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ABSTRACT 

Artificial lighting is a growing attractive for the cultivation of microalgae. In particular, Light 

Emitting Diodes (LEDs) can be employed to tailor the lighting to the microalgal culture in a 

controlled mode in order to create flashing light. In order to establish the effect of the flashing 

frequency on growth and biochemical composition of a model microalga, a “quasi-isoactinic” 

reactor, in which the light distribution is almost homogeneous, was set up. In this work, it was 

employed for the cultivation of the heterokont Nannochloropsis gaditana in two growth media 

with limiting and not limiting nutrients. The combined effect of nutrient concentration and 

flashing frequency on the growth, lipid content, fatty acid content and pigment content was for 

the first time assessed. Results indicate that both nutrient concentration and flashing frequency 

influence the above-mentioned parameters. In particular, under flashing light conditions, an 

increase of lipid content and a decrease of polyunsaturated fatty acids (PUFAs) and chlorophyll 

are observed when nutrients are deficient, while opposite effects are shown when nutrients are 

abundant. 
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1. INTRODUCTION 

Microalgae belong to a polyphyletic group of photosynthetic microorganisms with deeply 

different characteristics. Nowadays, they are employed in several fields, such as nutraceutics 

and aquaculture, and are involved in other emerging applications in the fields of bioenergy, 

biomaterials, bioremediation and production of heterologous proteins[1]. Beside their great 

potential, the state of art for industrial cultivation of microalgae is still not optimized, mainly 

because of limitations in culture scale-up. Light availability is the main limiting factor in 

autotrophic microalgae cultivation. In outdoor cultivations light is supplied by the Sun; in 

alternative it can be provided by artificial sources. The use of artificial light shows several 

advantages: for example it allows a better system control and can lead to an increased biomass 

productivity. The drawbacks, instead, are mainly connected to the  electric energy cost and 

replacement of lamps[2]. Furthermore, artificial light may trigger biomolecules production, as 

recently reviewed[3]. In microalgal cultivation, moreover, the inefficient light energy usage due 

to photoprotective mechanisms employed under high-light intensities may cause an inefficient 

light energy usage[4]. In this work, we propose to employ flashing lights as a promising 

approach for optimizing the energy usage by matching the photosynthetic reaction kinetics in 

microalgae. Flashing light, in fact, could have the same effect on triggering biomolecules 

production compared to high-intensity continuous light[5,6], with the advantages of saving 

energy and reduce production costs. A flashing light regime is characterized by a frequency (f) 

and a Duty Cycle (DC). The frequency is the repetition rate of the light–dark transition, and the 

duty cycle is the relative proportion of the light flash period. The flashing light usage for 

microalgal cultivation was already investigated[7–9] and encountered a renewed interest in recent 

years[10,11]. In our experiments light was provided by LEDs, whose usage for microalgae 

cultivation was reviewed[12]. In order to study the actual effect of light on a culture, it is needed 

employing very short light-paths (<1 cm) and diluted culture, as shown in previous studies[13,14].  

In this work, a “quasi-isoactinic” photobioreactor, in which the radiant field is almost 

homogeneous, was employed for the cultivation of the oleaginous algae Nannochloropsis 

gaditana. The growth response to different flashing frequencies was tested for the first time in 

this reactor, under nutrient depletion and under nutrient abundance (nitrate and phosphate ten 

times more concentrated). Flashing light effects were statistically analyzed taking into account 

effects of nutrient concentration. Results indicate that flashing light and nutrient concentration 

have a combined effect on the biochemical composition of Nannochloropsis gaditana. In 

particular, under flashing light conditions, when nutrients are limiting, starvation seems to have 
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the prevailing effect, showing an increase of lipid content and a decrease of PUFAs and 

chlorophyll. On the contrary, when nutrients are abundant, the flashing light effect becomes 

prevailing and opposite effects are observed in comparison with the previous conditions. 

Although the effect of both flashing light and nutrient concentration were previously 

individually studied ( e.g. [15–18]), in this work their contribution were considered in association 

in order to assess their combined effect. 

