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ABSTRACT

Gambling  disorder  (GD)  is  a  psychiatric  disease  that  has  been  recently  classified  as  a

behavioural  addiction.  So far,  a  very  few studies  have  investigated  the alteration  of  functional

connectivity  in  GD  patients,  thus  the  concrete  interplay  between  relevant  function-dependent

circuitries in such disease has not been comprehensively assessed.

The aim of this research was to investigate resting-state functional connectivity in  GD patients,

searching for a correlation with GD symptoms severity.

GD patients were assessed for gambling behaviour, impulsivity, cognitive distortions, anxiety and

depression, in comparison with healthy controls (HC). Afterwards, they were assessed for resting-

state functional magnetic resonance imaging; functional connectivity was assessed through a data-

driven approach,  by  using  independent  component  analysis.  The correlation  between  gambling

severity and the strength of specific resting-state networks was also investigated.

Our results show that GD patients displayed higher emotional and behavioural impairment than HC,

together with an increased resting state functional connectivity in the network including anterior

cingulate  cortex,  the  caudate  nucleus  and  nucleus  accumbens,  and  within  the  cerebellum,  in

comparison  with  the  control group.  Moreover,  a  significant  correlation  between  behavioural

parameters  and  the  strength  of  the  resting-state  cerebellar  network  was found.  Overall,  the

functional alterations in brain connectivity involving the cerebellum observed in this study underpin

the emotional  and behavioural  impairment  recorded in GD patients.  This evidence suggests the

employment of novel neuromodulatory therapeutic approaches involving specific and salient targets

such as the cerebellum in addictive disorders.

Keywords:  cerebellum,  fMRI,  functional  connectivity,  gambling  disorder,  psychological

assessment, resting-state
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Highlights

 GD patients  displayed impulsivity, cognitive distortions, anxiety and depression.

 GD patients  showed high functional connectivity in reward and cerebellar networks.
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1. INTRODUCTION

Gambling disorder (GD) is a psychiatric disease characterized by maladaptive and excessive

gambling behaviour. Due to the striking similarities to substance addiction in terms of cognitive and

personality features, psychiatric comorbidities, neurobiological processes, and genetic vulnerability,

it is accounted for a behavioural addiction [1-6], and reclassified under the chapter “Addiction and

related disorders”, in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders

(DSM) [7]. Pathogenetic interpretations of (drug) addiction have included different theories: reward

deficiency  hypothesis  [8],  incentive-sensitization  theory  [9],  impaired  response  inhibition  and

salience attribution  hypotheses [10].  All  of them converge towards aberrant  functioning of the

reward network (prefrontal and mesolimbic cortex) which underlies the symptom clusters shared

between drug addiction and GD: loss of control, withdrawal and craving, and "neglect other areas in

life” .

The overlapping of the main symptom clusters is confirmed by the results from behavioural and

functional Magnetic Resonance Imaging (fMRI) studies. In particular, subjects affected by GD and

heroin addicts display reduced executive functioning  such as diminished response inhibition and

cognitive  flexibility  and  impaired  decision  making  [1],  which  have  been  paralleled  to fMRI

evidence of hypo-responsiveness of the frontal midline structures [11-13]. A hyper-reactivity of the

brain  to  gambling-related  cues,  associated with  craving and  withdrawal,  is  evidenced  by  an

increased activity in the prefrontal and limbic structures [14,15]. Indeed, fMRI findings suggest that

an  imbalance  between  prefrontal  brain  activity  and  mesolimbic  function  may  account  for  an

alteration in reward (gain/loss) processing at the basis of the chasing one’s losses in GD, which may

be an important factor in the development of GD. As a matter of fact, the prefrontal cortex is not the

only  player  involved  in  tuning  behavioural  responses  that  need  optimizing  the  efficacy  of  the

predictions  about  internal  events  and  the  external  cues  [16-18],  since  other  areas,  like the

cerebellum, take part to the process [19]. 

