
mathematics

Article

Good (and Not So Good) Practices in Computational
Methods for Fractional Calculus

Kai Diethelm 1,2 , Roberto Garrappa 3,4,* and Martin Stynes 5

1 Fakultät Angewandte Natur- und Geisteswissenschaften, University of Applied Sciences Würzburg-Schweinfurt,
Ignaz-Schön-Str. 11, 97421 Schweinfurt, Germany; kai.diethelm@fhws.de

2 GNS mbH Gesellschaft für Numerische Simulation mbH, Am Gaußberg 2, 38114 Braunschweig, Germany
3 Department of Mathematics, University of Bari, Via E. Orabona 4, 70126 Bari, Italy
4 INdAM Research Group GNCS, Piazzale Aldo Moro 5, 00185 Rome, Italy
5 Applied and Computational Mathematics Division, Beijing Computational Science Research Center,

Beijing 100193, China; m.stynes@csrc.ac.cn
* Correspondence: roberto.garrappa@uniba.it

Received: 26 January 2020; Accepted: 25 February 2020; Published: 2 March 2020
����������
�������

Abstract: The solution of fractional-order differential problems requires in the majority of cases the use of
some computational approach. In general, the numerical treatment of fractional differential equations is
much more difficult than in the integer-order case, and very often non-specialist researchers are unaware
of the specific difficulties. As a consequence, numerical methods are often applied in an incorrect way
or unreliable methods are devised and proposed in the literature. In this paper we try to identify some
common pitfalls in the use of numerical methods in fractional calculus, to explain their nature and to list
some good practices that should be followed in order to obtain correct results.

Keywords: fractional differential equations; numerical methods; smoothness assumptions; persistent memory

1. Introduction

The increasing interest in applications of fractional calculus, together with the difficulty of finding
analytical solutions of fractional differential equations (FDEs), naturally forces researchers to study, devise
and apply numerical methods to solve a large range of ordinary and partial differential equations with
fractional derivatives.

The investigation of computational methods for fractional-order problems is therefore a very active
research area in which, each year, a large number of research papers are published.

The task of finding efficient and reliable numerical methods for handling integrals and/or derivatives
of fractional order is a challenge in its own right, with difficulties that differ in character but are no less
severe than those associated with finding analytical solutions. The specific nature of these operators
involves computational challenges which, if not properly addressed, may lead to unreliable or even
wrong results.

Unfortunately, the scientific literature is rich with examples of methods that are inappropriate for
fractional-order problems. In most cases these are just methods that were devised originally for standard
integer-order operators then applied in a naive way to their fractional-order counterparts; without a proper
knowledge of the specific features of fractional-order problems, researchers are often unable to understand
why unexpected results are obtained.

Mathematics 2020, 8, 324; doi:10.3390/math8030324 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-7276-454X
https://orcid.org/0000-0002-7881-0885
https://orcid.org/0000-0003-2085-7354
http://www.mdpi.com/2227-7390/8/3/324?type=check_update&version=1
http://dx.doi.org/10.3390/math8030324
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 324 2 of 20

The main aims of this paper are to identify a few major guidelines that should be followed when
devising reliable computational methods for fractional-order problems, and to highlight the main
peculiarities that make the solution of differential equations of fractional order a different—but surely
more difficult and stimulating—task from the integer-order case. We do not intend merely to criticize
weak or wrong methods, but try to explain why certain approaches are unreliable in fractional calculus
and, where possible, point the reader towards more suitable approaches.

This paper is mainly addressed at young researchers or scientists without a particular background
in the numerical analysis of fractional-order problems but who need to apply computational methods to
solve problems of fractional order. We aim to offer in this way a kind of guide to avoid some of the most
common mistakes which, unfortunately, are sometimes made in this field.

The paper is organized in the following way. After recalling in Section 2 some basic definitions and
properties, we illustrate in Section 3 the most common ideas underlying the majority of the methods
proposed in the literature: very often the basic ideas are not properly recognized and common methods
are claimed to be new. In Section 4 we discuss why polynomial approximations can be only partially
satisfactory for fractional-order problems and why they are unsuitable for devising high-order methods
(as has often been proposed). The major problems related to the nonlocality of fractional operators are
addressed in Sections 5 and Section 6 discusses some of the most powerful approaches for the efficient
treatment of the memory term. Some remarks related to the numerical treatment of fractional partial
differential equations are presented in Section 7 and some final comments are given in Section 8.

2. Basic Material and Notations

With the aim of fixing the notation and making available the most common definitions and properties
for further reference, we recall here some basic notions concerning fractional calculus.

For α > 0 and any t0 ∈ R, in the paper we will adopt the usual definitions for the fractional integral
of Riemann–Liouville type

Jα
t0

f (t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1 f (τ)dτ, t > t0, (1)

for the fractional derivative of Riemann–Liouville type

RLDα
t0

f (t) := Dm Jm−α
t0

f (t) =
1

Γ(m− α)

dm

dtm

∫ t

t0

(t− τ)m−α−1 f (τ)dτ, t > t0 (2)

and for the fractional derivative of Caputo type

CDα
t0

f (t) := Jm−α
t0

Dm f (t) =
1

Γ(m− α)

∫ t

t0

(t− τ)m−α−1 f (m)(τ)dτ, t > t0, (3)

with m = dαe the smallest integer greater than or equal to α.
We refer to any of the many existing textbooks on this subject (e.g., [1–6]) for an exhaustive treatment

of the conditions under which the above operators exist and for their main properties. We just recall here
the relationship between RLDα

t0
and CDα

t0
expressed as

CDα
t0

f (t) = RLDα
t0

(
f − Tm−1[f ; t0]

)
(t), (4)

Mathematics 2020, 8, 324 3 of 20

where Tm−1[f ; t0] is the Taylor polynomial of degree m− 1 for the function f about the point t0,

Tm−1[f ; t0](t) =
m−1

∑
k=0

(t− t0)
k

k!
f (k)(t0). (5)

Moreover, we will almost exclusively consider initial value problems of Cauchy type for FDEs with
the Caputo derivative, i.e.,{

CDα
t0

y(t) = f (t, y(t))

y(t0) = y0, y′(t0) = y(1)0 , . . . , y(m−1)(t0) = y(m−1)
0 ,

(6)

for some assigned initial values y0, y(1)0 , . . . , y(m−1)
0 . A few general comments will also be made regarding

problems associated with partial differential equations.

3. Novel or Well-Established Methods?

Quite frequently, one sees papers whose promising title claims the presentation of “new methods” or
“a family of new methods” for some particular fractional-order operator. Papers of this type immediately
capture the attention of readers eager for new and good ideas for numerically solving problems of this type.

But reading the first few pages of such papers can be a source of frustration, since what is claimed to
be new is merely an old method applied to a particular (maybe new) problem. Now it is understandable
that sometimes an old method is reinvented by a different author, maybe because it can be derived by some
different approach or because the author is unaware of the previously published result (perhaps because it
was published under an imprecise or misleading title). In fractional calculus, however, a different and quite
strange phenomenon has taken hold: well-known and widely used methods are often claimed as “new”
just because they are being applied to some specific problem. It seems that some authors are unaware that
it is the development of new ideas and new approaches that leads to methods that can be described as
new—not the application of known ideas to a particular problem. Even the application of well-established
techniques to any of the new operators, obtained by simply replacing the kernel in the integral (1) with
some other function, cannot be considered a truly novel method, especially when the extension to the new
operator is straightforward.

Most of the papers announcing “new” methods are instead based on ideas and techniques that
were proposed and studied decades ago, and sometimes proper references to the original sources are not
even given.