 

2. MATERIALS AND METHOD 

2.1. Algal growth 

Liquid cultures of Nannochloropsis gaditana (CCAP 849/5 Scottish Association for Marine 

Science, Oban, Scotland), Eustigmatophyceae, were maintained in Erlenmeyer flasks with f/2 

medium[19]. For the experiments, two different versions of the same medium were employed in 

this work: the first one is called “basic medium” and consists of artificial sea water (6.3 mM 

KCl, 2.0 mM NaHCO3, 7.1 mM KBr, 0.36 mM H3BO3, 0.024 M Na2SO4, 9 mM CaCl2 2H2O, 

0.046 M MgCl2 6H2O, 0.35 M NaCl) supplemented with a modified f/2 medium differing from 

the original for an increased NaNO3 concentration, for the absence of Na2SiO3 and for slightly 

modified concentrations of micronutrients with the following final composition: 3.5 mM 

NaNO3, 0.036 mM NaH2PO4 H20, 0,12 µM FeCl3 6H2O, 0,12 µM Na2EDTA, 0.04 µM CuSO4 

5H2O, 0.076 µM ZnSO4 7H2O, 0.042 µM CoCl2 6H2O, 0,91 µM MnCl2 4H2O, 0.025 µM 

Na2MoO4 2H2O); the second one is called “enriched medium” and has the same composition 

as the first one but with ten times increased concentration of NaNO3 and NaH2PO4 (35 mM and 

0.36 mM, respectively).  

A microalgal pre-culture was set up by inoculating 10 ml of a back-up culture in 100 ml of the 

same liquid medium used for the main experiment. When the cells were in late exponential 

phase (around 10 days of cultivation), they were used to inoculate the “Quasi-isoactinic” 

reactor[13] in order to reach an initial concentration of approximately 0.1 AU (λ=750 nm).  

The “Quasi-isoactinic” reactor[13], consists in a flat plate photobioreactor with the width of 1.5 

cm lit by two side by aluminium panels with LEDs stripes (KWB 5050 RGB IP44).  

The cultures inside the reactor were mixed by supplying microfiltered air (0.22 µm) passing 

through a sparger with micro-holes. When the pH was below 8.0, pure CO2 was supplied 

through the same sparger until it reached the value of 7.0. Each experiment was carried out for 
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13 days. The concentration of the microalgal suspension was daily monitored by manually 

counting the cells in a Burker chamber. The suspension was diluted in order to have between 

100 and 200 cells per square. The number was then multiplied by the dilution factor and by a 

multiplier (104) in order to obtain the concentration in cell/ml. Cultures were performed once 

for each condition, while measurements were done in triplicate (n=3) and the average value was 

retained and reported together with the standard deviation.  

 

2.2. Light conditions 

Flashing light is a way of supplying light that consists in a sequence of light and dark periods. 

A flashing light is characterized by a Duty Cycle (DC), namely the lightened portion of a light 

cycle, and a frequency (f), the number of cycles in the unity of time (s), measured in hertz. 

Three different flashing light conditions were employed in this work: 25, 250 and 2500 Hz with 

the same DC of 0.25. An average light intensity of 70 μmol m-2 s-1 was applied in all the tested 

conditions including the continuous light control. The maximum light intensity in the three 

flashing light condition is the same and equal to 280 μmol m-2 s-1. The light distribution was 

measured on the surface of the reactor in 9 equally-spaced points by means of a Delta Ohm-HD 

9021 equipped with Photosynthetic Active Radiation (PAR) probe (Delta Ohm LP 9021 PAR) 

(Data not shown). 

2.3. Determination of specific growth rate μ  

In order to estimate the specific growth rate (µ), the cell density was plotted on a semi-log 

diagram versus the cultivation time in days. Growth rates values were calculated by the 

determination of the slopes of the regression lines obtained with the points of exponential 

growth in the different conditions. This value gives an estimation of the amount of increase as 

cell/ml per day. 

2.4. Sample preparation 

After 13 days from the cultivation start, the cell suspension was centrifuged and the obtained 

biomass was frozen in liquid nitrogen and freeze-dried for 48 h in a bench lyophilizator 

(FreeZone 2.5L, LABCONCO, US). The biomass was then stored at -20°C for further analysis.  
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2.5. FTIR analysis 

Biomass samples were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) in order 

to investigate the approximate biochemical composition. The method was adapted from 

Stehfest et al.[20]. About 2 mg of freeze-dried biomass were weighted and transferred in a mortar 

together with 100 mg of potassium bromide (KBr) to prepare glassy sample discs. Then, the 

mixture was vigorously crushed and a pellet was made using a hydraulic press (CrushIR, PIKE 

Technologies, US). The pellet was then scanned in a Cary 630 Spectrometer (Agilent 

Technologies, US). This technique correlates one or more peaks to the corresponding 

biochemical macromolecule, thanks to the vibrational frequency of the related functional group. 