4



It  is  apparent  that  focusing  on  brain  activation  within  specific  brain  regions  is  limitative  to

comprehend the neurobiological underpinnings of GD, where the actual interplay between relevant

function-dependent circuitries has not been comprehensively assessed so far. To accommodate the

idea of the brain as a complex network, neuroimaging studies have been carried out with the aim at

investigating functional  connectivity  during  the resting  state  (RS-FC) in  GD.  All  this  makes  it

possible  to  distinguish  particular  brain  circuitries  that  are  involved  in  the  development  and

maintenance of psychiatric  disorders,  such as addictions.  Most of the  studies  that  have already

explored RS-FC in GD,  took advantage of a seed-based approach  which  focused on reward and

cognition-related areas [20,21,22] or with a graph theoretical analysis [23]. As far as we know, only

one study applied a data-driven Independent Components Analysis (ICA) to RS-FC in GD showing

an increased integration of the right middle insula within the ventral attention network; however,

the authors chose the networks to be compared between the two groups, on the basis of  their a

priori hypothesis [24]. 

Indeed, the aim of this research was to investigate altered intrinsic RS-FC in patients with GD, by

an  independent  component  analysis  (ICA)  approach.  This  may  lead  to  the  identification  of

unexpected alterations in network connectivity that are not apparent by a priori  fMRI approach. In

addition, the search for correlation between altered brain RS-FC and GD symptoms severity has

been carried out.

Since gambling disorder can be considered an addiction in its pure form, i.e. without the influence

of a drug of abuse, investigation of addiction-related modifications in brain RS-FC can help to

define the whole picture and implement therapeutic strategies.

2. MATERIALS AND METHODS

2.1. Participants and procedure

Fourteen GD patients and fourteen healthy controls (HCs), both right-handed, ranging from

23 to 56 years old were involved in the study. GD patients were recruited from the Italian Addiction
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Center (Dept. of Pathological Addiction, ASP Palermo) and from the Psychiatry Unit of Policlinico

“P. Giaccone”, Palermo, Italy. HCs were recruited through advertisements.  Since most treatment

seeking GD patients were men, only male participants (both GD and HC) were included in the

study. For this reason,  exclusion criteria  for both groups were: lifetime diagnosis of any major

psychiatric  illness,  including  substance  dependent  disorder  and  post-traumatic  stress  disorder;

treatment for mental disorders other than GD in the past 12 months; history or current treatment for

neurological disorders, major internal disorders, brain trauma, or exposure to neurotoxic factors; use

of psychotropic medication; reading difficulty; age under 18 years. In addition, HCs were excluded

if they gambled more than twice a year.

All  subjects  underwent  a  psychological  assessment  and a  brain resting  state  fMRI (RS-

fMRI).  All measures were administered under respect of privacy.  This study was carried out in

accordance with the protocol approved by the Ethics Committee of the Policlinico “P. Giaccone”,

Palermo, Italy (Prot. 14910A). All subjects gave written informed consent in accordance with the

Declaration of Helsinki.

2.2. Psychological measures 

2.2.1. Gambling Behaviour Assessment

All participants completed the South Oaks Gambling Screen (SOGS). The SOGS is a 20-

item questionnaire that measures gambling behaviour. The total score on the SOGS ranges from 0

to  20:  scores  higher  than 5  indicate  probable  pathological  gambling  [25].  We used  the  Italian

version of the Pathological Gambling Adaptation of the Yale-Brown Obsessive-Compulsive Scale

(PG-YBOCS)  [26].  The  PG-YBOCS  is  a  10-item  clinician-administered  questionnaire  that

measures the severity of gambling disorder over a recent time interval (usually within the past two

weeks).

2.2.2. Impulsivity

To evaluate impulsiveness, we used the Barratt Impulsiveness Scale, 11 th version (BIS-11)
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[27]. The BIS-11 total score indicates the level of impulsiveness. The higher the BIS-11 total score,

the higher the impulsiveness level. The BIS-11 is the most frequently used self-report measure of

impulsivity.

2.2.3. Cognitive Distortions

In order to evaluate the cognitive distortions, we used the Italian version of the Gambling

Attitudes  and  Beliefs  Survey  (GABS)  [28]. The  GABS  is  a  self-report  questionnaire,  which

contains 35 questions related to possible cognitive distortions or different kinds of thinking.

2.2.4. Anxiety

In order to evaluate anxiety, we used the Italian version of the State-Trait Anxiety Inventory

(STAI). The STAI is a scale of considerable construct and concurrent validity, and a commonly

used measure of trait and state anxiety [29].  Moreover, a measure of perceived stress (MPS) scale

was employed to score emotional, behavioural, and cognitive aspects of distress [30].

