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Robust entanglement preparation against noise by controlling
spatial indistinguishability
Farzam Nosrati 1,2, Alessia Castellini3, Giuseppe Compagno3 and Rosario Lo Franco 3,4✉

Initialization of composite quantum systems into highly entangled states is usually a must to enable their use for quantum
technologies. However, unavoidable noise in the preparation stage makes the system state mixed, hindering this goal. Here, we
address this problem in the context of identical particle systems within the operational framework of spatially localized operations
and classical communication (sLOCC). We define the entanglement of formation for an arbitrary state of two identical qubits. We
then introduce an entropic measure of spatial indistinguishability as an information resource. Thanks to these tools we find that
spatial indistinguishability, even partial, can be a property shielding nonlocal entanglement from preparation noise, independently
of the exact shape of spatial wave functions. These results prove quantum indistinguishability is an inherent control for noise-free
entanglement generation.
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INTRODUCTION
The discovery and utilization of purely quantum resources is an
ongoing issue for basic research in quantum mechanics and
quantum information processing1,2. Processes of quantum metrol-
ogy3, quantum key distribution4, teleportation5, or quantum
sensing6 essentially rely on the entanglement feature7,8. Unfortu-
nately, entanglement is fragile due to the inevitable interaction
between system and surrounding environment already in the
initial stage of pure state preparation, making the state mixed9,10.
As a result, protecting entanglement from unavoidable noises
remains a main objective for quantum-enhanced technology11.
Many-body quantum networks usually employ identical quan-

tum subsystems (e.g., qubits) as building blocks12–19. Characteriz-
ing peculiar features linked to particle indistinguishability in
composite systems assumes importance from both the funda-
mental and technological points of view. Discriminating between
indistinguishable and distinguishable particles has always been a
big challenge for which different theoretical20–23 and experimen-
tal24–28 techniques have been suggested. Recently, particle
identity and statistics have been shown to be a resource29–34

and experiments which witness its presence have been per-
formed35. One aspect that remains unexplored is how the
continuous control of the spatial configurations of one-particle
wave functions, ruling the degree of indistinguishability of the
particles, influences noisy entangled state preparation. Moreover,
a measure of the degree of indistinguishability lacks.
Pursuing this study requires an entanglement quantifier for an

arbitrary (mixed) state of the system with tunable spatial
indistinguishability. It is desirable that this quantifier is defined
within a suitable operational framework reproducible in the
laboratory. The natural approach to this aim is the recent
experimentally friendly framework based on spatially localized
operations and classical communication (sLOCC), which encom-
passes entanglement under generic spatial overlap configura-
tions34. This approach has been shown to also enable remote
entanglement36,37 and quantum coherence38.

Here, we adopt the sLOCC framework to unveil further
fundamental traits of composite quantum systems. We first define
the entanglement of formation for an arbitrary state of two
indistinguishable qubits (bosons or fermions). We then introduce
the degree of indistinguishability as an entropic measure of
information, tunable by the shapes of spatial wave functions. We
finally apply these tools to a situation of experimental interest,
that is noisy entangled state preparation. We find spatial
indistinguishability can act as a tailored property protecting
entanglement generation against noise.

RESULTS
sLOCC-based entanglement of formation of an arbitrary state of
two identical qubits
We first focus on the quantification of entanglement for an
arbitrary state (pure or mixed) of identical particles. For identical
particles we in general mean identical constituents of a composite
system. In quantum mechanics identical particles are not
individually addressable, as are instead non-identical (distinguish-
able) particles, so that specific approaches are needed to treat
their collective properties39–46. Our goal is accomplished by
straightforwardly redefining the entanglement of formation
known for distinguishable particles47 to the case of indistinguish-
able particles, thanks to the sLOCC framework34.
The separability criterion in the standard theory of entangle-

ment for distinguishable particles8,47 maintains its validity also for
a state of indistinguishable particles once it has been projected by
sLOCC onto a subspace of two separated locations L and R. In
fact, after the measurement, the particles are individually
addressable into these regions and the criteria known for
distinguishable particles can be adopted34,38.
Consider two identical qubits, with spatial wave functions ψ1 and