In fact, there are a few basic and powerful methods that are suitable and extremely popular
for fractional-order problems, and many proposed “new methods” are simply the application of the
ideas behind them. It may therefore be useful to illustrate the main and more popular ideas that are
most frequently (re)-proposed in fractional calculus, and to outline a short history of their origin and
development.

3.1. Polynomial Interpolation and Product-Integration Rules

Solving differential equations by approximating their solution or their vector field by a polynomial
interpolant is a very old and common idea. Some of the classical linear multistep methods for ordinary
differential equations (ODEs), specifically those of Adams–Bashforth or Adams–Moulton type, are based
on this approach.

Mathematics 2020, 8, 324 4 of 20

In 1954 the British mathematician Andrew Young proposed [7,8] the application of polynomial
interpolation to solve Volterra integral equations numerically. This approach turns out to be suitable for
FDEs since (6) can be reformulated as the Volterra integral equation

y(t) = Tm−1[f ; t0](t) +
1

Γ(α)

∫ t

t0

(t− u)α−1 f (u, y(u))du. (7)

The approach proposed by Young is to define a grid
{

tn
}

on the solution interval [t0, T] (very often,
but not necessarily, equispaced, namely tn = t0 + hn, h = (T − t0)/N) and to rewrite (7) in a piecewise
way as

y(tn) = Tm−1[f ; t0](tn) +
1

Γ(α)

n−1

∑
j=0

∫ tj+1

tj

(tn − u)α−1 f (u, y(u))du, (8)

then to replace, in each interval [tj, tj+1], the vector field f (u, y(u)) by a polynomial that interpolates to f on
the grid. This approach is particularly simple if one uses polynomials of degree 0 or 1 because then one can
determine the approximation solely on the basis of the data at one of the subinterval’s end points (degree
0; the product rectangle method) or at both end points (degree 1; the product trapezoidal method); thus, in these
cases one need not introduce auxiliary points inside the interval or points outside the interval. Neither of
these methods can yield a particularly high order of convergence, but as we shall demonstrate in Section 4,
the analytic properties of typical solutions to fractional differential equations make it very difficult and
cumbersome to achieve high-order accuracy irrespective of the technique used. Consequently, and because
these techniques have been thoroughly investigated with respect to their convergence properties [9] and
their stability [10] and are hence very well understood, the product rectangle and product trapezoidal
methods are highly popular among users of fractional order models.

Higher-order methods have occasionally been proposed [11,12] but—as indicated above and discussed
in more detail in Section 4—they tend to require rather uncommon properties of the exact solutions to the
given problems and therefore are used only infrequently. We also have to notice that the effects of the lack
of regularity on the convergence properties of product-integration rules have been studied since 1985 for
Volterra integral equations [13] and since 2004 for the specific case of FDEs [14].

3.2. Approximation of Derivatives: L1 and L2 Schemes

A classical numerical technique for approximating the Caputo differential operator from (3) is the
so-called L1 scheme. For 0 < α < 1, the definition of the Caputo operator becomes

CDα
t0

f (t) =
1

Γ(1− α)

∫ t

t0

(t− τ)−α f ′(τ)dτ for t > t0.

The idea ([15], Equation (8.2.6)) is to introduce a completely arbitrary (i.e., not necessarily uniformly
spaced) mesh t0 < t1 < t2 < . . . < tN and to replace the factor f ′(τ) in the integrand by the approximation

f ′(τ) ≈
f (tj+1)− f (tj)

tj+1 − tj
whenever τ ∈ (tj, tj+1).

This produces the approximation formula

CDα
t0

f (tn) ≈ CDα
t0,L1 f (tn) =

1
Γ(2− α)

n−1

∑
j=0

wn−j−1,n(f (tn−j)− f (tn−j−1))

Mathematics 2020, 8, 324 5 of 20

with

wµ,n =
(tn − tµ)1−α − (tn − tµ+1)

1−α

tn−µ − tn−µ−1
.

For smooth functions f (but only under this assumption!) and an equispaced mesh tj = t0 + jh,
the convergence order of the L1 method is O(h2−α).

By construction, the L1 method is restricted to the case 0 < α < 1. For α ∈ (1, 2), the L2 method ([15],
§8.2) provides a useful modification. In its construction, one starts from the representation

CDα
t0

f (t) =
1

Γ(2− α)

∫ t

t0

t1−α f ′′(t− τ)dτ,

which is valid for these values of α. Using now a uniform grid tj = t0 + jh, one replaces the second
derivative of f in the integrand by its central difference approximation,

f ′′(tn − τ) ≈ 1
h2 (f (tn − tk+1)− 2 f (tn − tk) + f (tn − tk−1))

for τ ∈ [tk, tk+1], which yields

CDα
t0

f (tn) ≈ CDα
t0,L2 f (tn) =

h−α

Γ(3− α)

n

∑
k=−1

wk,n f (tn−k),

where now

wk,n =

1 for k = −1,

22−α − 3 for k = 0,

(k + 2)2−α − 3(k + 1)2−α + 3k2−α − (k− 1)2−α for 1 ≤ k ≤ n− 2,

−2n2−α + 3(n− 1)2−α − (n− 2)2−α for k = n− 1,

n2−α − (n− 1)2−α for k = n.

A disadvantage of this method is that it requires the evaluation for f at the point tn+1 = (n + 1)h
which is located outside the interval [0, tn].

The central difference used in the definition of the L2 method is symmetric with respect to one of the
endpoints of the associated subinterval [tk, tk+1], not with respect to its mid point. If this is not desired,
one may instead use the alternative

f ′′(tn − τ) ≈ 1
h2 (f (tn−k−2)− f (tn−k−1) + f (tn−k+1)− f (tn−k))

on this subinterval. This leads to the L2C method [16]

CDα
t0

f (tn) ≈ CDα
t0,L2C f (tn) =

h−α

2Γ(3− α)

n+1

∑
k=−1

wk,n f (tn−k)

Mathematics 2020, 8, 324 6 of 20

with

wk,n =

1 for k = −1,

22−α − 2 for k = 0,

32−α − 22−α for k = 1,

(k + 2)2−α − 2(k + 1)2−α + 2(k− 1)2−α − (k− 2)2−α for 2 ≤ k ≤ n− 2,

−n2−α − (n− 3)2−α + 2(n− 2)2−α for k = n− 1,

−n2−α + 2(n− 1)2−α − (n− 2)2−α for k = n,

n2−α − (n− 1)2−α for k = n + 1.

Like the L2 method, the L2C method also requires the evaluation of f outside the interval [0, tn]; one
has to compute f ((n + 1)h) and f (−h). Both the L2 and the L2C method exhibit O(h3−α) convergence
behavior for 1 < α < 2 if f is sufficiently well behaved; the constants implicitly contained in the O-terms
seem to be smaller for the L2 method in the case 1 < α < 1.5 and for the L2C method if 1.5 < α < 2.

In the limit case α → 1, the L2 method reduces to first-order backward differencing, and the L2C
method becomes the centered difference of first order; for α→ 2 the L2 method corresponds to the classical
second-order central difference.

3.3. Fractional Linear Multistep Methods

Fractional linear multistep methods (FLMMs) are less frequently used since their coefficients are,
in general, not known explicitly but it is necessary to devise some algorithm for their (technically often
difficult) computation. Nevertheless, since these methods allow us to overcome some of the issues
associated with other approaches, it is worth giving a short presentation of their properties.

FLMMs were proposed by Lubich in 1986 [17] and studied in the successive works [18–20]. They
extend to fractional-order integrals the quadrature rules obtained from standard linear multistep methods
(LMMs) for ODEs.