2.2.5. Depression

The mood valence was evaluated by the Beck Depression Inventory – second version (BDI-

II)  [31].  The  BDI-II  is  a  widely  used  21-item self-report  inventory  measuring  the  severity  of

depression in adolescents and adults. The BDI-II was revised in 1996 to be more consistent with

DSM-IV criteria for depression.

2.3. Statistical analysis 

One-way  analysis  of  variance  (ANOVA)  was  used  to  evaluate  significant  differences

between GD patients and HCs in age, BIS-11, MSP, STAI, GABS, BDI-II, Y-BOCS and SOGS

scores. Pearson’s correlation was used to assess a correlation between behavioural data (gambling

severity)  and  the  mean  functional  connectivity  value of  specific  resting-state  networks  in  GD

patients. All statistical analyses were conducted using IBM SPSS Statistics for Windows, version

22.0 (Armonk, NY: IBM Corp.) and Graphpad Prism version 6.1 for MacOS (GraphPad Software,

La Jolla California USA).
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2.4. MRI acquisition and preprocessing

All subjects  underwent brain scan using a 1.5T MRI scanner (Signa HDxt; GE Medical

System, Milwaukee, Wisconsin, USA) at the Radiology Section of the Department of Biomedicine,

Neuroscience  and  Advanced  Diagnostics  of  the  University  of  Palermo;  an  eight-channel  brain

phased array coil was used. Foam pads were placed on both sides of the head, within the head coil,

to limit head motion during the scan. Structural images were obtained via a T1-weighted sagittal

three-dimensional  (3D)  1.2  mm thick  Fast  Spoiled  GRadient-echo  (FSPGR)  prepped  inversion

recovery pulse sequence (acquisition matrix 256⨉256; slice thickness 1.2 mm; TR 12.4 ms; TE 5

ms; IT 450 ms; FA 20; parallel imaging method: Array coil Spatial Sensitivity Encoding, ASSET).

RS-fMRI data were acquired with a two-dimensional (2D) axial T2*-weighted gradient-echo Echo-

Planar (EP) pulse sequence parallel to the anterior commissure–posterior commissure (AC–PC) line

over the entire brain (acquisition matrix 64 x 64; 33 slices; slice thickness 3 mm; gap 1 mm; TR

3000 ms; TE 60 ms; FA 90); the first five scans were discarded to allow T1 saturation to reach

equilibrium. All participants were explicitly instructed not to move during the MRI scan and quietly

rest in the scanner with their eyes open and not to think of anything specific. A ten-minute (200

volumes) fMRI scan was performed on each participant. Scan parameters were consistent for all

imaging sessions.

All the preprocessing was performed, at the Department of Physics and Chemistry of the

University of Palermo, using FSL’s recommended preprocessing pipeline from FMRIB’s Software

Library (FSL version 5.0.9 www.fmrib.ox.ac.uk/fsl). The following  preprocessing procedure was

applied by employing different modules of the FSL-software package. The preprocessing of the

resting-state data consisted of the following steps: motion correction  though MCFLIRT tool [32],

slice-timing  correction  using  Fourier-space  time-series  phase-shifting,  non-brain  removal  using

BET [33],  spatial  smoothing  using  a  Gaussian  kernel  of  FWHM  6.0mm,  multiplicative  mean

intensity normalization of the volume at each timepoint, high pass temporal filtering with sigma =
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100.0 s, pre-whitening and global spatial smoothing using a Gaussian kernel with a full width at a

half  maximum  of  6  mm.  After  preprocessing,  the  functional  images  were  registered  to  the

corresponding high-resolution echo planar images,  (co-registered to T1-weighted images,)  which

were registered to the 2 mm isotropic MNI-152 standard space image using non-linear registration

with 12 degrees of freedom as implemented in FMRIB's Linear Image Registration Tool (FLIRT),

followed  by  nonlinear  (FMRIB’s  nonlinear  image  registration  tool,  FNIRT)  warping  [32].

Individual time-series were assessed for motion contamination prior to deciding whether fMRI data

should  be  included  or  excluded  in  final  group  analyses.  In  this  work  excessive  motion  was

considered if  the estimated  translation was  larger  than 0.5  mm along  any axis;  no  significant

difference in movement parameters between patients and controls was observed.