ψ2, for which one desires to characterize the entanglement between
the pseudospins between the separated operational regions.
States of the system can be expressed by the elementary-state
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basis f ψ1σ1;ψ2σ2j i; σ1; σ2 ¼"; #g, expressed in the no-label
particle-based approach44,45 where fermions and bosons are
treated on the same footing. The density matrix of an arbitrary
state of the two identical qubits can be written as

ρ ¼
X

σ1;σ2;σ01 ;σ
0
2¼#;"

p
σ01;σ

0
2

σ1σ2 ψ1σ1;ψ2σ2j i ψ1σ
0
1;ψ2σ

0
2

� ��=N ; (1)

where N is a normalization constant. Projecting ρ onto the
(operational) subspace spanned by the computational basis BLR ¼
f L "; R "j i; L "; R #j i; L #; R "j i; L #; R #j ig by the projector

Π
ð2Þ
LR ¼

X

τ1;τ2¼";#
Lτ1; Rτ2j i Lτ1; Rτ2h j; (2)

one gets the distributed resource state

ρLR ¼ Π
ð2Þ
LR ρΠ

ð2Þ
LR =TrðΠð2Þ

LR ρÞ; (3)

with probability PLR ¼ TrðΠð2Þ
LR ρÞ. We call PLR sLOCC probability

since it is related to the post-selection procedure to find one
particle in L and one particle in R. The state ρLR is then
exploitable for quantum information tasks by addressing the
individual pseudospins in the separated regions L and R, which
represent the nodes of a quantum network. The state ρLR can be in
fact remotely entangled in the pseudospins and constitute the
distributed resource state. The trace operation is clearly performed
in the LR-subspace (see Supplementary Notes 1 and 3 for details).
The state ρLR, containing one particle in L and one particle in
R, can be diagonalized as ρLR ¼

P
ipi Ψ

LR
i

�� i ΨLR
i

� ��, where pi is the
weight of each pure state ΨLR

i

�� i which is in general non-separable.
Entanglement of formation of ρLR is as usual48

Ef ðρLRÞ ¼ min
P

ipiEð ΨLR
i

�� iÞ, where minimization occurs over all
the decompositions of ρLR and EðΨLR

i Þ is the entanglement of the
pure state ΨLR

i

�� i. We thus define the operational entanglement
ELR(ρ) of the original state ρ obtained by sLOCC as the
entanglement of formation of ρLR, that is

ELRðρÞ :¼ Ef ðρLRÞ: (4)

We can conveniently quantify the entanglement of
formation Ef(ρLR) by the concurrence C(ρLR), according to the
well-known relation Ef ¼ h½ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
Þ=2�47,49, where

hðxÞ ¼ �x log 2x � ð1� xÞ log 2ð1� xÞ. The concurrence CLR(ρ)
in the sLOCC framework can be easily introduced by

CLRðρÞ :¼ CðρLRÞ ¼ max 0;
ffiffiffiffiffi
λ4

p
�

ffiffiffiffiffi
λ3

p
�

ffiffiffiffiffi
λ2

p
�

ffiffiffiffiffi
λ1

pn o
; (5)

where λi are the eigenvalues, in decreasing order, of the non-
Hermitian matrix R ¼ ρLReρLR, being eρLR ¼ σL

y � σR
yρ

�
LRσ

L
y � σR

y with
localized Pauli matrices σL

y ¼ Lj i Lh j � σy , σR
y ¼ Rj i Rh j � σy . The

entanglement quantifier of ρ so obtained contains all the
information about spatial indistinguishability and statistics
(bosons or fermions) of the particles.

sLOCC-based entropic measure of indistinguishability
In quantum mechanics, identical particles can be given the
property of indistinguishability associated to a specific set of
quantum measurements, being different from identity that is an
intrinsic property of the system. With respect to the set of
measurements, it seems natural to define a continuous degree of
indistinguishability, which quantifies how much the measurement
process can distinguish the particles. In this section, we deal with
this aspect within sLOCC. For simplicity, the treatment is first
presented for a two-particle pure state and then generalized to N-
particle pure states. It is worth to mention that the framework is
universal and also valid for mixed states.
Let us consider an elementary pure state of two identical

particles Ψð2Þ�� i ¼ χ1; χ2j i, where χ ij i is a generic one-particle state

containing a set of commuting observables such as spatial wave
function ψij i and an internal degree of freedom σij i (e.g.,
pseudospin with basis {↑, ↓}). The two-particle state Ψð2Þ�� i is thus
Ψð2Þ�� i ¼ χ1; χ2j i ¼ ψ1σ1;ψ2σ2j i: (6)