Let us consider a classical k-step LMM of order p > 0 with first and second characteristic polynomials
ρ(z) = ρ0zk + ρ1zk−1 + · · ·+ ρk and σ(z) = σ0zk + σ1zk−1 + · · ·+ σk, namely

k

∑
j=0

ρjyn−j = h
k

∑
j=0

σj f (tn−j), where δ(ξ) =
ρ(1/ξ)

σ(1/ξ)
is the generating function. (9)

FLMMs generalizing LMMs (9) for solving FDEs (7) are expressed as

yn = Tm−1[f ; t0](t) + hα
ν

∑
j=0

wn,j f (tj, yj) + hα
n

∑
j=0

ω
(α)
n−j f (tj, yj), (10)

where the convolution weights ω
(α)
n are obtained from the power series expansion of

(
δ(ξ)

)−α, namely

∞

∑
n=0

ω
(α)
n ξn =

1(
δ(ξ)

)α ,

and the wn,j are some starting weights that are introduced to deal with the lack of regularity of the solution
at the origin; they are obtained by solving, at each step n, the algebraic linear systems

ν

∑
j=0

wn,j jγ = −
n

∑
j=0

ωn−j jγ +
Γ(γ + 1)

Γ(1 + γ + α)
nγ+α, ν ∈ Ap, (11)

Mathematics 2020, 8, 324 7 of 20

with Ap =
{

γ ∈ R | γ = i + jα, i, j ∈ N, γ < p− 1
}

and ν + 1 the cardinality of Ap.
The intriguing property of FLMMs is that, unlike product-integration rules, they are able to preserve

the same convergence order p of the underlying LMMs if the LMM satisfies certain properties: it is required
that δ(ξ) has no zeros in the closed unit disc |ξ| ≤ 1 except for ξ = 1, and | arg δ(ξ)| < π for |ξ| < 1. Thus,
high-order FLMMs are possible without requiring the imposition of artificial smoothness assumptions as
is required for methods based on polynomial interpolation.

But the price to be paid for this advantage may be not negligible: the convolution weights ω
(α)
n are

not known explicitly and must be computed by some (possibly sophisticated) method (a discussion for the
general case is available in [17–20] while algorithms for FLMMs of trapezoidal type are presented in [21]).
Moreover, high-order methods may require the solution of large or very large systems (11) depending
on the equation order α and the convergence order p of the method; in some cases these systems are so
ill-conditioned as to affect the accuracy of the method, a problem addressed in depth in [22].

One of the simplest methods in this family is obtained from the backward Euler method, whose
generating function is δ(ξ) = (1− ξ). Its convolution weights are hence the coefficients in the asymptotic
expansion of (1− ξ)−α, i.e., they are the coefficients in the binomial series

ω
(α)
j = (−1)j

(
−α

j

)
=

Γ(−α + 1)
j!Γ(−α− j + 1)

and no starting weights are necessary since the convergence order is p = 1 and hence Ap is the empty set.
One recognizes easily that the so-called Grünwald-Letnikov scheme is obtained in this case. Although
this scheme was discovered in the nineteenth century in independent works of Grünwald and Letnikov,
its interpretation as an FLMM may facilitate its analysis.

4. Classical Approximations Will Not Give High-Order Methods

Solutions of fractional-derivative problems typically exhibit weak singularities. This topic is discussed
at length in the survey chapter [23] and it is known since earlier works on Volterra integral equations [24,25].
This singularity is a consequence of the weakly singular behavior of the kernels of integral and fractional
derivatives and its importance, from a physical perspective, is related to the natural emergence of completely
monotone (CM) relaxation functions in models whose dynamics is governed by these operators [26,27]; CM
relaxation behaviors are indeed typical of viscoelastic systems with strongly dissipative energies [28].

In the present section we shall examine the effects of the singular behavior on numerical methods,
in the context of initial value problems such as (6).

To grasp quickly the main ideas, we focus on a very simple particular case of (6): the problem

CDα
0 y(t) = 1 for t ∈ (0, T], (12)

where 0 < α < 1 and, for the moment, we do not prescribe the initial condition at t = 0. The general
solution of (12) is

y(t) =
xα

Γ(1 + α)
+ b, where b is an arbitrary constant. (13)

This solution lies in C[0, T] ∩ C1(0, T] but not in C1[0, T]. This implies that standard techniques for
integer-derivative problems, which require that y ∈ C1[0, T] (or a higher degree of regularity), cannot be
used here without some modification. In particular one cannot perform a Taylor series expansion of the
solution around t = 0 because y′(0) does not exist.

What about the initial condition? If we prescribe a condition of the form y(0) = y0 we get b = y0

in (13), but the solution is still not in C1[0, T]. One might hope that a Neumann-type condition of the form

Mathematics 2020, 8, 324 8 of 20

y′(0) = 0 would control or eliminate the singularity in the solution, but a consideration of (13) shows that
it is impossible to enforce such a condition; that is, the problem CDα

0 y(t) = 1 on (0, T] with y′(0) = 0 has no
solution. This seems surprising until we recall a basic property of the Caputo derivative from ([1], Lemma
3.11): if m− 1 < β < m for some positive integer m and z ∈ Cm[0, T], then limt→0

CDβ
0 z(t) = 0. Hence,

if in (12) one has y ∈ C1[0, T], then taking the limit as t→ 0 in (12) we get 0 = 1, which is impossible. That
is, any solution y of (12) cannot lie in C1[0, T].

One can present this finding in another way: for the problem CDα
0 y(t) = f (t) on (0, T] with f ∈ C[0, T],

if the solution y ∈ C1[0, T], then one must have f (0) = 0. This result is a special case of ([1], Theorem 6.26).

Remark 1. For the problem CDα
0 y(t) = f (t) on (0, T] with 0 < α < 1, if one wants more smoothness of the solution

y on the closed interval [0, T], then one must impose further conditions on the data: by ([1], Theorem 6.27), for each
positive integer m, one has y ∈ Cm[0, T] if and only if 0 = f (0) = f ′(0) = · · · = f (m−1)(0).

Conditions such as f (0) = 0 (and the even stronger conditions listed in Remark 1) impose an artificial
restriction on the data f that should be avoided. Thus we continue by looking carefully at the consequence
of dealing with a solution of limited smoothness.

Returning to (12) and imposing the initial condition y(0) = b, the unique solution of the problem
is given by (13), where b is now fixed. Most numerical methods for integer-derivative initial value
problems are based on the premise that on any small mesh interval [ti, ti+1], the unknown solution can
be approximated to a high degree of accuracy by a polynomial of suitable degree. But is this true of the
function (13)? We now investigate this question.

Consider the interval [0, h], where h = t1. This is the mesh interval where the solution (13) is
worst behaved.

Lemma 1. Let α ∈ (0, 1). Consider the approximation of tα by a linear polynomial c0 + c1t on the interval [0, h].
Suppose this approximation is uniformly O(hβ) accurate on [0, h] for some fixed β > 0. Then one must have β ≤ α.

Proof. Our hypothesis is that |tα − (c0 + c1t)| ≤ Chβ for all t ∈ [0, h] and some constant C that is
independent of h and t. Consider the values t = 0, t = h/2 and t = h in this inequality: we get

0− (c0 + 0) = O(hβ),

(h/2)α − (c0 + c1h/2) = O(hβ),

hα − (c0 + c1h) = O(hβ).

