of Things for the Global Community (IoTGC),

IEEE, 2017, pp. 1–8.

[3] A. Koster, F. Koch, and A. L. Bazzan, “Incentivising crowdsourced parking solu-

tions”, in International Workshop on Citizen in Sensor Networks, Springer, 2013,

pp. 36–43.

[4] M. H. Hafezi, A. Ismail, R. A. Al-Mansob, and O. K. Seifabad, “Comparative anal-

ysis on bus operation duration light and rush traffic period”, International Journal

of Engineering and Technology, vol. 4, no. 1, p. 97, 2012.

[5] K. Ashton et al., “That ‘internet of things’ thing”, RFID journal, vol. 22, no. 7,

pp. 97–114, 2009.

[6] M. Fraifer and M. Fernström, “Investigation of smart parking systems and their

technologies”, in Thirty Seventh International Conference on Information Systems.

IoT Smart City Challenges Applications (ISCA 2016), Dublin, Ireland, 2016, pp. 1–

14.

74

[7] G. Amato, F. Carrara, F. Falchi, C. Gennaro, and C. Vairo, “Car parking occupancy

detection using smart camera networks and deep learning”, in 2016 IEEE Sympo-

sium on Computers and Communication (ISCC), IEEE, 2016, pp. 1212–1217.

[8] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for

real-time tracking”, in Proceedings. 1999 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (Cat. No PR00149), IEEE, vol. 2, 1999,

pp. 246–252.

[9] A. N. Belbachir, Smart cameras. Springer, 2010, vol. 2.

[10] A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart cities in europe”, Journal of urban

technology, vol. 18, no. 2, pp. 65–82, 2011.

[11] E. Polycarpou, L. Lambrinos, and E. Protopapadakis, “Smart parking solutions for

urban areas”, in 2013 IEEE 14th International Symposium on" A World of Wireless,

Mobile and Multimedia Networks"(WoWMoM), IEEE, 2013, pp. 1–6.

[12] L. Pinheiro and F. Moreira, “Smart parking mobile application”, Dissertation, Aveiro

University, 2017.

[13] S. E. Shaheen, D. S. Ginley, and G. E. Jabbour, “Organic-based photovoltaics:

Toward low-cost power generation”, MRS bulletin, vol. 30, no. 1, pp. 10–19, 2005.

[14] M. Idris, Y. Leng, E. Tamil, N. Noor, and Z. Razak, “ park system: A review of

smart parking system and its technology”, Information Technology Journal, vol. 8,

no. 2, pp. 101–113, 2009.

[15] G. N. Hainalkar and M. S. Vanjale, “Smart parking system with pre & post reserva-

tion, billing and traffic app”, in 2017 International Conference on Intelligent Com-

puting and Control Systems (ICICCS), IEEE, 2017, pp. 500–505.

[16] A. Khanna and R. Anand, “Iot based smart parking system”, in 2016 International

Conference on Internet of Things and Applications (IOTA), IEEE, 2016, pp. 266–

270.

75

[17] L. Maddalena and A. Petrosino, “A self-organizing approach to background subtrac-

tion for visual surveillance applications”, IEEE Transactions on Image Processing,

vol. 17, no. 7, pp. 1168–1177, 2008.

[18] R. C. Gonzalez, R. E. Woods, et al., Digital image processing, 2002.

[19] R. A. T. d. Costa et al., “Sistema de visão para detecção de pessoas em movimento”,

2010.

[20] I. Intel Willow Garage. (2000). Opencv, [Online]. Available: https://opencv.org.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:

//www.deeplearningbook.org.

[22] J. Schmidhuber, “Deep learning in neural networks: An overview”, Neural networks,

vol. 61, pp. 85–117, 2015.

[23] I. d. Silva, D. H. Spatti, and R. A. Flauzino, “Redes neurais artificiais para engen-

haria e ciências aplicadas”, São Paulo: Artliber, vol. 23, no. 5, pp. 33–111, 2010.

[24] T. O. Ayodele, “Types of machine learning algorithms”, in New advances in machine

learning, IntechOpen, 2010.

[25] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: A tutorial”,

Computer, vol. 29, no. 3, pp. 31–44, 1996.

[26] R. Beato and P. Rodrigues, “Smart parking mobile application”, Dissertation, Pplytech-

nic Institute of Braganca, 2017.

[27] M. A. Nielsen, Neural networks and deep learning. Determination press San Fran-

cisco, CA, USA: 2015, vol. 25.

[28] J. Wang, “Analysis and design of a k-winners-take-all model with a single state

variable and the heaviside step activation function”, IEEE Transactions on Neural

Networks, vol. 21, no. 9, pp. 1496–1506, 2010.