In general, the degree of indistinguishability depends on both the
quantum state and the measurement performed on the system.
This means a given set of operations allows one to distinguish the
particles while another set of operations does not. Let us narrow
the analysis down to spatial indistinguishability within the sLOCC
framework, linked to the incapability of distinguish which one of
the two particles is found in each of the separated operational
region. This framework thus leads to the concept of remote spatial
indistinguishability of identical particles. The suitable class of
measurements to this aim is represented by local counting of
particles, leaving the pseudospins untouched. Inside this class, the
joint projective measurement Πð2Þ

LR defined in Eq. (2) represents the
detection of one particle in L and of one particle inR. We indicate
with PXψi

¼ hXjψiij j2 (X= L, R and i= 1, 2) the probability of finding
one particle in the region X (X ¼ L;R) coming from ψij i. We then
define the joint probabilities of the two possible events when one
particle is detected in each region: (i) P12 ¼ PLψ1

PRψ2
related to the

event of finding a particle in L emerging from ψ1j i and a particle in
R emerging from ψ2j i, (ii) P21 ¼ PLψ2

PRψ1
related to the vice versa.

The amount of the no-which way information emerging from the
outcomes of the joint sLOCC measurement Πð2Þ

LR is a measure of
the spatial indistinguishability of the particles in the state Ψð2Þ�� i.
We thus use Zð2Þ :¼ TrðΠð2Þ

LR Ψð2Þ�� i Ψð2Þ� ��Þ ¼ P12 þ P21, that
encloses the essence of this lack of information, to introduce the
entropic measure of the degree of remote spatial indistinguish-
ability

I LR :¼ �P12

Z log 2
P12

Z � P21

Z log 2
P21

Z : (7)

The entropic expression above naturally arises from the require-
ment of quantifying the no which-way information associated to
the uncertainty about the origin (spatial wave function) of the
particle found in each of the operational regions. If particles do not
spatially overlap in both remote regions, we have maximum
information (P12 ¼ 1, P21 ¼ 0 or vice versa) and I LR ¼ 0 (the
particles can be distinguished by their spatial location). On the
other hand, I LR ¼ 1 when there is no information at all about each
particle origin (P12 ¼ P21) and the particles are maximally over-
lapping in both regions. Notice that a given value of I LR
corresponds to a class of different shapes of the single-particle
spatial wave functions ψij i. Moreover, in an experiment which
reconstructs the identical particle state by standard quantum
tomography, the corresponding value of I LR can be indirectly
obtained50.
The above definition of the degree of spatial indistinguishability

for two identical particles allows us to defining a more general
degree of indistinguishability for N identical particles. In general,
N different operational regions Ri (i= 1, …, N) are needed to
quantify the indistinguishability of N identical particles (see Fig. 1).
Let us consider a N-identical particle elementary pure state
ΨðNÞ�� i ¼ χ1; χ2; :::; χNj i, where χ ij i is the ith single-particle state.
Each χ ij i is characterized by the set of values χ i ¼ χai ; χ

b
i ; ¼ ; χni

corresponding to a complete set of commuting observables
â; b̂; ¼ ; n̂. For example, if â describes the spatial distribution of
the single-particle states, χai is a spatial wavefunction ψi. To define
a suitable class of measurements, we take the N-particle state

αβj iN :¼ α1β1; α2β2; ¼ ; αNβNj i; (8)

where the ith single-particle state αiβij i is characterized by a
subset â; b̂; ¼ ; ĵ of the â; b̂; ¼ ; n̂ commuting observables with
eigenvalues αi ¼ αai ; α

b
i ; ¼ ; αji , and by the remaining observables

k̂; ¼ ; n̂ with eigenvalues βi ¼ βki ; ¼ ; βni . In the first member of
Eq. (8) we have set α≔ {α1, …, αN} and β ≔ {β1, …, βN}. The