2.5. ICA Analysis and Dual Regression 

Independent Component Analysis (ICA) was carried out using FSL’s MELODIC toolbox

implementing probabilistic independent component analysis (PICA). 

Multi-session  temporal  concatenated  ICA  (Concat-ICA)  approach,  as  recommended  for

resting state data analysis [34], was chosen. This approach allowed the inputting of all subjects from

the two groups in a temporally  concatenated fashion for the ICA analysis.  Concat-ICA yielded

different components without the need for specifying any explicit time series model. A total of 40

independent components (IC) maps were extracted. A mixture model approach was used to perform

the inference on estimated maps. Variance normalization was used and IC maps were thresholded

using  an  alternative  hypothesis  test  based  on  fitting  a  Gaussian/gamma  mixture  model  to

distribution of voxel intensities within spatial maps [34] and controlling the local false-discovery

rate at p < 0.5.

As a statistical analysis the different component maps are tested voxel-wise for statistically

significant differences between the groups using FSL dual regression,  which allows for a voxel-

wise comparison of RS-fMRI. In particular, FSL randomized  non parametric permutation testing,
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with  10000  permutations,  was  performed  using  a  threshold-free  cluster  enhanced  (TFCE)  [35]

technique to control for multiple comparisons and corrected for multiple comparisons (across space)

within the permutation framework. The TFCE has the advantage to identify cluster-like structures

but  the  image  remains  fundamentally  voxelized.  This  cluster  enhancement  is  therefore  more

sensitive than voxel-wise thresholding. 

Correction for multiple comparisons across space was applied assuming an overall significance of p

< 0.05 using permutation testing and TFCE. 

3. RESULTS

Participant demographic and clinical characteristics are summarized in Table 1.

No  significant  differences  in  age  were  found  between  GD  patients  and  HCs  whereas

education level was significantly different. GD patients showed higher levels of perceived stress

(F(1, 27) = 72.337, p < 0.001), trait anxiety (F(1, 27) = 103.363, p < 0.001), depression (F(1, 27) =

43.931, p < 0.001), impulsivity (F(1,27) = 95.797, p < 0.001) and cognitive distortions (F(1, 27) =

47.459, p < 0.001). 

Visual inspection of IC maps allowed us to identify common resting state networks reported

in  literature  [36,37].  For  example,  figure  1  reports  some  RS-networks  (such  as  default  mode

network,  auditory  network,  right  fronto-parietal  network,  left  fronto-parietal  network,  sensory-

motor network and visual network) obtained through the ICA performed in this work.

Our dual regression analysis showed an increased RS-FC in GD patients compared to HCs

in the following components:  IC00, IC08, IC09, IC11, IC21 and IC22. Among these, IC00 and

IC22 will not be discussed because located mainly within the brain white matter, and interpreted as

noise. 

We  will  describe  and  discuss  in  detail  the  results  regarding  the  reward  network,  the

cerebellum and the visual networks:
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- reward network (IC 009), specifically within: Caudate Nucleus (CN), Nucleus Accumbens

(NA) (peak at x, y, z: 51, 74, 33, p = 0.01, cluster size = 251 voxels;   figure 2), Subcallosal

Cortex  (SC)  and  ParaCingulate  Cortex  (ParaCC)  of  the  left  hemisphere;  ParaCC,  and

anterior Cingulate Gyrus (CG) of the right hemisphere (peak at x, y, z: 43, 85, 38, p = 0.031,

cluster size = 20 voxels;  figure 3);

- cerebellum (IC 011), specifically within: crus II and  lobules VIIb and VI of the right

hemisphere (peak at x, y, z:  37, 29, 18, p = 0.033, cluster size = 37 voxels;  figure 4);

lobules V and VI of the right hemisphere (peak at x, y, z: 32, 40, 21, p = 0.036, cluster size

= 16 voxels;    figure 5); lobules VIIIa, VIIIb, IX of the left hemisphere (peak at x, y, z: 52,

35, 14, p = 0.038, cluster size = 10 voxels;   figure 6);

-  visual  networks  (IC008 and IC021),  specifically  within:  bilateral  intracalcarine  cortex,

supracalcarine cortex and lingual gyrus (peak at x, y, z: 49, 16, 44, p = 0.016, cluster size =

715 voxels (IC008 - primary visual network); occipital pole, lateral occipital cortex, lingual

gyrus and occipital fusiform gyrus of the right hemisphere (peak at x, y, z: 38, 13, 34, p =

0.024, cluster size = 112 voxels; occipital pole, lateral occipital cortex and occipital fusiform

gyrus of the left hemisphere (peak at x, y, z: 56, 15, 30, p = 0.039, cluster size = 24 voxels

(IC021 - ventral visual network).