76

https://opencv.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[29] R. A. Dunne and N. A. Campbell, “On the pairing of the softmax activation

and cross-entropy penalty functions and the derivation of the softmax activation

function”, in Proc. 8th Aust. Conf. on the Neural Networks, Melbourne, Citeseer,

vol. 181, 1997, p. 185.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:

A simple way to prevent neural networks from overfitting”, The journal of machine

learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[31] L. S. Feldman, J. Cao, A. Andalib, S. Fraser, and G. M. Fried, “A method to char-

acterize the learning curve for performance of a fundamental laparoscopic simulator

task: Defining “learning plateau” and “learning rate””, Surgery, vol. 146, no. 2,

pp. 381–386, 2009.

[32] K. Yu, W. Xu, and Y. Gong, “Deep learning with kernel regularization for vi-

sual recognition”, in Advances in Neural Information Processing Systems, 2009,

pp. 1889–1896.

[33] Y. Zhu, Y. Chen, Z. Lu, S. J. Pan, G.-R. Xue, Y. Yu, and Q. Yang, “Heterogeneous

transfer learning for image classification”, in Twenty-Fifth AAAI Conference on

Artificial Intelligence, 2011.

[34] D. M. Powers, “Evaluation: From precision, recall and f-measure to roc, informed-

ness, markedness and correlation”, 2011.

[35] Y. Sasaki et al., “The truth of the f-measure”, Teach Tutor mater, vol. 1, no. 5,

pp. 1–5, 2007.

[36] S. V. Stehman, “Selecting and interpreting measures of thematic classification ac-

curacy”, Remote sensing of Environment, vol. 62, no. 1, pp. 77–89, 1997.

[37] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training deep neural

networks with noisy labels”, in Advances in neural information processing systems,

2018, pp. 8778–8788.

77

[38] I. Arasaratnam and S. Haykin, “Square-root quadrature kalman filtering”, IEEE

Transactions on Signal Processing, vol. 56, no. 6, pp. 2589–2593, 2008.

[39] J. Aneja, A. Deshpande, and A. G. Schwing, “Convolutional image captioning”, in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2018, pp. 5561–5570.

[40] P. P. M. do Nascimento, “Applications of deep learning techniques on nilm”, Diss.

Universidade Federal do Rio de Janeiro, 2016.

[41] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mo-

bile vision applications”, arXiv preprint arXiv:1704.04861, 2017.

[42] N. Friedman and S. Russell, “Image segmentation in video sequences: A probabilistic

approach”, in Proceedings of the Thirteenth conference on Uncertainty in artificial

intelligence, Morgan Kaufmann Publishers Inc., 1997, pp. 175–181.

[43] C. Ridder, O. Munkelt, and H. Kirchner, “Adaptive background estimation and

foreground detection using kalman-filtering”, in Proceedings of International Con-

ference on recent Advances in Mechatronics, Citeseer, 1995, pp. 193–199.

[44] P. KaewTraKulPong and R. Bowden, “An improved adaptive background mixture

model for real-time tracking with shadow detection”, in Video-based surveillance

systems, Springer, 2002, pp. 135–144.

[45] S. Valipour, M. Siam, E. Stroulia, and M. Jagersand, “Parking-stall vacancy indica-

tor system, based on deep convolutional neural networks”, in 2016 IEEE 3rd World

Forum on Internet of Things (WF-IoT), IEEE, 2016, pp. 655–660.

[46] P. R. De Almeida, L. S. Oliveira, A. S. Britto Jr, E. J. Silva Jr, and A. L. Ko-

erich, “Pklot–a robust dataset for parking lot classification”, Expert Systems with

Applications, vol. 42, no. 11, pp. 4937–4949, 2015.

78

[47] E. K. Jose and S. Veni, “Vacant parking lot information system using transfer

learning and iot”, Journal of ICT Research and Applications, vol. 12, no. 3, pp. 207–

218, 2018.

[48] G. van Rossum. (1991). Python, [Online]. Available: https://www.python.org.

[49] G. Inc. (2015). Python, [Online]. Available: https://www.tensorflow.org.

[50] F. Chollet. (2015). Keras, [Online]. Available: https://keras.io.

[51] C. Analytics. (2012). Anaconda, [Online]. Available: https://www.anaconda.com.

[52] D. Cournapeau. (2007). Sci-kit learn, [Online]. Available: https://scikit-learn.

org/stable/.

[53] A. Ronacher. (2010). Flask, [Online]. Available: https://palletsprojects.com/

p/flask/.