F. Nosrati et al.

2

npj Quantum Information (2020)    39 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



N-particle projector on outcomes (α, β) of the complete set of
observables is ΠðNÞ

αβ ¼ αβj iN αβh j, while the projector on outcomes
α of the partial set of observables is

ΠðNÞ
α ¼

X

β

Π
ðNÞ
αβ : (9)

Within the sLOCC framework, we can quantify to which extent
particles in the state ΨðNÞ�� i can be distinguished by knowing the
results α of the local measurements described by Π

ðNÞ
α of Eq. (9),

considering that single-particle spatial wave functions {ψi} can
overlap (see Fig. 1). The (sLOCC) measurements have to satisfy the
following properties: (1) the N single-particle states f αiβij ig are
peaked in separated spatial regions fRig (see Fig. 1); (2)
hΨðNÞjΠðNÞ

α jΨðNÞi ≠ 0, i.e., the probability of obtaining the projected
state must be different from zero (see Methods and Supplemen-
tary Note 1 for the general formulas).
We indicate with Pαiχ j the single-particle probability that the

result αi comes from the state χ j
�� i. We then define the joint

probability PαP :¼ Pα1χp1 Pα2χp2 � � � PαNχpN , where P ¼ fp1; p2; :::; pNg
is one of the N! permutations of the N single-particle states f χ ij ig.
Notice that PαP can be nonzero for each of the N! permutations,
since in general the outcome αi can come from any of the single-
particle state χ j

�� i. The quantity Z ¼ P
PPαP thus accounts for this

no which-way effect concerning the probabilities. The degree of
indistinguishability is finally given by

Iα :¼ �
X

P

PαP
ZðNÞ log 2

PαP
ZðNÞ : (10)

This quantity depends on measurements performed on the state.
If the particles are initially all spatially separated, each in a
different measurement region, only one permutation remains and
Iα ¼ 0: we have complete knowledge on the single-particle state
χ j
�� i which gives the outcome αi, meaning that the particles are

distinguishable with respect to the measurement Π
ðNÞ
α . On the

other hand, if for any possible permutation P0 ≠P one has
P0αP ¼ PαP , indistinguishability is maximum and reaches the value
Iα ¼ log 2N!. As a specific example, when χai ¼ ψi (spatial wave
functions) and χbi ¼ σi (pseudospins), Iα of Eq. (10) is the direct
generalization of I LR of Eq. (7) and provides the degree of spatial
indistinguishability under sLOCC for N identical particles.

Application: noisy preparation of pure entangled state
We now apply the tools above to a situation of experimental
interest, namely noisy entanglement generation with identical
particles.
Werner state51 W ±

AB for two nonidentical qubits A and B is
considered as the paradigmatic example of realistic noisy prepara-
tion of a pure entangled state subject to the action of white noise.

In the usual formulation, it is defined as a mixture of a pure
maximally entangled (Bell) state and of the maximally mixed state
(white noise). Its explicit expression, assuming to be interested in
generating the Bell state ΨAB

±

�� i ¼ ð "A; #Bj i± #A; "Bj iÞ= ffiffiffi
2

p
, is

W ±
AB ¼ ð1� pÞ ΨAB

±

�� i ΨAB
±

� ��þ pI4=4, where I4 is the 4 × 4 identity
matrix and p is the noise probability which accounts for the amount
of white noise in the system during the pure state preparation
stage. The Werner state W ±

AB is also the product of a single-particle
depolarizing channel induced by the environment applied to an
initial Bell state7,8. It is known that the concurrence for such state is
CðW ±

ABÞ ¼ 1� 3p=2 when 0 ≤ p < 2/3, being zero otherwise8 (see
black dot-dashed line of Fig. 3a).
In perfect analogy, the Werner state for two identical qubits

with spatial wave functions ψ1, ψ2 can be defined by

W ± ¼ 1� pð Þ 1±j i 1±h j þ pI4=4; (11)

where I4 ¼
P

i¼1;2;s¼± isj i ish j, having used the orthogonal Bell-
state basis Bf1± ;2± g ¼ f 1þj i; 1�j i; 2þj i; 2�j ig with