The first equation gives c0 = O(hβ). Hence the other equations give (h/2)α − c1h/2 = O(hβ) and
hα − c1h = O(hβ). Eliminate c1 by multiplying the first equation by 2 then subtracting from the other
equation; this yields hα − 2(h/2)α = O(hβ). But this cannot be true unless β ≤ α, since the left-hand side
is simply a multiple of hα because α 6= 1.

Lemma 1 says that the approximation of tα on [0, h] by any linear polynomial is at best O(hα). But
the order of approximation O(hα) of tα on [0, h] is also achieved by the constant polynomial 0. That is:
using a linear polynomial to approximate tα on [0, h] does not give an essentially better result than using
a constant polynomial. In a similar way one can show that using polynomials of higher degree does not
improve the situation: the order of approximation of tα on [0, h] is still only O(hα). This is a warning
that when solving typical fractional-derivative problems, high-degree polynomials may be no better than
low-degree polynomials, unlike the classical integer-derivative situation.

Mathematics 2020, 8, 324 9 of 20

One can generalize Lemma 1 to any α > 0 with α not an integer, obtaining the same result via the
same argument. Furthermore, our investigation of the simple problem (12) can be readily generalised to
the much more general problem (6); see ([1], Section 6.4).

Implications for the Construction of Difference Schemes

The discussion earlier in Section 4 implies that, to construct higher-order difference schemes for
typical solutions of problems such as (12) and (6), one must use non-classical schemes, since the classical
schemes are constructed under the assumption that approximations by higher-order polynomials gives
greater accuracy. The same idea is developed at length in [29], one of whose results we now present.

Note: although [29] discusses only boundary value problems, an inspection reveals that its arguments
and results are also valid (mutatis mutandis) for initial value problems such as (6) when f = f (t), i.e.,
when the problem (6) is linear.

Let α > 0 be fixed, with α not an integer. Consider the problem Dαy = f on [0, T] with y(0) = 0.
Assume that the mesh on [0, T] is equispaced with diameter h, i.e., xi = ih for i = 0, 1, . . . , N. Suppose
that the difference scheme used to solve Dαy = f at each point xi for i > 0 is ∑i

j=0 aijyN
j = f (ti). It is

reasonable to assume that |aij| = O(h−α) for all i and j since we are approximating a derivative of order α

(one can check that almost all schemes proposed for this problem have this property).
We have the following variant of ([29], Theorem 3.3).

Theorem 1. Assume that our scheme achieves order of convergence p for some p > α when f (t) = Ctk for
all k ∈ {0, 1, . . . , dp− α− 1e}. Then for each fixed positive integer i, the coefficients of the scheme must satisfy the
following relationship:

lim
h→0

(
hα

i

∑
j=0

jk+αaij

)
=

ik Γ(α + k + 1)
Γ(k + 1)

for k = 0, 1, . . . , dp− α− 1e. (14)

Proof. Fix k ∈ {0, 1, . . . , dp− α− 1e}. This implies that k < p− α. Choose for simplicity

f (t) =
Γ(k + α + 1)

Γ(k + 1)
tk.

Then the true solution of our initial value problem is y(t) = tk+α. Fix a positive integer i. Then

i

∑
j=0

aijyN
j = f (ti) =

Γ(k + α + 1)
Γ(k + 1)

(ih)k.

Hence, using the hypothesis that our scheme achieves order of convergence p and |aij| = O(h−α),

lim
h→0

hα
i

∑
j=0

jk+αaij

 = lim
h→0

h−k
i

∑
j=0

aijy(tj)

= lim
h→0

h−k

Γ(k + α + 1)
Γ(k + 1)

(ih)k +
i

∑
j=0

aij

[
y(xj)− yN

j

]
= lim

h→0

[
Γ(k + α + 1)

Γ(k + 1)
ik +O(hp−α−k)

]
=

Γ(k + α + 1)
Γ(k + 1)

ik,

Mathematics 2020, 8, 324 10 of 20

since k < p− α.

Theorem 1 implies that schemes that fail to satisfy (14) cannot achieve an order of convergence greater
than O(hα) at each mesh point. (This is consistent with the approximation theory result of Lemma 1.)
For example, in the case 0 < α < 1, it follows from Theorem 1 that the well-known L1 scheme is at best
O(hα) accurate.

Remark 2. To avoid the consequences of results such as Theorem 1, one can impose data restrictions such as
f (0) = 0. This is discussed in ([29], Section 5), where theoretical and experimental results show an improvement in
the accuracy of standard difference schemes, but only for a restricted class of problems.

5. Failed Approaches to Treat Non-Locality

Non-locality is one of the major features of fractional-order operators. Indeed, fractional integrals and
derivatives are often introduced as a mathematical formalism with the primary purpose of encompassing
hereditary effects in the modeling of real-life phenomena when theoretical or experimental observations
suggest that the effects of external actions do not propagate instantaneously but depend on the history of
the system.

On the one hand, non-locality is a very attractive feature that has driven most of the interest
and success of the fractional calculus; on the other hand, non-locality introduces severe computational
difficulties that researchers try to overcome in different ways.

Unfortunately, some attempts to treat non-locality are unreliable and lead to wrong results. This is the
case of the naive implementation of the “finite memory principle” consisting in simply neglecting a large
amount of the history solution; since on the basis of this technique it is however possible to devise more
sophisticated and accurate approaches, we postpone its discussion to Section 6.

We have also to mention methods based on some kind of fractional Taylor expansion of the solution,
such as

y(t) =
∞

∑
k=0

Yk(t− t0)
kα,

where the coefficients Yk are determined by some suitable numerical technique.
When solving integer-order differential equations, it is possible to use Taylor expansions to

approximate the solution at a given point t1 and hence reformulate the same expansion by moving
the origin to the new point t1, thus generating a step-by-step method in which the approximation at tn+1

is evaluated on the basis of the approximation at tn (or at additional previous points).
With fractional-order equations, instead, the above expansion holds only with respect to the point t0

(the initial or starting point of the fractional differential operator) and it is not possible to generate
a step-by-step method. Expansions of this type are therefore able to provide an accurate approximation
only locally, i.e., very close to the starting point t0; consequently, as discussed in [30], methods based on
these expansions are usually unsuitable for FDEs.

Another failed approach is based on an attempt to exploit the difference between y(tn+1) and y(tn) in
the integral formulation (7): rewrite the solution at tn+1 as some increment of the solution at tn, i.e.,

y(tn+1) = y(tn) + Gn(t, y(t)), (15a)

then approximate the increment

Gn(t, y(t)) =
1

Γ(α)

∫ tn+1

t0

(tn+1 − u)α−1 f (u, y(u))du− 1
Γ(α)

∫ tn

t0

(tn − u)α−1 f (u, y(u))du (15b)

Mathematics 2020, 8, 324 11 of 20

by replacing the vector field f (t, y(t)) in both integrals of (15b) by its (first-order) interpolating polynomial
at the grid points tn−1 and tn. Methods of this kind read as

yn+1 = yn + Pn(yn−1, yn), (16)

with Pn a known function obtained by standard interpolation techniques. Approaches of this kind are called
two-step Adams–Bashforth methods and attract researchers since they apparently transform the non-local
problem into a local one (and thus, a difficult problem into a much easier one); in (15b) Gn(t, y(t)) is still
a non-local term but these methods are strangely becoming quite popular despite the fact that, as discussed
in [31], they are usually unreliable because in most cases they attempt to approximate the (implicitly)
non-local contribution Gn(t, y(t)) by some purely local term.