[54] R. P. Foundation. (2012). Raspberry pi, [Online]. Available: https://www.raspberrypi.

org.

[55] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation”, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 580–587.

[56] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective

search for object recognition”, International journal of computer vision, vol. 104,

no. 2, pp. 154–171, 2013.

[57] R. Girshick, “Fast r-cnn”, in Proceedings of the IEEE international conference on

computer vision, 2015, pp. 1440–1448.

[58] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks”, in Advances in neural information pro-

cessing systems, 2015, pp. 91–99.

[59] J. Zhou, “Color separation for background subtraction”, 2016.

79

https://www.python.org
https://www.tensorflow.org
https://keras.io
https://www.anaconda.com
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://www.raspberrypi.org
https://www.raspberrypi.org

[60] G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley & Sons, 2012,

vol. 329.

[61] G. Inc. (2019). Coral beta, [Online]. Available: https://coral.withgoogle.com.

80

https://coral.withgoogle.com

Appendix A

Proposed CNN Model

Table A.1: Proposed MobileNet Transfer Learning Model

Layer No Layer Type Layer Size Layer Size
0 Conv2D (None, 64, 64, 64) 2048
0 BacthNormalization (None, 64, 64, 64) 256
0 ReLU (None, 64, 64, 64) 0
0 ZeroPadding2D (None, 65, 65, 64) 0
0 DepthwiseConv2D (None, 32, 32, 64) 576
0 BatchNormalization (None, 32, 32, 64) 256
0 ReLU (None, 32, 32, 64) 0
0 Conv2D (None, 32, 32, 128) 8192
0 BatchNormalization (None, 32, 32, 128) 512
0 ReLU (None, 32, 32, 128) 0
0 Conv2D (None, 32, 32, 128) 1152
0 DepthwiseConv2D (None, 32, 32, 128) 512
0 BatchNormalization (None, 32, 32, 128) 0
0 ReLU (None, 32, 32, 128) 16384
0 Conv2D (None, 32, 32, 128) 512
0 BatchNormalization (None, 32, 32, 128) 256
0 ReLU (None, 32, 32, 128) 0
0 ZeroPadding2D (None, 33, 33, 128) 0
0 DepthwiseConv2D (None, 16, 16, 128) 1152
...
0 Pooling2D (None, 1024) 0
0 Reshape (None, 1, 1, 1024) 0
0 ReLU (None, 512) 512512
0 Softmax (None, 3) 1539

A1

Appendix B

Model Evaluation Source Code

print (’ [INFO] ␣Va l idat i on ␣Test ’)

p r ed i c t i on s_va l i d = model . p red i c t_generator (va l idat ion_generator ,

va l ida t i on_gene ra to r . samples / va l_batchs i ze)

y_pred_valid = np . argmax (pred i c t i on s_va l id , ax i s = 1)

sco re_va l id = model . eva luate_generator (va l idat ion_generator ,

s t ep s = 10 , verbose = 1)

print (’ Scores ␣ o f ␣Model␣Evaluate ␣ (Va l idat i on) ’)

print (’ e r r o r : ␣ ’ , s co re_va l id [0])

print (’ accuracy : ␣ ’ , s co re_va l id [1])

print (’ C l a s s i f i c a t i o n ␣Report␣ (Va l idat i on) ’)

target_names = [’ car ’ , ’ motorcyc le ’ , ’ negat ive ’]

print (c l a s s i f i c a t i o n_ r e p o r t (va l ida t i on_gene ra to r . c l a s s e s ,

y_pred_valid , target_names = target_names))

cm = confus ion_matr ix (va l ida t i on_gene ra to r . c l a s s e s ,

y_pred_valid)

B1

print (’ Confusion ␣Matrix ’)

cm_plot_labels = [’ car ’ , ’ motorcyc le ’ , ’ negat ive ’]

p lot_confus ion_matrix (cm, cm_plot_labels , t i t l e = ’ Confusion ␣Matrix ’)

print (’ [INFO] ␣Test ’)

p r ed i t c t i o n s_ t e s t = model . p red i c t_generator (test_generator ,

t e s t_generator . samples / t e s t_batch s i z e)

y_pred_test = np . argmax (p r ed i t c t i on s_te s t , ax i s = 1)

s co r e_te s t = model . eva luate_generator (test_generator ,

s t ep s = 10 , verbose = 1)

print (’ Scores ␣ o f ␣Model␣Evaluate ␣ (Test) ’)

print (’ e r r o r : ␣ ’ , s co r e_te s t [0])