In GD patients, a significant positive correlation was found between gambling severity, in

terms of PG-YBOCS score, and mean functional connectivity value extracted from the significant

clusters in the cerebellar network (r = 0.579, p = 0.03) (figure 7). 

4. DISCUSSION

This study was aimed at exploring brain intrinsic resting state functional connectivity in a

population of GD patients and at searching for a correlation between RS-FC and GD symptoms.

Using a data driven approach we found an increased RS-FC within specific brain regions in GD

patients  compared with HC.  More precisely,  we found a stronger  connectivity  in  the networks
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including Anterior Cingulate Cortex (ACC), the head of the Caudate Nucleus (hCN) and Nucleus

Accumbens (NA), and within the cerebellum involving: the right crus II, right lobules V, VI, VIIb

and left lobules VIIIa, VIIIb, IX.

Moreover,  the  strength  of  functional  connectivity  in  the  cerebellar  network significantly

correlated with the severity of gambling disorder over the last 2 weeks – in terms of PG-YBOCS.

As a matter of fact, most of the neuroimaging studies on GD brains revealed abnormal activations

in response to  specific  cognitive/behavioural  tasks, mainly  in  the  decision-making and reward-

related  brain regions  (for  a  review see [38]).  As the human brain is  organized  in  dynamically

interacting functional networks [39,40], more recent studies are focusing on functional connectivity.

Earlier publications [20-22], that took advantage of a seed-based approach, showed an increased

functional connectivity between ventral striatum and amygdala bilaterally during a decision-making

task. Koehler [41] studied RS-FC between the middle frontal gyrus and ventral striatum, showing

an  increased  functional  connectivity   between  these  two  regions  in  GD  patients  compared  to

controls.

The involvement of the fronto-striatal networks in reward processing and decision-making is well-

established  [42-47]  as  well  as  their  impairment  in  addicted  patients  [6].  Indeed,  the  symptom

clusters  of  addiction  find  their  neurofunctional  basis  in  those aberrant  circuitries.  For  instance,

withdrawal  and  craving,  experienced  as  feeling  distress  when  attempting  to  cut  down or  stop

gambling, may be induced by a hyper-reactivity of the brain to gambling-related cues, which is

evidenced by an increased activity in the prefrontal and limbic structures, including the dorsolateral

prefrontal  cortex,  anterior  cingulate,  ventral  striatum,  and  parahippocampal  gyrus  [14,  15].

Accordingly, Ma et al. [48] found an increased connectivity between ACC and NA and between

ACC and the orbito-frontal cortex in chronic heroin users; moreover a complex alteration of the

cortical-subcortical balance has also been shown in GD patients [38].

From a neurobiological perspective, all the symptom clusters related to excessive gambling activity

may develop due to  fundamental  changes  in  the activity  of  the brain’s  reward system with an
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overestimation  of  the  short-term  value  of  drug/gambling  related  rewards  combined  with  an

underestimation  of  long-term  losses  [7].  This  imbalance  may  lead  to  increased

impulsivity/diminished self-regulation, a behavioural bias towards the pursuit of immediate rewards

instead  of  the  accomplishment  of  long-term  goals  [6].  Gambles  are  always  associated  with  a

potential  gain and a potential  loss of money, which have to be  weighed up against each other.

Consistently,  those  executive  functions  that  normally  enable  abdication  of  the  immediate

satisfaction of needs in favor of a prediction of a future greater satisfaction are compromised in GD

[49]. Notably, emotional and affective dysregulations have been reported [3-5], further confirmed

by higher levels of anxiety, perceived stress and depression observed in this study.

Intriguingly, the novelty of the current research is the interesting finding of an alteration of the

cerebellar connectivity in our population of GD patients. Specifically,  the connectivity strength of

the cerebellar functional network in GD patients was positively correlated with gambling severity in

terms of PG-YBOCS scores. These data further support the notion that the role of the cerebellum is

not exclusively related to motor control. Evidence obtained from clinical and neuroimaging studies

has shown that the cerebellum is involved in a series of cognitive functions, such as verbal and

working memory, executive functions, language, emotion processing, and attention [50] as well as

in neurodegenerative dementias with cognitive and behavioural symptoms [51]. Interestingly, the

cerebellum shows connections with fear and anxiety-related brain areas and functional involvement

in such processes has been shown in preclinical models [52].