Using interpolation at the points tn−1 and tn to approximate f (t, y(t)) over the much larger intervals
[t0, tn] and [t0, tn+1] is completely inappropriate. It is well known that polynomial interpolation may offer
accurate approximations within the interval of the data points, in this case in [tn−1, tn]; but outside this
interval (where an extrapolation is made instead of an interpolation), the approximation becomes more
and more inaccurate as the integration intervals [t0, tn] and [t0, tn+1] in (15b) become larger and larger, i.e.,
as the integration proceeds and n increases.

The consequence is that completely untrustworthy results must be expected from methods based on
this idea.

Note that the fundamental flaw of this approach is not the decomposition (15) but the local (and hence
inappropriate) way (16) in which the history is handled. Indeed, it is possible to construct technically
correct and efficient algorithms on the basis of (15), for example if one treats the increment term (15b) by
a numerical method that is cheaper in computational cost than the method used for the local term [32].

6. Some Approaches for the Efficient, and Reliable, Treatment of the Memory Term

The non-locality of the fractional-order operator means that it is necessary to treat the memory term
in an efficient way. This term is commonly identified to be the source of a computational complexity
which, especially in problems of large size, requires adequate strategies in order to keep the computational
cost at a reasonable level, and indeed this observation has led to many investigations of (more or less
successful) approaches to reduce the computational cost. It should be noted however that the high number
of arithmetic operations is not the only potential difficulty that the memory term introduces. There is
another more fundamental issue, which seems to have attracted much less attention: the history of the
process not only needs to be taken into account in the computation but, in order to be properly handled,
also needs to be stored in the computer’s memory. While the required amount of memory is usually easily
available in algorithms for solving ordinary differential equations, the memory demand may be too high
for efficient handling in the case of, e.g., time-fractional partial differential equations where finite element
techniques are used to discretize the spatial derivatives.

Most finite-difference methods for FDEs require at each time step the evaluation of some convolution
sum of the form

yn = φn +
n

∑
j=0

cjyn−j or yn = φn +
n

∑
j=0

cj f (tn−j, yn−j), n = 1, 2, . . . , N, (17)

where φn is a term which mainly depends on the initial conditions or other known information.
A naive straightforward evaluation of (17) has a computational cost proportional to O

(
N2) and,

when integration with a small-step size or on a large integration interval is required, the value of N can be
extremely large and leads to prohibitive computational costs.

Mathematics 2020, 8, 324 12 of 20

For this reason different approaches for a fast, efficient and reliable treatment of the memory term in
non-local problems have been devised. We provide here a short description of some of the most interesting
methods of this type. The influence of these approaches on the memory requirements will be addressed
as well.

6.1. Nested Mesh Techniques

Several different concepts can be subsumed under the heading of so-called nested meshes. The general
idea is based on the observation that the convolution sum in Equation (17) stems from a discretization of
a fractional integral or differential operator that uses all the previous grid points as nodes. One can then
ask whether it is really neccessary to use all these nodes or whether one could save effort by including
only a subset of them by using a second, less fine mesh—i.e., a mesh nested inside the original one.

6.1.1. The Finite Memory Principle

The simplest idea in this class is the finite memory principle ([5], §7.3). It is based on defining a constant
τ > 0, the so-called memory length, and replacing (for t > t0 + τ) the memory integral term that extends
over the interval [t0, t] by the integral over [t− τ, t] with the same integrand function. Technically speaking,
this amounts to “forgetting” the entire history of the process that is more than τ units of time in the past,
so the memory has a finite and fixed length τ instead of the variable length t− t0 that may, in a long
running process, be very much longer. From an algorithmic point of view, the finite memory method
truncates the convolution sum in Equation (17) to a sum where j runs from n− ν to n for some fixed ν.
This has a number of significant advantages:

• The computational complexity of the nth time step is reduced from O(n) to O(1). Therefore, the
combined total complexity of the overall method with N time steps is reduced from O(N2) to O(N).

• At no point in time does one need to access the part of the process history that is more than ν time
steps in the past. Therefore, all those previous time steps can be removed from the active memory,
and the memory requirement also decreases from O(N) to O(1).

Unfortunately, this idea also has severe drawbacks. Specifically, it has been shown in [33] that the
convergence order of the underlying discretization technique is lost completely. In other words, one cannot
prove that the algorithm converges as the (maximal) step size goes to 0. Therefore, the method is not
recommended for practical use.

6.1.2. Logarithmic Memory

To overcome the shortcomings of the finite memory principle, two related but not identical methods,
both of which are also based on the nested mesh concept, have been developed in [33,34]. The common
idea of both these approaches is the way in which the distant part of the memory is treated. Rather than
ignoring it completely as the finite memory principle does, they do sample it, but on a coarser mesh;
indeed the fundamental principle is to introduce not just one coarsening level, but to use, say, the step size
h on the most recent part of the memory, step size wh (with some parameter w > 1) on the adjacent region,
w2h on the next region, etc. The main difference between the two approaches of [33,34] then lies in the
way in which the transition points from one mesh size to the next are chosen.

Specifically, as indicated in Figure 1, the method of Ford and Simpson [33] starts at the current time
and fills subintervals of prescribed lengths from right to left with appropriately speced mesh points. This
will lead to a reduction of the computational cost to O(N log N) while retaining the convergence order
of the underlying scheme [33]. However, as indicated in Figure 1, it is common that the left end point
of the leftmost coarsely subdivided interval does not match the initial point. In this case, one can either

Mathematics 2020, 8, 324 13 of 20

fill the remaining subinterval at the left end of the full interval with a fine mesh (which increases the
computational cost but also reduces the error) or simply ignore the contribution from this subinterval
(which reduces the computational complexity but slightly increases the error; however, since the memory
length still grows with the number of steps, this does not imply the complete loss of accuracy observed in
the finite memory principle). In either case, grid points from the fine mesh that are not currently used in
the nested mesh may become active again in future steps. Therefore, all previous grid points need to be
kept in memory, so the required amount of memory space remains at O(N).

- t

0 4 8 12 16 20
- t

0 5 13 17 20
- t

0 8 12 16 18 20
Figure 1. Full mesh (top) and nested meshes proposed in [33] (center) and in [34] (bottom). The meshes
are shown for the time instant t = 21 and the basic step size h = 1/10.

In contrast, the approach of Diethelm and Freed [34] starts to fill the basic interval from left to right, i.e.,
it begins with the subinterval with the coarsest mesh and then moves to the finer-mesh regions. The final
result is also a method with an O(N log N) computational cost, and with the same convergence order as
the Ford-Simpson method; but its selection strategy for grid points implies that points that are inactive in
the current step will never become active again in future steps, and consequently the history data for these
inactive points can be eliminated from the main memory. This reduces the memory requirements to only
O(log N).

6.2. A Method Based on the Fast Fourier Transform Algorithm

An effective approach for the fast evaluation of the convolution sums in (17) was proposed in [35,36].
The main idea is to split each of these sums in a way that enables the exploitation of the fast Fourier
transform (FFT) algorithm. To provide a concise description, let us introduce the notations

Tp(n) =
n

∑
j=p

cn−jgj, Sp,q(n) =
q

∑
j=p

cn−jgj, n ≥ p,

where gj = yj or gj = f (tj, yj) according to the formula used in (17). Thus the numerical methods described
by (17) can be recast as

yn = φn + T0(n), n = 1, 2, . . . , N.

The algorithm described in [35,36] is based on splitting T0(n) into one or more partial sums of type
Sp,q(n) and just one final convolution sum Tp(n) of a maximum (fixed) length r. Thus, the computation is
simply initialized as

T0(n) =
n

∑
j=0

cn−jgj n ∈ {1, 2, . . . , r− 1}

Mathematics 2020, 8, 324 14 of 20

and the following r values of T0(n) are split into the two terms

T0(n) = S0,r−1(n) + Tr(n) n ∈ {r, r + 1, . . . , 2r− 1}.