print (’ accuracy : ␣ ’ , s co r e_te s t [1])

print (’ C l a s s i f i c a t i o n ␣Report␣ (Test) ’)

target_names = [’ car ’ , ’ motorcyc le ’ , ’ negat ive ’]

print (c l a s s i f i c a t i o n_ r e p o r t (t e s t_generator . c l a s s e s ,

y_pred_test , target_names = target_names))

cm = confus ion_matr ix (t e s t_genera to r . c l a s s e s , y_pred_test)

print (’ Confusion ␣Matrix ’)

cm_plot_labels = [’ car ’ , ’ motorcyc le ’ , ’ negat ive ’]

p lot_confus ion_matrix (cm, cm_plot_labels , t i t l e = ’ Confusion ␣Matrix ’)

B2

Appendix C

Training Process

Table C.1: Training process for train data set

Epoch Accuracy Loss Learning Rate
0 0.8691203089161432 0.6623430979356872 1e-04
1 0.9393025220267603 0.3453578720287548 1e-04
2 0.9509351997147053 0.2766191258352226 1e-04
3 0.9542174490064623 0.23720960743690236 1e-04
4 0.9614335706427601 0.20998916470221937 1e-04
5 0.9639193918185109 0.19107530960882618 1e-04
6 0.9673464462554856 0.17577234012910564 1e-04

Table C.2: Training process for validation data set.

Epoch Validation Accuracy Validation Loss Learning Rate
0 0.9037270040987513 0.5118281120906145 1e-04
1 0.9079210752073206 0.38828350548185825 1e-04
2 0.9377561719569154 0.30757674847138006 1e-04
3 0.9318463444857497 0.309737091277339 1e-04
4 0.9270803545896482 0.3021970035831588 1e-04
5 0.9239348012582214 0.30294722811235575 1e-04
6 0.9370889333714613 0.24790545452903512 1e-04

C1

Appendix D

Proposed CNN Model Source Code

import t en so r f l ow as t f

import keras

from keras . backend import c l e a r_s e s s i on

from keras . a pp l i c a t i o n s import MobileNet

from keras . models import Sequent i a l

from keras . l a y e r s import Dense , Act ivat ion , F lat ten

from keras import r e g u l a r i z e r s

from keras . u t i l s import multi_gpu_model

from keras . op t im i z e r s import Adam

from keras . met r i c s import ca t ego r i c a l_c ro s s en t r opy

c l e a r_s e s s i on ()

image_rows = 128

image_cols = 128

image_channels = 3

n_gpus = 2

D1

print (’ [INFO] ␣Loading␣MobileNet␣Model ’)

with t f . dev i c e (’ /cpu : 0 ’) :

mobi lenet = MobileNet (include_top = True ,

weights = ’ imagenet ’ ,

input_shape = (image_rows , image_cols ,

image_channels) ,

poo l ing=’max ’)

mobi lenet . summary ()

for l a y e r s in mobi lenet . l a y e r s [: −5] :

l ay e r_t ra inab l e = False

mobi lenet . summary ()

print (’ [INFO] ␣Model␣ Conf igurat ion ’)

model = Sequent i a l ()

model . add (mobi lenet)

model . add (Dense (512 ,

input_shape = (image_rows , image_cols , image_channels) ,

k e r n e l_ r e gu l a r i z e r = r e g u l a r i z e r s . l 2 (0 . 0 001) ,

a c t i v i t y_ r e g u l a r i z e r=r e g u l a r i z e r s . l 1 (0 . 0 001) ,

a c t i v a t i o n = ’ r e l u ’))

model . add (Dense (3 , a c t i v a t i o n = ’ softmax ’))

try :

model = multi_gpu_model (model , gpus = n_gpus)

print (" [INFO] ␣Train ing ␣ us ing ␣mul t ip l e ␣GPUs . . ")

except :

print (" [INFO] ␣Train ing ␣ us ing ␣ s i n g l e ␣CPU␣or ␣GPU. . ")

model . compile (Adam(l r = 0 .0001) ,

l o s s = ’ ca t e go r i c a l_c ro s s en t r opy ’ ,

D2

metr i c s = [’ acc ’])