By integrating the area under the curve, a semi-quantitative analysis of the macromolecule is 

obtained. The ratios between different areas were analyzed in order to make comparable 

different samples. In Table 1 the employed wavelengths to integrate different peaks are shown. 

Table 1: Reference wavelengths for peaks integration connected to macromolecules by the vibrational frequency 

of the related functional group. 

 

 

 

 

 

 

 

2.6. Extraction of lipids and analysis of Fatty Acids 

The extraction of lipids was realized by crushing 20 mg of dry microalgae biomass in a mortar 

with 5 ml of chloroform/methanol (2:1, v/v) and 1 ml of NaCl 1%. The mixture was vigorously 

mixed and centrifuged until the formation of two phases. The lower phase (chloroform phase) 

was transferred in a pre-weighted tube and the solvent was evaporated under a nitrogen stream. 

After complete evaporation of the solvent, the total lipids were determined gravimetrically. 

Then, they were transesterificated by adding 1 ml of sodium metoxide (1 g NaOH in 100 ml 

MeOH) and 1 ml of hexane for 1 h at 60°C. The upper phase (hexane phase) was then analyzed 

by gas chromatography by means of a GC 7890B System (Sigma-Aldrich, US) supplied with a 

Wavelenght 

(cm-1) 
Assignment Macromolecule 

2799-300 
CH of saturated 

CH 
Lipids 

1584-1725 

Amide I 

C=O of amides 

from proteins 

Protein 

1490-1584 

Amide II 

N-H of amides 

from proteins 

Protein 

950-1200 
C–O–C of 

saccharides 
Carbohydrates 



6 

 

FID detector and a capillary column Omegawax 250 (Sigma-Aldrich, US). Initial temperature 

was 50 °C, increased to 220°C as working temperature. Total analytic time was 79.5 minutes 

and argon was used as eluent gas. The quantification of lipid was done by comparing samples 

chromatograms with the standard. Supelco 37-Component FAME Mix (Sigma-Aldrich, US) was 

used as standard. 

2.7. Spectrometric Pigment Analysis 

For the chlorophyll and total carotenoid extraction, after biomass was disrupted in methanol by 

crushing in a mortar approximately 20 mg of biomass. The methanol extract was separated from 

the algae pallet via centrifugation and spectrophotometrically analysed (Cary 630 Uv/Vis 

spectrophotometer, Agilent) against a methanol blank. All analyses were done under dimmed 

light. Chlorophyll a (Ca) and total carotenoids (Ccarot) were determined according to 

Lichtenthaler and Wellburn[21] and Henriques et al.[22] by applying the OD measurements at 666 

and 470 nm (A666, A470) from the methanol extracts to Equations I and II: 

Ca = 15.65 A666             I 

Ccarot = (1000 A470-44.76 A666)/221        II 

 

2.8. Data analysis 

Two-way ANOVA analysis was performed to detect differences in the realized analysis among 

light treatments and strains. The output F-values together with p-values were used to describe 

the impact of treatment on the variables. Bonferroni´s correlation (p value) was used to quantify 

the variability between control and treatments. Data were considered significant for p-values 

smaller than 0.1. Results are shown as means and standard deviations are reported as error bars. 

 

  



7 

 

Figure 1: Growing curves of Nannochloropsis gaditana grown in basic medium (A) and enriched medium (B). 

Three flashing light conditions (25, 250 and 2500 Hz) are shown in green, blue and red and the continuous light 

control in yellow. Values are shown as means (n=3) and error bars report the standard deviation. 

3. RESULTS AND DISCUSSION 

3.1. Growth performance 

 

 

 

 

 

 

 

 

 

 

Figure 1 shows the growth curves of N. gaditana cultured in two different media, with limiting 

(Figure 1 A) and not limiting concentration of nitrate and phosphate (Figure 1 B), under three 

flashing light conditions of 25, 250 and 2500 Hz and a control of continuous light. Algal cells 

grew more in the enriched medium than in the basic one; in fact, the maximum concentration 

in the enriched medium was of about 200 milions cells/ml in the continuous light control, i.e. 