Similarly, for the computation of the next 2r values, T0(n) is split according to

T0(n) =

{
S0,2r−1(n) + T2r(n) n ∈ {2r, 2r + 1, . . . , 3r− 1}
S0,2r−1(n) + S2r,3r−1(n) + T3r(n) n ∈ {3r, 3r + 1, . . . , 4r− 1}

and the further 4r summations are split according to

T0(n) =

S0,4r−1(n) + T4r(n) n ∈ {4r, 4r + 1, . . . , 5r− 1}
S0,4r−1(n) + S4r,5r−1(n) + T5r(n) n ∈ {5r, 5r + 1, . . . , 6r− 1}
S0,4r−1(n) + S4r,6r−1(n) + T7r(n) n ∈ {6r, 6r + 1, . . . , 7r− 1}
S0,4r−1(n) + S4r,6r−1(n) + S6r,7r−1(n) + T8r(n) n ∈ {7r, 7r + 1, . . . , 8r− 1}

and this process is continued until all terms T0(n), for n ≤ N, are evaluated.
Note that in the above splittings the length `(p, q) = q − p + 1 of each sum Sp,q is always some

multiple of r with a power of 2 as multiplying factor (i.e., the possible length of Sq,p(n) is r, 2r, 4r, 8r and
so on).

For clarity, the diagram in Figure 2 illustrates the way in which the computation on the main
triangle T0 =

{
(n, j) : 0 ≤ j ≤ n ≤ N

}
is split into partial sums identified by the (red-labeled) squares

Sp,q =
{
(n, j) : q + 1 ≤ n ≤ q + `(p, q) , p ≤ j ≤ q

}
and final blocks denoted by the (blue-labeled)

triangles Tp =
{
(n, j) : p ≤ j ≤ n ≤ p + r− 1

}
.

Figure 2. Splitting of the computation of T0(n) into partial sums Sp,q (red-labeled squares) and final blocks
Tp (blue-labeled triangles).

Each of the final blocks T`r(n), n = `r, `r + 1, . . . , (`+ 1)r − 1, is computed by direct summation
requiring r(r + 1)/2 floating-point operations. The evaluation of the partial sums Sq,p(n) can instead be
performed by the FFT algorithm (see [37] for a comprehensive description) which requires a number of

Mathematics 2020, 8, 324 15 of 20

floating-point operations proportional to 2` log2 2`, with ` = `(p, q) the length of each partial sum Sq,p(n),
since r is a power of 2.

In the optimal case in which both r and N are powers of 2, each partial sum Sp,q that must be computed
together with its length, number and computational cost is described in Table 1.

Table 1. Partial sums, their length, number and computational cost for the evaluation of T0(N).

Partial Sums Len. No. Cost

S0, N
2 −1

N
2 1 O

(
N log2 N

)
S0, N

4 −1, S N
2 , 3N

4 −1
N
4 2 O

(N
2 log2

N
2
)

S0, N
8 −1, S N

4 , 3N
8 −1, S N

2 , 5N
8 −1, S 3N

4 , 7N
8 −1

N
8 4 O

(N
4 log2

N
4
)

S0, N
16−1, S N

8 , 3N
16 −1, S N

4 , 5N
16 −1, S 3N

8 , 7N
16 −1, S N

1 , 9N
16 −1, S 5N

8 , 11N
16 −1, S 3N

4 , 13N
16 −1, S 7N

8 , 15N
16 −1

N
16 8 O

(N
8 log2

N
8
)

...
...

...
...

S0,r−1, S2r,3r−1, S4r,5r−1, S6r,7r−1, S8r,9r−1, . . . r s = N
2r O

(N
s log2

N
s
)

Furthermore, N/r final blocks T`r, each of length r, are also computed in r(r + 1)/2 floating-point
operations and hence the total amount of floating point operations is proportional to

N log2 N+2
(

N
2

log2
N
2

)
+ 4

(
N
4

log2
N
4

)
+ · · ·+ s

(
N
s

log2
N
s

)
+

N
r

r(r + 1)
2

=

=
log2 s

∑
j=0

N log2
N
2j + N

r + 1
2

= O
(

N(log2 N)2), s =
N
2r

,

which turns out, for sufficiently large N, to be consistently significantly smaller than the number O
(

N2)
required by the direct summation of T0(N).

Although the whole procedure may appear complicated and requires some extra effort in coding,
it turns out to be quite efficient since it can be applied to different methods of the form (17) and does not
affect their accuracy. This preservation of accuracy is because the technique does take into account the
entire history of the process in the same way as the straightforward approach mentioned above whose
computational cost is O(N2). Thus, one does need to keep the entire history data in active memory, but
one avoids the requirement of using special meshes. All the Matlab codes for FDEs described in [10,21,38],
and freely available on the Mathworks website [39], make use of this algorithm.

6.3. Kernel Compression Schemes

Although the terminology “kernel compression scheme” has been introduced only recently for a few
specific works [40–42], we use it here to describe a collection of methods that were proposed at various
times by various authors and are all based on essentially the same principle: approximation of the solution
of a non-local FDE by means of (possibly several) local ODEs. We provide here just the main ideas
underlying this approach and we will refer the reader to the literature for a more comprehensive coverage
of the subject.

Actually, these are standalone methods (usually classified as nonclassical methods [43]) and not
just algorithms improving the efficiency of the treatment of the memory term; for this reason they could
have been discussed in Section 3 along with the other methods for FDEs. But since one of their main
achievements (and the motivation for their introduction) is to handle memory and computational issues

Mathematics 2020, 8, 324 16 of 20

related to the long and persistent memory of fractional-order problems, we consider it appropriate to
discuss them in the present section.

For ease of presentation we consider only 0 < α < 1 but the extension to any positive α is only
a technical matter. The basic idea starts from some integral representation of the kernel of the RL integral (1),
e.g.,

tα−1

Γ(α)
=

sin(απ)

π

∫ ∞

0
e−rtr−αdr, (18)

which, thanks to standard quadrature rules, can be approximated by exponential sums

tα−1

Γ(α)
=

K

∑
k=1

wke−rkt + eK(t), (19)

where the error eK(t) and the computational complexity related to the number K of nodes and weights
depend on the choice among the many possible quadrature rules. When applying this approximation
instead of the exact integral in the integral formulation (7), the solution of the FDE (6) is rewritten as

y(t) = y0 +
K

∑
k=1

wk

∫ t

t0

e−rk(t−u) f (u, y(u))du + EK(t). (20)

Each of the integrals in (20) is actually the solution of an initial value problem:{
y[k](t) = −rky[k](t) + f (t, y[k](t))
y[k](t0) = 0,

(21)

which can be numerically approximated by standard ODE solvers, yielding approximations y[k]n on some
grid {tn}. If the quadrature rule is chosen so as to make the error EK(t) so small that it can be neglected,
an approximate solution of the original FDE (6) can be obtained step-by-step as

yn = y0 +
K

∑
k=1

w̄ky[k]n ,

where each y[k]n depends only on y[k]n−1 or on a few other previous values, according to the selected
ODE solver.