In  addition,  though  traditionally  overlooked  in  the  addiction  field,  a  growing  amount  of  data

suggests  the  involvement  of  the cerebellum in  many of  the  aberrant  brain  functions  in  addicts

[41,53].  Indeed, the cerebellum is known to be strongly connected with the basal ganglia and the

prefrontal cortex, to be co-activated during reward related tasks and influence their activity.

Evidence for GD patients report that "the right ventral striatum demonstrates increased connectivity

to  the  right  superior  and  middle  frontal  gyrus  and  left  cerebellum  compared  to  controls.  The
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increased connectivity to the cerebellum is positively correlated with smoking" [41] emphasizing a

participation of the cerebellum in substance use behaviour.

A  recent  work  by  an  Italian  group  [54]  has  appointed  the  cerebellum  as  a  master  regulatory

structure  for  integrating  motor,  emotional,  and  sensory  information  that  affects  “mind–world

synchronization”. In this context, the cerebellar cortex would be in charge of rapid unconscious

processes, while other cortical brain areas would address the slow conscious ones [41]. Cerebellar

processing thus contributes  to the generation of coherent  and conscious representations  of self-

perception and the external world and to the conscious recognition of negative feelings caused by

the sense of self-responsibility for an incorrect decision [54]. 

Overall,  it  is  reasonable  to  speculate  that  the  functional  alterations  in  cerebellum-related

connectivity observed in this study might underpin the occurrence of  severe gambling behaviour

recorded in GD patients. Indeed, the typical “chasing behaviour”, and at a larger scale “neglect of

other  areas  in  life”  might  arise  from an internal  discrepancy  between  internally  perceived  and

externally generated signals. Strengthening this point of view, patients with cerebellar damage have

been recently reported to be unable to feel conscious emotions of regret as a consequence of their

disadvantageous choices in a gambling task exacerbating their addictive behaviour [54].

Optimal  internal  balance  at  the  unconscious  and  conscious  levels  is  necessary  to  ensure  an

emotional behaviour that is coherent with the environment and a self-perception of one’s emotional

state that is consistent  with the context.  The evidence of an aberrant connectivity  engaging the

cerebellum,  besides  the  reward  network,  opens  new  perspectives  on  cerebellar  role  in  the

etiopathology  of  GD  and  addiction,  and  suggests  the  employment  of  novel  neuromodulatory

therapeutic  approaches  [55,56]  that  may  be  helpful  in  ameliorating  gambling  severity  and  co-

morbid emotional and cognitive dysfunctions. 

We also found an increased RS-FC within the visual network in PG compared to HC. Early studies

found an over-activation of a set of brain areas, including the reward network and the occipital
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cortex,  after  the  presentation  of  specific  addiction-related  pictures  [15,57],  interpreted  as  cue-

reactivity related activations. All the subjects participating in our study underwent a fMRI Go-noGo

task, including gambling-related pictures, immediately before the resting block. The GD patients

showed an overactivation  of the middle frontal  gyrus,  the ACC as well  as  the occipital  cortex

compared to  HC that  we also interpreted  as  a  cue reactivity  effect  [58].  In  such a  context,  as

suggested by van Timmeren [24], even the RS-FC could be influenced by previous task-related

paradigms as a “sustained cue reactivity effect”.

In our knowledge, only one earlier study used a data driven approach [24] with results that differ

from ours. van Timmeren et al. found an increased functional connectivity only within the ventral

attention network. This could depend on a different methodological approach: at the first place, the

authors performed an ICA to identify the functional networks from their data but subsequently they

selected their networks of interest to be compared between GD and HC. Secondly, we generated a

different number of components (40 vs 51 IC) from the same number of brain volume scans (200)

and, at last, we used a 1.5T scanner while they used a 3T one. Furthermore, our choice of analyzing

the whole body of data, without any a priori selection, allowed us to find, besides the well-known

involvement of the fronto-striatal network, unexpected and original results, such as the cerebellar

involvement in our GD population. 