almost three times more than the corrispondent control in the basic medium. Similar cell 

concentrations were obtained in other studies found in literature about the same algae[23,24]. Also 

all the other light conditions showed a more prominent growth in the enriched medium than in 

the basic one, and this is easily explained by the higher concentration of nutrients. In both the 

growth media, cells exposed to the continuous light control grew better than in all other 

conditions. By contrast, the cells grown under higher flashing frequences (i.e. 2500 HZ) showed 

worse growing performance. In fact, the highest concentration occurred under the 25 Hz 

frequency was of about 50 millions of cells/mL in the basic medium and of about 120 millions 

of cells/mL in the enriched medium. Under the 250 Hz, the reached concentrations were of 

about 50 millions of cells/mL in the basic medium and of about 100 millions of cells/mL in the 

enriched one. Under the 2500 Hz, the reached concentrations were of about 40 millions of 

cells/mL in the basic medium and of about 60 millions of cells/mL in the enriched one. It is 
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worth noting that the low and medium frequency flashing light conditions (25 and 250 Hz) had 

a similar growth performance in both the media. The growth performance was also measured 

by the calculation of the specific growth rate μ; as reported in Figure 2. In both media, the 

specific growth rate μ, in day-1, was lower in the flashing light conditions with low and medium 

frequency compared to the continuous light control, even if in the basic medium there is no 

statistical difference in the 250 FL condition. However, this value progressively increased with 

the flashing frequency, reaching, under 2500 Hz, a statistically equal value compared to 

continuous light control in the basic medium, and a higher value than the control in the enriched 

medium. The specific growth rate is a measurement of reproduction speed during the 

exponential phase; thus it means that cells under 25 and 250 Hz flashing lights were slower 

than the control and in the same time they reached a lower final cell concentration. In the third 

flashing light condition, 2500 Hz, cells had the same (or higher, in the enriched medium) 

specific growth rate during the exponential phase but they reached the lowest final 

concentration compared to all the other conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

The flashing light effect has been widely studied in literature, as reviewed by some authors[25,26]. 

Several authors found a correlation between the flashing frequency and the growth 

performance. For example, in a very similar way than in the present work, Vejrazka and co-

Figure 2: Specific growth rate μ of N. gaditana grown in basic and enriched medium under three flashing light 

conditions and a control of continuous light. Values are reported as means (n=3) and error bars report the 

standard deviations. Asterisks indicate if the treatment is statistically different from the continuous light control. 

One asterisk indicates a P value <0.1 and three asterisks < 0.001. 
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workers observed in Chlamydomonas reinardtii that specific growth rate decreased from 

continuous light to flashing light and increased by increasing the flashing frequency (DC= 0.1, 

f=5-100 Hz)[27]. Interestingly, at the highest frequency of the work, 100 Hz, the specific growth 

rate μ returned to be similar than the one of continuous light. Other authors found no increased 

growth and no increased μ in cultures exposed to flashing light compared to continuous light, 

in a range of duty cycles and frequencies and in several microalgae species[9,10,28]. On the 

contrary, there are a few works in which authors observed an increase of the growth 

performance under flashing light compared with continuous light irradiation. For example, 

Lunka and Bayless[11], during the cultivation of Scenedesmus dimorphus, observed a higher 

biomass increase under flashing light compared to under the continuous light control (DC=0.2, 

f=10 KHz). In another case, Yoshioka et al.[15] observed in Isochrysis galbana an increased 

specific growth rate μ until the sixth day of cultivation and an increased final cell concentration 

in flashing light compared to continuous light (DC=0.5, f=10KHz). There is, therefore, a 

significant uncertainty on the effects of the flashing lights on microalgal cultures. The different 

results in this study can be due to several factors such as differencies on used flashing conditions 

(i.e DC and f) and algal strains. On the other way, Simionato et al.[29] hypotized that the lenght 

of the light pulse is one of the main parameters affecting biomass productivity and that the 

optimum is around 10 ms; in our work the duration of light pulses decreases when frequency 

increases: in 25 Hz condition it lasts 10 ms, in 250 Hz condition 1 ms and in 2500 Hz condition 

0.1 ms. Our results are therefore in accordance with Simionato’s theory, that could be adopted 

as an explanation for the different response to flashing light of microalgal cultures. It is anyway 

to point out that the lack of biological replicates in the present work represents a limitation in 

the interpretation of the results; further work should be done in this direction. 