1±j i :¼ ð ψ1 ";ψ2 #j i± ψ1 #;ψ2 "j iÞ=
ffiffiffi
2

p
;

2±j i :¼ ð ψ1 ";ψ2 "j i± ψ1 #;ψ2 #j iÞ=
ffiffiffi
2

p
: (12)

The Werner state of Eq. (11) is justified as a model of noisy state. In
fact, it is straightforward to see thatW ± is produced by a localized
depolarizing channel acting on one of two initially separated
identical qubits, followed by a quick single-particle spatial
deformation procedure which makes the two identical qubits
spatially overlap (see Supplementary Note 2). Hence, in Eq. (11),
1 ±j i is the target pure state to be prepared and I4=4 is the noise
as a mixture of the four Bell states.
Given the configuration of the spatial wave functions and using

the sLOCC framework, the amount of operational entanglement
contained inW ± can be obtained by the concurrence CLRðW ± Þ ¼
CðW ±

LRÞ of Eq. (5). Notice that the state of Eq. (11) is in general not
normalized, depending on the specific spatial degrees of free-
dom45. This is irrelevant at this stage, since the entanglement of
W ± is calculated on the final distributed state W ±

LR, which is
obtained from W ± after sLOCC and is normalized (see Eq. (3).
Focusing on the observation of entanglement, a well-suited
configuration for the spatial wave functions is ψ1j i ¼ l Lj i þ r Rj i
and ψ2j i ¼ l0 Lj i þ r0eiθ Rj i, where l, r, l0, r0 are non-negative real
numbers (l2 þ r2 ¼ l02 þ r02 ¼ 1) and θ is a phase. The wave
functions are thus peaked in the two localized measurement
regions L and R, as depicted in Fig. 2. The degree of spatial
indistinguishability I LR of Eq. (7) is tailored by adjusting the
shapes of ψ1j i, ψ2j i, with PLψ1

¼ l2, PLψ2
¼ l02 (implying PRψ1

¼ r2,
PRψ2

¼ r02). The interplay between CLRðW ± Þ and I LR vs. noise
probability p can be then investigated (see Supplementary Note 3
for some explicit expressions of CLRðW ± Þ).

Fig. 1 Projective measurements based on sLOCC. Illustration of different single-particle spatial wave functions ψi (i= 1,…, N) associated to N
identical particles in a generic spatial configuration. The amount of spatial indistinguishability of the particles can be defined by using
spatially localized single-particle measurements in N separated regions Ri .
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Generally, the entanglement amount is conditional since the
state is obtained by postselection. As a result, the entangled
state ρLR is detectable if the sLOCC probability PLR is high enough
to be of experimental relevance. Let us see what happens for
I LR ¼ 1 (l ¼ l0). When the target pure state in Eq. (11) is 1�j i,
using in Eq. (12) the explicit expressions of ψ1j i, ψ2j i with θ= 0
(θ= π) for fermions (bosons), from W� we obtain by sLOCC the
distributed Bell state W�

LR ¼ 1LR�
�� i 1LR�

� ��, with 1LR�
�� i ¼ ð L "; R #j i�

L #; R "j iÞ= ffiffiffi
2

p
, therefore (see blue solid line of Fig. 3a)

CLRðW�Þ ¼ CðW�
LRÞ ¼ 1; for any noise probability p (13)

for which the probabilities of detecting this state for fermions and

bosons are, respectively

PðfÞLR ¼ 2l2ð1� l2Þ; PðbÞLR ¼ 2l2 1� l2
� �ð4� 3pÞ

2� 1� 2l2
� �2ð2� 3pÞ

: (14)

Notice that the sLOCC probability for fermions, PðfÞLR , is in this case
independent of the noise probability. Fixing l2= 1/2 we maximize
the sLOCC probability, which is 1/2 for fermions and 1/4 for
bosons in the worst scenario of maximum noise probability p= 1.
Differently, targeting the pure state 1þj i in Eq. (11), for fermions
(bosons) with θ= π (θ= 0), one gets a p-dependentWþ