In practice, a non-local problem (the FDE) with non-vanishing memory is replaced by K local problems
(the ODEs) each demanding a smaller computational effort and the memory storage is restricted to O

(
pK
)

if a p-step ODE solver is used for each of the ODEs (21).
Obviously, the idea sketched above requires several further technical details to work properly. First,

an accurate error analysis is needed to ensure that the overall error is below the target accuracy. This
is a very delicate task because it involves the investigation of the interaction between the quadrature
rule used to approximate the integral in (20) and the ODE solver applied to the system (21), which can
be a highly nontrivial matter. Moreover, some substantial additional problems must be addressed. For
instance, A-stable methods should generally be preferred when solving the system (21) since some of the
rk > 0 can be very large and give rise to stiff problems.

A non-negligible issue is that it is not possible to find a quadrature rule approximating (18) in
a uniform manner with respect to all relevant values of t, i.e. with the same accuracy for any t ≥ t1 where
t1 is the first mesh point to the right of the initial point t0 or for all t ≥ t0 (in either case, the singularity

Mathematics 2020, 8, 324 17 of 20

at t0 indeed makes the integral quite difficult to be approximated). To overcome this difficulty, several
different approaches have been proposed.

In a series of pioneering works [44–46], where a complex contour integral

tα−1

Γ(α)
=

1
2πi

∫
C

ests−αds

is chosen to approximate the kernel, the integration interval [t0, T] is divided into a sequence of subintervals
of increasing lengths, and different quadrature rules (on different contours C) are used in each of these
intervals. While high accuracy can be obtained, this strategy is quite complicated and requires the use of
more expensive complex arithmetic.

In [40–42] the integral in (7) is divided into local and history terms

y(t) = y0 +
1

Γ(α)

∫ t−δt

t0

(t− u)α−1 f (u, y(u))du︸ ︷︷ ︸
History term

+
1

Γ(α)

∫ t

t−δt
(t− u)α−1 f (u, y(u))du︸ ︷︷ ︸

Local term

for a fixed δt > 0. This confines the singularity of the kernel to the local term, which can be approximated by
standard methods for weakly singular integral equations (e.g., a product-integration rule) with a reduced
computational cost and an insignificant memory requirement. The kernel in the history term no longer
contains any singularity and can be safely approximated by (19) which applies now just for t > δt.

To obtain the highest possible accuracy, Gaussian quadrature rules are usually preferred. A rigorous
and technical error analysis is necessary to tune parameters in an optimal way. Several implementations
of approaches of this kind have been proposed (e.g., see [47–51]) but owing to their technical nature,
a comparison to decide which method is in general the most convenient is difficult; we just refer to the
interesting results presented in [52].

7. Some Remarks about Fractional Partial Differential Equations

Even though this paper is essentially devoted to the numerical solution of ordinary differential
equations of fractional order and the computational treatment of the associated differential and integral
operators, a few comments should be made regarding numerical methods for partial fractional differential
equations (PDEs).

Remark 3. The issues discussed in Section 4 are relevant to partial differential equations also. Indeed, it is shown
in [53] that imposing excessive smoothness requirements on the solutions to a partial differential equation (e.g., for the
sake of simplifying the error analysis or for obtaining a higher convergence order) has drastic implications regarding
the class of admissible problems; in particular, the choice of the forcing function f (x, t) in a linear initial-boundary
value problem will then completely determine the initial condition in the problem.

Our second remark regarding partial differential equations deals with a totally different aspect.

Remark 4. Typical algorithms for time-fractional partial differential equations contain separate discretisation
techniques with respect to the time variable and the space variable(s). A current trend is to employ a very high order
method for the discretisation of the (non-fractional) differential operator with respect to the space variable. While this
might seem an attractive approach at first sight, it has a number of disadvantages. Specifically, while this leads to
a smaller discretization error in the space variable, it also increases the algorithm’s overall complexity and makes
the understanding of its properties more difficult. This complexity would be acceptable if the overall error could
be reduced significantly. But since the overall error comprises not only the error from the space discretisation but

Mathematics 2020, 8, 324 18 of 20

also the contribution from the time approximation, it follows that to reduce the overall error, one must force this
latter component to be very small also. As indicated above, we cannot expect to achieve a high convergence order in
this variable, so the only way to reach this goal is to choose the time step size very small (in comparison with the
space mesh size). From Section 6 we conclude that a standard algorithm with a higher-than-linear complexity is
likely to lead to prohibitive run times, and even if the time discretisation uses a method with a linear or almost linear
complexity, this very small step size requirement will still imply a high overall cost. Therefore, the use of a high-order
space discretisation in a time-fractional partial differential equation is usually inadvisable.

8. Concluding Remarks

In this paper we have tried to describe some issues related to the correct use of numerical methods
for fractional-order problems. Unlike integer-order ODEs, numerical methods for FDEs are in general
not taught in undergraduate courses and, very often, non-specialists are unaware of the peculiarities and
major difficulties that arise in the numerical treatment of FDEs and fractional PDEs.

The availability of only a few well-organized textbooks and monographs in this field, together with
the presence of many incorrect results in the literature, makes the situation even more difficult.

Some of the ideas collected in this paper were discussed in the lectures of the Training School on
“Computational Methods for Fractional-Order Problems”, held in Bari (Italy) during 22–26 July 2019, and
promoted by the Cost Action CA15225—Fractional-order systems: analysis, synthesis and their importance for
future design.

We believe that the scientific community should make an effort to raise the level of knowledge in this
field by promoting specific academic courses at a basic level and/or by organizing training schools.

Author Contributions: Formal analysis, K.D., R.G. and M.S.; Investigation, K.D., R.G. and M.S.; Writing—original
draft, K.D., R.G. and M.S.; Writing—review & editing, K.D., R.G. and M.S. All authors have read and agreed to the
published version of the manuscript.

Funding: The cooperation which has lead to this article has been initiated and promoted within the COST Action
CA15225, a network supported by COST (European Cooperation in Science and Technology). The work of Roberto
Garrappa is also supported under a GNCS-INdAM 2019 Project. The work of Kai Diethelm was also supported by the
German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS17096A. The research of Martin
Stynes is supported in part by the National Natural Science Foundation of China under grant NSAF U1930402.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CM Complete monotonicity
FDE Fractional differential equation
FLMM Fractional linear multistep method
LMM Linear multistep method
ODE Ordinary differential equation
PDE Partial differential equation

References

1. Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer-Verlag:
Berlin, Germany, 2010; Volume 2004, p. viii+247.

2. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations;
North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204,
p. xvi+523.

Mathematics 2020, 8, 324 19 of 20

3. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010;
p. xx+347.

4. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations;
A Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1993; p. xvi+366.

5. Podlubny, I. Fractional Differential Equations; Mathematics in Science and Engineering; Academic Press Inc.: San
Diego, CA, USA, 1999; Volume 198, p. xxiv+340.

6. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science
Publishers: Yverdon, Switzerland, 1993; p. xxxvi+976.

7. Young, A. Approximate product-integration. Proc. R. Soc. Lond. Ser. A. 1954, 224, 552–561.
8. Young, A. The application of approximate product integration to the numerical solution of integral equations.

Proc. R. Soc. Lond. Ser. A. 1954, 224, 561–573.
9. Diethelm, K.; Ford, N.J.; Freed, A.D. A predictor-corrector approach for the numerical solution of fractional

differential equations. Nonlinear Dyn. 2002, 29, 3–22.
10. Garrappa, R. On linear stability of predictor-corrector algorithms for fractional differential equations. Int. J.

Comput. Math. 2010, 87, 2281–2290.
11. Yan, Y.; Pal, K.; Ford, N.J. Higher order numerical methods for solving fractional differential equations. BIT Numer.

Math. 2014, 54, 555–584.
12. Li, Z.; Liang, Z.; Yan, Y. High-order numerical methods for solving time fractional partial differential equations.