 

3.2. Biochemical characterization 

3.2.1. FTIR analysis 

Fourier Transform Infrared Spectroscopy was employed in order to obtain a gross analysis of 

the composition of the biomass harvested at the end of the experiments. This methodology, 

broadly employed in the characterization of microalgae biomass[20,30,31], connects the presence 

of vibrationally active functional groups with correspondent macromolecules. The related peaks 

are integrated and the results are reported as ratios between areas in order to make different 

samples comparable. By comparing three different ratios it is possible to approximately 
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understand the composition of the biomass. Results are reported in Figure 3 and original spectra 

are in supplemental material (Figure A1-A8). The reported areas are Lipid/amide I (L/A) and 

Carbohydrate/amide I (C/A).  

 

 

 

 

 

 

 

 

 

 

 

Under a statistical point of view, L/A ratio is influenced more by the medium (F=308.4, 

p<0.001) than by the light treatment (F=39.99, p<0.01). This ratio is also affected by the 

interaction between the other two variables (F=40.23, p<0.01). C/A ratio is affected only by 

the medium (F=317.7, p<0.01). This analysis allows to hypotize that lipids content is affected 

both by the richness of nutrients and by the frequency of flashing light, while carbohydrates 

content is mainly affected by the nutrients. In fact, is well known that a lack of nutrients, in 

particular nitrate, facilitates an accumulation of lipids (e.g. in Nannochloropsis oceanica[32]) or 

carbohydrates (e.g. in Tetraselmis sp.[33]). Furthermore, several studies showed a correlation 

between lipids accumulation and flashing lights, for example in Isochrysis galbana[15] and in 

Chlorella vulgaris, Acutodesmus obliquus and Micractinium reisseri[34]. 

In the case of N. gaditana grown in basic medium (Figure 3 A) the L/A ratio increased from 

the continuous light to the flashing light conditions of 25 and 250 Hz but decreased under the 

2500 Hz condition. The C/A ratio, on the other hand, was constant under all light treatments 

except for the 2500 Hz one, in which it slightly decreased. Probably, the lipid content increased 

from the control to the 25 and 250 Hz light conditions, and decreased in the 2500 Hz treatment. 

Figure 3: FTIR analysis on the microalgal biomass grown in basic medium (A) and enriched medium (B) and under 

three different flashing light conditions and a continuous light control. Ratios between areas under peaks related to 

macromolecules are reported. Values are reported as means (n=3) and error bars report the standard deviations. 

Asterisks indicate if the treatment is statistically different from the continuous light control. Two asterisks indicate a 

P value <00.1 and three asterisks < 0.001. 
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For what concerns the biomass cultivated in enriched medium (Figure 3 B), the effect is 

different compared to the previous one. In fact, L/A ratio is stable under all lighting conditions, 

while the C/A ratio decreases in 25 Hz condition. It is possible to hypothesize that a decrease 

of lipid content occurred together with an increase of the protein one, thus the ratio did not vary 

between the lighting conditions. The potential changes in the composition of the biomass grown 

in richness of nutrients were not detectable by using this method. 

Although this method presents some limitations, these results show that flashing lights have an 

effect on biomass composition that is influenced by the richness of nutrients in the growth 

medium.  

3.2.2. Total lipids quantification 

 

 

 

 

 

 

 

Figure 4: Total lipids on Dry Weight (DW) of microalgal biomass grown in basic medium (A) and enriched 

medium (B) and under three different flashing light conditions and a continuous light control. Values are reported 

as means (n=3) and error bars report the standard deviations. Asterisks indicate if the treatment is statistically from 

the continuous light control. Two asterisks indicate a P value <0.01 and three asterisks < 0.001. 

The dry biomass at the end of the cultivation was analyzed in order to assess the percent of total 

lipids on Dry Weight (DW). Results are shown in Figure 4.  

The detected contents of total lipids in the dry biomass of N. gaditana ranged from 21.5±5.1% 

to 59.3±5.1% confirming previous results from literature data on the same algae[35,36]. 

According to ANOVA analysis, both light treatment and medium affected the lipid quantity in 

a comparable way (F=9.433, p<0.01; F=11.87, p<0.01). The analysis revealed also that the 

interaction between these two parameters accounted for approximately 79% of the total 

variance (F=72.44, p<0.01). This means that there is less than the 0.01% chance of randomly 
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observing this interaction in an experiment of this size. In other words, the interaction is 

extremely significant. 