%matp lo t l i b i n l i n e

import matp lo t l i b . pyplot as p l t

from IPython . d i sp l ay import Image

from s k l e a rn . met r i c s import confusion_matrix , c l a s s i f i c a t i o n_ r e p o r t

from keras . p r ep ro c e s s i ng . image import ImageDataGenerator , image

from keras . c a l l b a ck s import ModelCheckpoint , ReduceLROnPlateau ,

from keras . c a l l b a ck s import EarlyStopping , CSVLogger

import numpy as np

import keras . u t i l s . np_ut i l s as np_ut i l s

import i t e r t o o l s

print (’ [INFO] ␣Environment␣Conf igurat ion ’)

t ra in_batchs i z e = 64

va l_batchs i ze = 64

te s t_batch s i z e = 64

epochs = 30

mode l_f i l e = ’MobileNet . h5 ’

l o g_ f i l e = ’ mobi lenet . l og ’

print (’ [INFO] ␣Data␣Conf igurat ion ’)

t ra in_d i r = ’ . / data/ t r a i n ’

va l id_d i r = ’ . / data/ va l i d a t i o n ’

t e s t_d i r = ’ . / data/ t e s t ’

print (’ [INFO] ␣Data␣Augmentation ’)

train_datagen = ImageDataGenerator (r e s c a l e = 1 ./255 ,

rotat ion_range = 20 ,

D3

width_shift_range = 0 . 2 ,

he ight_shi f t_range = 0 . 2 ,

h o r i z o n t a l_ f l i p = True ,

f i l l_mode = ’ nea r e s t ’)

va l idat ion_datagen = ImageDataGenerator (r e s c a l e = 1 ./255)

test_datagen = ImageDataGenerator (r e s c a l e = 1 ./255)

t ra in_generator = train_datagen . f low_from_directory (tra in_dir ,

t a r g e t_s i z e = (image_rows , image_cols) ,

batch_size = tra in_batchs i ze ,

class_mode = ’ c a t e g o r i c a l ’)

va l_generator = val idat ion_datagen . f low_from_directory (va l id_dir ,

t a r g e t_s i z e = (image_rows , image_cols) ,

batch_size = val_batchs ize ,

class_mode = ’ c a t e g o r i c a l ’ ,

s h u f f l e = False)

t e s t_generator = test_datagen . f low_from_directory (tes t_dir ,

t a r g e t_s i z e = (image_rows , image_cols) ,

batch_size = tes t_batchs i ze ,

class_mode = ’ c a t e g o r i c a l ’ ,

s h u f f l e = False)

print (’ [INFO] ␣Cal lbacks ␣Conf igurat ion ’)

checkpo inte r = ModelCheckpoint (f i l e p a t h = model_f i le ,

monitor = ’ va l_ lo s s ’ ,

verbose = 1 ,

save_best_only = True ,

mode = ’min ’)

reduce_lr = ReduceLROnPlateau (monitor = ’ va l_ lo s s ’ ,

f a c t o r = 0 . 2 ,

D4

pat i ence = 4 ,

min_lr = 0 .0001)

ear ly_stopping = EarlyStopping (monitor=’ va l_ lo s s ’ ,

min_delta = 0 . 2 ,

pa t i ence = 4 ,

verbose = 1 ,

mode = ’min ’)

csv_logger = CSVLogger (l o g_ f i l e , s epa ra to r = ’ , ’ , append = True)

print (’ [INFO] ␣Model␣Train ing ’)

h i s t o r y = model . f i t_gene ra t o r (t ra in_generator ,

steps_per_epoch = tra in_generator . samples / t ra in_generator . batch_size ,

va l idat ion_data = val_generator ,

va l i da t i on_s t ep s = val_generator . samples / va l_generator . batch_size ,

epochs = epochs ,

c a l l b a c k s = [checkpo inter , reduce_lr , ear ly_stopping , csv_logger] ,

verbose = 1)

D5

	Introduction
	Problem Description
	Objectives
	Document's Structure

	Literature Review
	Smart Parking
	Background Subtraction
	Deep Learning
	Activation Functions
	Training Processes
	Optimization Methods
	Evaluation Metrics
	Convolutional Neural Networks
	MobileNet

	Related Works

	Development Methodology
	Programming Languages, Libraries and Devices
	Python
	OpenCV
	TensorFlow
	Keras
	Anaconda
	Sci-Kit Learn
	Flask
	Raspberry Pi

	Data Pre-Processing
	Data Acquisition
	Data Set Acquisition
	Data Augmentation

	Proposed Convolutional Neural Network Model
	Proposed Vacancy State Model

	Analysis and Result's Discussion
	Proposed Vacancy State Model Analysis
	Manual Detection of Vacancy Limits
	Automatic Detection of Vacancy Limits
	Movement Detection Approach
	Convolutional Neural Network Model
	Practice Model Evaluation

	Conclusions
	Final Considerations
	Future Works

	Proposed CNN Model
	Model Evaluation Source Code
	Training Process
	Proposed CNN Model Source Code