LR by sLOCC
with CLRðWþÞ ¼ CðWþ

LRÞ ¼ ð4� 5pÞ=ð4� pÞ when 0 ≤ p < 4/5,
being zero elsewhere. The entanglement now decreases with
increasing noise, remaining however larger than that for
nonidentical qubits (see red dashed line of Fig. 3a). The choice
of the state to generate makes a difference concerning noise
protection by indistinguishability. However, we remark that
identical qubits in the distributed resource state after sLOCC,
W ±

LR, are individually addressable. Local unitary operations
(rotations) in L and R can be applied to each qubit to transform
the noise-free prepared 1LR�

�� i into any other Bell state8. Another
relevant aspect is that the phase θ in ψ2j i acts as a switch between
fermionic and bosonic behavior of entanglement (see Supple-
mentary Note 3 for details on more general instances). The result
for nonidentical particles is retrieved when the qubits become
distinguishable (I LR ¼ 0, l ¼ r0 ¼ 1 or l ¼ r0 ¼ 0).
Since the preparation of 1�j i, as represented by Eq. (11), results

to be noise-free for both fermions and bosons when I LR ¼ 1, it is
important to know what occurs for a realistic imperfect degree of
spatial indistinguishability. In Fig. 3b, we display entanglement as
a function of both p and I LR. The plot reveals that entanglement
preparation can be efficiently protected against noise also for
I LR < 1. A crucial information in this scenario is the minimum
degree of I LR that guarantees nonlocal entanglement in L and R,
by violating a CHSH-Bell inequality8, whatever the noise prob-
ability p. We remark that a Bell inequality violation based on
sLOCC provides a faithful test of local realism52. Using the
Horodecki criterion53, we find that the Bell inequality is violated
for any p whenever 0:76< I LR � 1, implying 0:56<CLRðW�Þ � 1
(see Supplementary Note 4 for details). This is basically different

Fig. 2 Noisy entanglement preparation with tailored spatial
indistinguishability. Illustration of two controllable spatially over-
lapping wave functions ψ1, ψ2 peaked in the two localized regions of
measurement L and R. The two identical qubits are prepared in an
entangled state under noisy conditions, giving W ± . The degree of
spatial indistinguishability can be tuned, being 0 � I LR � 1.

Fig. 3 Prepared entanglement and indistinguishability. a Entanglement CLRðW ± Þ as a function of noise probability p for different degrees
of spatial indistinguishability I LR and system parameters: blue solid line is for target state 1�j i, I LR ¼ 1 (l ¼ l0), fermions (with θ= 0) or bosons
(with θ= π); red dashed line is for target state 1þj i, I LR ¼ 1 (l ¼ l0), fermions (with θ= π) or bosons (with θ= 0); black dot-dashed line is for
distinguishable qubits (I LR ¼ 0, l = 1 and l0 ¼ 0 or vice versa). b Contour plot of entanglement CLRðW�Þ versus noise probability p and spatial
indistinguishability I LR for target state 1�j i, fermions (with θ= 0) or bosons (with θ= π), fixing l ¼ r0.
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from the case of distinguishable qubits where, as known8, W ±
AB

violates Bell inequality only for small white noise probabilities
0 ≤ p < 0.292 (giving 0:68ðW ±

ABÞ � 1). These results show robust
quantum entanglement preparation against noise through spatial
indistinguishability, even partial. In fact, rather than addressing
individual qubits, here one controls the shapes of their spatial
wave functions ψ1j i, ψ2j i. Significant changes in these shapes can
occur that anyway maintain I LR of Eq. (7) beyond the threshold
(≈0.76) assuring noise-free generation of nonlocal entanglement.
Indistinguishability here emerges as a property of composite
quantum systems inherently robust to surrounding-induced
disorder, protecting exploitable quantum correlations.