As shown in Figure 4 A and confirmed by FTIR analysis of Figure 3 A, when cells were cultured 

in the basic medium, the lipids quantity gradually increased from the continuous light control 

to the light treatments of 25 and 250 Hz. The flashing light condition of 2500 Hz has a higher 

lipid content than the control, but slightly lower than in 250 Hz light condition. On the other 

way, the observed effect in cells cultivated in the enriched medium was the opposite: the lipids 

content decreased from the continuous light control to the flashing light treatments. In 

particular, it gradually decreased from 25 Hz to 250 Hz and slightly increased in the 2500 Hz 

flashing light treatment. This result reinforces the one of the statistical analysis, that indicates 

a strong interaction between the nutrient concentration and the flashing light frequency.  

Several studies addressed the correlation between lipid content and flashing light. Some of them 

did not find any relevant difference in the lipid content under continuous light and under 

flashing light[15,37,38]. Some others found interesting differences. For example, Simionato et al., 

analyzed the response of N. salina under a range of frequencies and duty cycles (DC=0.1, 0.33; 

f=1-30 Hz). It was assessed that the lipid content is lower or higher than the one of the CL 

condition depending on frequencies and duty cycles[29]. In a very similar way that in the present 

work work, another study observed in Dunaliella salina grown in nitrogen excess a decrease in 

lipids/cell when increase ng frequency (DC=0.33, 0.4, 0.5; f=0.017-5)[18]. These results taken 

together demonstrate that there are several factors involved in the microalgae composition in 

response to flashing light treatments, and nutrient richness is one of the parameters to take into 

consideration. A possible interpretation of the already exposed results is that when grown in 

starvation of nutrients, the effect of flashing is combined to the effect of the starvation that 

brings to accumulation of lipids. When grown in richness of nutrients, the light energy provided 

by flashing lights probably flows along other biochemical routes rather than to the production 

of lipids. 
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3.2.3. Fatty acid composition 

 

 

 

 

 

 

 

 

Figure 5: Fatty acid composition of microalgal biomass grown in basic medium (A) and enriched medium (B) and 

under three different flashing light conditions and a continuous light control. The composition is reported as 

percent of Saturated Fatty Acids (SFAs), Monounsaturated Fatty Acids (MUFAs) and Polyunsaturated Fatty Acids 

(PUFAs) on total fatty acids. Values are reported as means (n=3) and error bars report the standard deviations. 

Asterisks indicate if the treatment is statistically different from the continuous light control. One asterisk indicates 

a P value <0.1, two asterisks <0.01 and three asterisks < 0.001. 

The fatty acid content of dry microalgal biomass grown in the basic and in the enriched version 

of the medium under three flashing light conditions and a control were assessed and results are 

reported in Figure 5 A and B. The analyzed fatty acid content of N. gaditana is coherent with 

other literature studies[24,39,40]. 

Under a statistical point of view, the Saturated Fatty Acid percent on total fatty acids is 

influenced markedly by the medium (F=375.7, p<0.01) and much less by the light treatment 

(F=5.356, p<0.01). Oppositely, Monounsaturated Fatty Acid (MUFAs) content is influenced 

by the light treatment (F=10.29, p<0.01) and not by the medium (F=0.08047, p<0.01). 

Polyunsaturated Fatty Acid (PUFAs) content depends on the medium (F=641.1, p<0.01) and 

not by the light treatment (F=0.4319, p=0.7359). 

By looking at the results in Figure 5 A and B, the SFAs content did not show big changes 

between the control and the flashing light conditions, with the exception of the light conditions 

of 25 Hz in the basic medium and of 250 Hz of the enriched medium. MUFAs content varied 

in the 250 and 2500 Hz light condition of biomass grown in the basic medium and did not 

change in algae grown in the enriched medium. In microalgae grown in the basic version, 

PUFAs content, interestingly, was the same between the continuous light control and the 2500 

Hz light condition, while it decreased in the 25 and 250 Hz flashing light conditions. Oppositely, 
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when cultivated in the enriched medium, they showed an increase in the 25 and 250 Hz flashing 

light conditions compared to the continuous light control that was again the same compared to 

the 2500 Hz light condition. 

Previously, some authors studied the effect of flashing light on fatty acid composition of 

microalgae[37,38]. Between them, Yoshioka et al. observed a similar shift in SFAs, MUFAs and 

PUFAs compared to the present work when I. galbana was grown under intermittent light 

(DC=0.5, f=10 KHz)[15]. 

The increase of PUFAs content can be connected to a low-light response[41], as they are included 

in the thylakoid membranes that multiply with the aim of harvesting much light as possible[42]. 