J. Sci. Comput. 2017, 71, 785–803.
13. Dixon, J. On the order of the error in discretization methods for weakly singular second kind Volterra integral

equations with nonsmooth solutions. BIT 1985, 25, 624–634.
14. Diethelm, K.; Ford, N.J.; Freed, A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms

2004, 36, 31–52.
15. Oldham, K.B.; Spanier, J. Theory and applications of differentiation and integration to arbitrary order. In The

Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974; p. xiii+234.
16. Lynch, V.E.; Carreras, B.A.; del Castillo-Negrete, D.; Ferreira-Mejias, K.M.; Hicks, H.R. Numerical methods for

the solution of partial differential equations of fractional order. J. Comput. Phys. 2003, 192, 406–421.
17. Lubich, C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17, 704–719.
18. Lubich, C. Convolution quadrature and discretized operational calculus. I. Numer. Math. 1988, 52, 129–145.
19. Lubich, C. Convolution quadrature and discretized operational calculus. II. Numer. Math. 1988, 52, 413–425.
20. Lubich, C. Convolution quadrature revisited. BIT 2004, 44, 503–514.
21. Garrappa, R. Trapezoidal methods for fractional differential equations: theoretical and computational aspects.

Math. Comput. Simul. 2015, 110, 96–112.
22. Diethelm, K.; Ford, J.M.; Ford, N.J.; Weilbeer, M. Pitfalls in fast numerical solvers for fractional differential

equations. J. Comput. Appl. Math. 2006, 186, 482–503.
23. Stynes, M. Singularities. In Handbook of Fractional Calculus With Applications. Vol. 3; De Gruyter: Berlin, Germany,

2019; pp. 287–305.
24. Miller, R.K.; Feldstein, A. Smoothness of solutions of Volterra integral equations with weakly singular kernels.

SIAM J. Math. Anal. 1971, 2, 242–258.
25. Lubich, C. Runge-Kutta theory for Volterra and Abel integral equations of the second kind Math. Comput. 1983,

41, 87–102.
26. Hanyga, A. A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel

Fract. Calc. Appl. Anal. 2020, 23, 211–223.
27. Giusti, A. General fractional calculus and Prabhakar’s theory. Commun. Nonlinear Sci. Numer. Simul. 2019,

83, 105114.
28. Hanyga, A. Physically acceptable viscoelastic models. In Trends in Applications of Mathematics to Mechanics;

Hutter, K., Wang, Y., Eds.; Shaker Verlag: Aachen, Germany, 2005; pp. 125–136.
29. Stynes, M.; O’Riordan, E.; Gracia, J.L. Necessary conditions for convergence of difference schemes for

fractional-derivative two-point boundary value problems. BIT 2016, 56, 1455–1477.

Mathematics 2020, 8, 324 20 of 20

30. Sarv Ahrabi, S.; Momenzadeh, A. On failed methods of fractional differential equations: the case of multi-step
generalized differential transform method. Mediterr. J. Math. 2018, 15, Art. 149, 10.

31. Garrappa, R. Neglecting nonlocality leads to unreliable numerical methods for fractional differential equations.
Commun. Nonlinear Sci. Numer. Simul. 2019, 70, 302–306.

32. Deng, W.H. Short memory principle and a predictor-corrector approach for fractional differential equations.
J. Comput. Appl. Math. 2007, 206, 174–188.

33. Ford, N.J.; Simpson, A.C. The numerical solution of fractional differential equations: Speed versus accuracy.
Numer. Algorithms 2001, 26, 333–346.

34. Diethelm, K.; Freed, A.D. An Efficient Algorithm for the Evaluation of Convolution Integrals. Comput. Math.
Appl. 2006, 51, 51–72.

35. Hairer, E.; Lubich, C.; Schlichte, M. Fast numerical solution of nonlinear Volterra convolution equations. SIAM J.
Sci. Statist. Comput. 1985, 6, 532–541.

36. Hairer, E.; Lubich, C.; Schlichte, M. Fast numerical solution of weakly singular Volterra integral equations.
J. Comput. Appl. Math. 1988, 23, 87–98.

37. Henrici, P. Fast Fourier methods in computational complex analysis. SIAM Rev. 1979, 21, 481–527.
38. Garrappa, R. Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial.

Mathematics 2018, 6, 16.
39. Garrappa, R. Mathworks Author’s Profile. Available online: https://www.mathworks.com/matlabcentral/

profile/authors/2361481-roberto-garrappa (accessed on 26 January 2020).
40. Baffet, D. A Gauss-Jacobi kernel compression scheme for fractional differential equations. J. Sci. Comput. 2019,

79, 227–248.
41. Baffet, D.; Hesthaven, J.S. A kernel compression scheme for fractional differential equations. SIAM J. Numer.

Anal. 2017, 55, 496–520.
42. Baffet, D.; Hesthaven, J.S. High-order accurate adaptive kernel compression time-stepping schemes for fractional

differential equations. J. Sci. Comput. 2017, 72, 1169–1195.
43. Diethelm, K. An investigation of some nonclassical methods for the numerical approximation of Caputo-type

fractional derivatives. Numer. Algorithms 2008, 47, 361–390.
44. López-Fernández, M.; Lubich, C.; Schädle, A. Adaptive, fast, and oblivious convolution in evolution equations

with memory. SIAM J. Sci. Comput. 2008, 30, 1015–1037.
45. Lubich, C.; Schädle, A. Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 2002,

24, 161–182.
46. Schädle, A.; López-Fernández, M.; Lubich, C. Fast and oblivious convolution quadrature. SIAM J. Sci. Comput.

2006, 28, 421–438.
47. Banjai, L.; López-Fernández, M. Efficient high order algorithms for fractional integrals and fractional differential

equations. Numer. Math. 2019, 141, 289–317.
48. Fischer, M. Fast and parallel Runge-Kutta approximation of fractional evolution equations. SIAM J. Sci. Comput.

2019, 41, A927–A947.
49. Jiang, S.; Zhang, J.; Zhang, Q.; Zhang, Z. Fast evaluation of the Caputo fractional derivative and its applications

to fractional diffusion equations. Commun. Comput. Phys. 2017, 21, 650–678.
50. Li, J.R. A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 2010, 31, 4696–4714.
51. Zeng, F.; Turner, I.; Burrage, K. A stable fast time-stepping method for fractional integral and derivative operators.

J. Sci. Comput. 2018, 77, 283–307.
52. Guo, L.; Zeng, F.; Turner, I.; Burrage, K.; Karniadakis, G.E.M. Efficient multistep methods for tempered fractional

calculus: Algorithms and simulations. SIAM J. Sci. Comput. 2019, 41, 2510–2535.
53. Stynes, M. Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 2016, 19, 1554–1562.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.mathworks.com/matlabcentral/profile/authors/2361481-roberto-garrappa
https://www.mathworks.com/matlabcentral/profile/authors/2361481-roberto-garrappa
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Material and Notations
	Novel or Well-Established Methods?
	Polynomial Interpolation and Product-Integration Rules
	Approximation of Derivatives: L1 and L2 Schemes
	Fractional Linear Multistep Methods

	Classical Approximations Will Not Give High-Order Methods
	Failed Approaches to Treat Non-Locality
	Some Approaches for the Efficient, and Reliable, Treatment of the Memory Term
	Nested Mesh Techniques
	The Finite Memory Principle
	Logarithmic Memory

	A Method Based on the Fast Fourier Transform Algorithm
	Kernel Compression Schemes

	Some Remarks about Fractional Partial Differential Equations
	Concluding Remarks
	References