5. LIMITATIONS

Our study has some limitations that need to be acknowledged. The main limitation of the study is

the small sample size. Further studies should be carried out recruiting a larger number of subjects

including also women. Another limitation is related to the use of a 1.5T scanner. However, it should

be underlined that,  even though high (3T) or ultra high field (7T) MRI scanners would favor a

significant increase in terms of contrast, spatial and temporal resolutions, there are plenty of fMRI

studies published in the english literature reporting the use of a 1.5T MRI scanner. Moreover, not

all these published studies reported robust fMRI data analyses as the one described above. Another
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limitation, related to the use of a 1.5 T MRI scanner, is the choice of a TR value of 3000 ms which

could be criticized for being too high. This value is indeed strictly related to the MRI scanner we

used since it is the lowest TR that allowed a whole brain fMRI scan with the reported acquisition

parameters.  Although a shorter TR could provide a  larger temporal resolution,  other published

articles used this TR value with a 1.5T scanner [59,60]. Even with these limitations, we obtained a

valid representation of the neural networks most commonly reported in the literature, supporting

the validity of our study. After all, in order to achieve more accuracy in RS-networks reconstruction

we chose a total number of 200 measurements for resting state fMRI scans (10 minutes sessions).

6. CONCLUSIONS

In conclusion,  our findings confirm the already known involvement  of the reward network and

support  a  possible  role  of  the  cerebellum in GD. The role  of  the  cerebellum in cognition  and

behaviour is well established and, more recently, some studies have implicated the cerebellum in

substance addiction. GD can be considered an optimal model for functional studies, because of the

lack of any substance related influence on functional connectivity. To our knowledge this is the first

study demonstrating an involvement of cerebellar connectivity in gambling disorder.
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FIGURE LEGEND

Figure  1  -  Examples  of  resting  state  networks  identified  by  ICA:  default  mode  network  (A),

auditory network (B), right fronto-parietal network (C), left fronto-parietal network (D), sensory-

motor network (E) and visual network (F).

Figure 2 - Increased RS-FC in GD patients compared to HCs in the left CN, NA, SC, ParaCC (peak

at x, y, z: 51, 74, 33, p = 0.01, cluster size = 251 voxels)

Figure 3 - Increased RS-FC in GD patients compared to HCs in the right ParaCC, and right CG

(peak at x, y, z: 43, 85, 38, p = 0.031, cluster size = 20 voxels)

Figure 4 - Increased RS-FC in GD patients compared to HCs in the right crus II and right lobules

VIIb and VI (peak at x, y, z: 37, 29, 18, p = 0.033, cluster size = 37 voxels)

Figure 5 - Increased RS-FC in GD patients compared to HCs in the right lobules VI and V (peak at

x, y, z: 32, 40, 21, p = 0.036, cluster size = 16 voxels)

Figure 6 - Increased RS-FC in GD patients compared to HCs in the left lobules VIIIa, VIIIb and, IX

(peak at x, y, z: 52, 35, 14, p = 0.038, cluster size = 10 voxels)

Figure 7 - In GD patients, mean functional connectivity value (PE = parameter estimate) extracted

from the significant cluster in the cerebellar network (IC011) correlated with PG-YBOCS score of

gambling behaviour.
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Table 1. Demographic and clinical statistics of the subjects. NS: Non-significant; *p < .05; **p <

.01; ***p < .005; ****p < .001.

PATHOLOGICAL

GAMBLERS (n=14)

Mean (SD)

HEALTHY

CONTROL  GROUP

(n=14)

Mean (SD)

TEST

ANOVA

AGE (years)
40.57 (8.12) 33.64 (9.71) F = 4.191NS

EDUCATION

(years)

12.29 (1.81) 14.43 (3.05) F = 5.087*

SOGS 11.5 (2.87) .5 (.65) F = 194.885****
PG-YBOCS 20.85 (6.67) .00 (.00) F = 136.574****
STAI-TRAIT

BDI-II

BIS-11 

GABS

MSP

62.42 (12.42)

21.71 (10.26)

70.71 (7.65)

80.92 (9.90)

119.85 (16.78)

26.50 (4.51)

3.35 (1.39)

47.85 (4.22)

61.78 (3.16)

76.28 (9.26)

F = 103.363****

F = 43.931****

F = 95.797****

F = 47.459****

F = 72.337****
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