This may indicate that low-frequency flashing light conditions may bring to a low-light 

response, indicating that cells do not acclimate to the average light intensity, as commonly 

believed[43], but that the time they spend in darkness has a major effect on the acclimation. A 

similar assumption is made by Yarnold et al.[44] which studied the acclimation of 

Chlamydomonas reinhardtii in fluctuating light regimes and observed that when cells were 

grown in cycles including a large dark fraction, a low-light acclimation response was 

observed[44]. The same effect is observed in the present work under low frequencies when cells 

are cultured in the enriched medium, with no nutrient limitation (Figure 5 B). The observed 

effect in the basic medium (Figure 5 A), on the other way, is opposite. This means that, even 

though the illumination conditions, the effect of the nutrient starvation is higher, as confirmed 

by ANOVA analysis. In fact, other studies demonstrates that in nitrogen depletion PUFAs 

content decreases[45,46]. 
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Figure 6: Pigment composition of microalgal biomass grown in basic medium (A) and enriched medium (B) 

and under three different flashing light conditions and a continuous light control. Chlorophyll a and Total 

carotenoids are reported as μg/g Dry Weight (DW). Values are reported as means (n=3) and error bars report 

the standard deviations. Asterisks indicate if the treatment is statistically different from the continuous light 

control. One asterisk indicates a P value <0.1, two asterisks <0.01 and three asterisks < 0.001. 

3.2.4. Pigment composition 

 

 

 

 

 

 

 

 

 

 

Microalgal biomass grown in the basic and the enriched version of the medium under three 

flashing light conditions and a control was spectroscopically analyzed in order to assess the 

content in Chlorophyll a and Total carotenoids on Dry Weight (DW). Results are reported in 

Figure 6 A and B. 

The chlorophyll content ranges from 5.88±0.7 to 1.54±0.29 μg/g DW, while total carotenoids 

from 3.67±0.57 to 0.37±0.05 μg/g DW. These values are in line with the ones found in literature 

for the same genus[36]. 

Under a statistical point of view, the chlorophyll content is not influenced by the medium or by 

the light treatment (F=2.379, p=0.1080; F=0.1907, p=0.6682). It is instead affected by the 

interaction between these two parameters, that accounts for 77.88% of the total variation 

(F=27.37, p<0.01). On the other way, total carotenoid content is affected more by the medium 

(F=67.96, p<0.01) than by the light treatment (F=7.916, p=<0.01), while the interaction 

accounts for the 46.10% of the total variation (F=30.71, p<0.01). 

As observed in Figure 6 A, the biomass grown in the basic medium showed a quantitative 

decrease of the content in chlorophyll from the continuous light to the flashing light conditions, 

while total carotenoid content increased in the same way. Oppositely, in Figure 6 B, the biomass 

grown in the enriched version of the medium showed a strikingly different quantitative increase 
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of chlorophyll content from the continuous light to the flashing light conditions and an increase 

of total carotenoid content in 25 and 250 Hz flashing light conditions. 

It is interesting how the chlorophyll content in cells grown in continuous light with nutrient 

deplete and replete conditions are markedly different (5.88±0.7 and 1.54±0.29 μg/g DW, 

respectively). It is worth noting that, although a decrease of chlorophyll content has been 

reported for phytoplankton grown under nitrogen and phosphorous deficiency[47], other authors 

observed the opposite effect with monocultures. In particular, the chlorophyll content was 

found to increase under nitrogen deficiency, in agreement with present work results, for 

Chlorella vulgaris[48] and Spirulina platensis[49]. It is not straightforward to offer an explanation 

for the observed effect; it can however be remarked that it recalls similar increases under 

stressful condition of other biomass components such as lipids. 

 

As already observed, cells grown in the basic medium showed an increase of lipid content and 

a decrease of polyunsaturated fatty acids (PUFAs) and chlorophyll under flashing light 

compared to continuous light. This may be explained again as a combination of the effect of 

flashing with the effect of the starvation, that brings to accumulation of lipids and a degradation 

of chlorophyll. In fact, as observed by Simionato et al., N. gaditana grown in nitrogen depletion 

accumulates less chlorophyll and more carotenoids than in non-limiting conditions[24]. In the 

same way, also Forján et al[50] observed an accumulation of carotenoids in nitrate and phosphate 

limitation in Nannochloropsis, as well as Solovchenko et al.[51] observed a decrease in 

chlorophyll and an increase in carotenoids in Parietochloris incisa in nitrogen starvation. Thus, 

it is possible to hypothesize that by increasing the frequency of flashing light the effect of 

nutrients starvation is enhanced. On the other way, when cells are cultivated in nutrient replete 

condition, flashing light seemed to lead to the carotenoids accumulation instead of lipids, 

especially in the 25 and 250 Hz conditions. This observation confirms that there is a combined 

effect of flashing light frequency and nutrient concentration, furthermore confirmed by the 

statistical analysis of the chlorophyll content that appears to be affected by the interaction 

between these parameters and not by one of them. 