DISCUSSION
In this work, we have studied the effect of spatial indistinguish-
ability on entanglement preparation under noise, within the
sLOCC framework. Firstly, thanks to the analogy with known
methods for distinguishable particles, the entanglement of
formation, and the related concurrence, has been defined for an
arbitrary pure or mixed state of two identical qubits. Secondly, we
have introduced the degree of spatial indistinguishability of
identical particles by an entropic measure of information. This
achievement entails a continuous quantitative identification of
indistinguishability as an informational resource. Hence, one can
evaluate the amount of entanglement exploitable by sLOCC into
two separated operational sites under general conditions of
spatial indistinguishability and state mixedness.
The Werner state W ± has been then chosen as a typical

instance of noisy mixed state of two identical qubits, with tunable
spatial overlap of their wave functions on the two remote
operational regions. The tunable spatial overlap rules the
indistinguishability degree. We have found that, under conditions
of complete spatial indistinguishability, maximally entangled pure
states between internal (spin-like) degrees of freedom can be
prepared unaffected by noise. Even in the more realistic scenario
of experimental errors in controlling particle spatial overlap, we
have supplied a lower bound for the degree of spatial
indistinguishability beyond which the generated entangled state
violates the CHSH-Bell inequality independently of the amount of
noise. These findings are independent of particle statistics, holding
for both bosons and fermions. One reasonably may expect that
also coherence can be protected by spatial indistinguishability,
based on a previous work showing that the latter enables
quantum coherence38. This supports the observed effects in an
experiment of coherence endurance due to particle
indistinguishability54.
The degree of spatial indistinguishability exhibits robustness to

variations in the configuration of spatial wave functions, being
then capable of shielding nonlocal entangled states against
preparation noise. Therefore, indistinguishability represents a
resource of quantum networks made of identical qubits enabling
noise-free entanglement generation by its physical nature. Such a
finding, which is promising to fault-tolerant quantum information
tasks under environmental noise, adds to other known protection
techniques of quantum states based on, for example, topological
properties55–62, dynamical decoupling or decoherence-free sub-
space63–67. As an outlook, the effects of spatial indistinguishability
on quantumness protection for different types of environmental
noises will be addressed elsewhere.
Various experimental contexts can be thought for implement-

ing the above theoretical scenario. For example, in quantum
optics, spatially localized detectors can perform the required
measurements while beam splitters can serve as controller of
spatial wave functions of independent traveling photons (bosons)
with given polarization pseudospin50. In a more sophisticated
example with circular polarizations, one may employ orbital
angular momentum of photons as spatial wave function and spin

angular momentum as spin-like degree of freedom68–70. Setups
using integrated quantum optics can also simulate fermionic
statistics using photons71. Other suitable platforms for fermionic
subsystems can be supplied either by superconducting quantum
circuits with Ramsey interferometry72, or by quantum electronics
with quantum point contacts as electronic beam splitters73–75. The
results of this work are expected to stimulate further theoretical
and experimental studies concerning the multiple facets of
indistinguishability as a controllable fundamental quantum trait
and its exploitation for quantum technologies.

METHODS
Amplitudes and probabilities in the no-label approach
For calculating all the necessary probabilities and traces to obtain the
results of the work, under different spatial configurations of the wave
functions, we need to compute scalar products (amplitudes) between
states of N identical particles.
The N-particle probability amplitude has been defined in the literature

by means of the no-label particle-based approach, here adopted, to deal
with systems of identical particles45. Indicating with χi, χ0i (i= 1, …, N)
single-particle states containing all the degrees of freedom of the particle,
the general expression of the N-particle probability amplitude is

hχ01; χ02; ¼ ; χ0njχ1; χ2; ¼ ; χni :¼
X

P

ηPhχ01jχP1 ihχ02jχP2 i¼ hχ0njχPn i; (15)

where P= {P1, P2, …, Pn} in the sum runs over all the one-particle state
permutations, η= ±1 for bosons and fermions, respectively, and ηP is 1 for
bosons and 1 (−1) for even (odd) permutations for fermions. Notice that
the explicit dependence on the particle statistics appears, as expected.
Along our manuscript, we especially need two-particle probabilities and

trace operations. For N= 2, the general expression above reduces to the
following two-particle probability amplitude

hχ01; χ02jχ1; χ2i ¼ hχ01jχ1ihχ02jχ2i þ ηhχ01jχ2ihχ02jχ1i: (16)

DATA AVAILABILITY
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