The effect of flashing light on pigments accumulation has been studied before. For example, 

similarly to this work, Sforza et al. observed an increase in the quantity of chlorophyll/cell in 

N. gaditana grown with 1.5 g/L NaNO3 under flashing light compared to the continuous 

light[10]. Other studies were addressed to the production of carotenoids, in particular 
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astaxanthin, from Haematococcus pluvialis, indicating an increase of the production when the 

algae were cultivated under flashing lights[5,6,52]. Another point is that the accumulation of 

pigments and in particular of chlorophyll, together with the already cited PUFAs increase, can 

be interpreted as a low-light acclimation response[53,54]. Considering that in all the analysed 

flashing light conditions the average light intensity is the same, the display of a low-light 

acclimation response may lead again to the hypothesis that rather than the average light 

intensity, the time cells spend in darkness affects the acclimation. To support this hypothesis, 

in another work by Abu-gosh et al.[55] observed a smaller high-light response in Dunaliella 

salina exposed to FL conditions compared to the continuous light control at the same average 

light intensity[55]. In particular, they observed that when frequency was increased from 10 to 50 

Hz, the carotenoid/chlorophyll ratio decreased, indicating a lower light acclimation. 

Furthermore, when the duty cycle was decreased from 0.5 to 0.25 ( with frequency and average 

light intensity stable), corresponding to higher dark period, the carotenoid/chlorophyll ratio 

increased showing a higher light acclimation response. It is interesting to point out that in the 

cited work the average light intensity employed was of 500 μmol s-1 m-2 against the 70 μmol s-

1 m-2 employed in the present work. The impossibility to increase the average light intensity 

connected to the employed experimental apparatus is a big limitation of this study, and further 

work should be done in this direction to light up more effects of acclimation and photoinibition. 

These data, together with the ones exposed in the present study, may confirm the hypothesis 

that rather than to the average light, light acclimation is affected by the time the cells spend in 

darkness. Anyway, the acclimation response appears to vary when changing the flashing 

frequency, that consequently may have a role connected to the length of the dark or light 

periods. 

In conclusion, the accumulation of pigments from N. gaditana is strongly influenced by the 

medium in which the algae were grown and also by the flashing light treatments. In fact, 

ANOVA analysis indicates a strong interaction between these two parameters in affecting 

chlorophyll and carotenoids content. 

 

4. CONCLUSIONS 

This work assessed the effect of flashing light on the growth and biochemical composition of 

N. gaditana grown in two versions of f/2 medium, the first one limited in nitrate and phosphate 

content and the other one enriched in them. N. gaditana had a worse growth performance under 
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flashing light conditions than under continuous light in both the basic and the enriched version 

of the medium. The effect of flashing light and nutrient concentration on biomass composition 

was also investigated. Results show that low and medium frequency flashing light increases 

total lipids content when cells are cultured in the basic medium. The opposite is observed for 

cells grown in the enriched medium. The fatty acid content was also analysed in order to assess 

lipid composition differences. Results point out that flashing light increases SFAs and MUFAs 

content for microalgae grown in the basic medium as well as PUFAs content when grown in 

the enriched medium. Pigment composition is also affected by flashing light. Under nutrient 

limitation flashing light decreases chlorophyll content and increases the carotenoids content, 

while, in the enriched medium flashing light increases both chlorophyll and carotenoids 

content. The above observations point out a combined effect of flashing frequency and nutrient 

concentration, not reported so far in the open literature to the best of authors’ knowledge. In 

this case, the flashing light increases the effect of nutrient starvation, i.e. increasing lipid and 

carotenoids content. When the cells were cultivated in nutrient replete conditions, flashing light 

had the prevailing effect, showing a low-light acclimation response, i.e. increasing PUFAs and 

pigments. In conclusion, this work shows how, by combining nutrient starvation and flashing 

light effect, it is possible to stimulate the production of one or another high-value compounds. 
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