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Abstract—Register Transfer Level (RTL) locking seeks to
prevent intellectual property (IP) theft of a design by locking
the RTL description that functions correctly on the application
of a key. This paper evaluates the security of a state-of-the-
art RTL locking scheme using a satisfiability modulo theories
(SMT) based algorithm to retrieve the secret key. The attack
first obtains the high-level behavior of the locked RTL, and then
use an SMT based formulation to find so-called distinguishing
input patterns (DIP)1. The attack methodology has two main
advantages over the gate-level attacks. First, since the attack
handles the design at the RTL, the method scales to large designs.
Second, the attack does not apply separate unlocking strategies
for the combinational and sequential parts of a design; it handles
both styles via a unifying abstraction. We demonstrate the attack
on locked RTL generated by TAO [1], a state-of-the-art RTL
locking solution. Empirical results show that we can partially or
completely break designs locked by TAO.

I. INTRODUCTION

Many semiconductor companies are fabless, i.e., they use
offshore third-party foundries to manufacture their chips [2].
While cost effective, the fabless model introduces security
concerns. Since the foundry has access to the chip layout,
it can reverse engineer the chip’s functionality and steal the
designer’s intellectual property (IP). IP theft of this nature is
a serious concern. One approach to preventing IP piracy is
logic locking [3]–[5]. In this approach, the circuit functionality
is locked using an additional input, called the key. Various
internal signals of the IC are gated with bits of the key. The
IC only functions correctly for a secret key value, known only
to the designer, and otherwise produces corrupted outputs.
When fabricated chips are received from the foundry (note, the
foundry does not know the secret key), the designer activates
the chip by loading the correct key in a tamper-proof memory.

Starting with the SAT attack [6], the past few years have wit-
nessed a flurry of activity on logic locking, both on the attack
and defense side. While these attacks and subsequent defenses
are summarized in Section III, we note that a provably secure
defense against the original SAT attack is still missing. In
the SAT attack, the foundry has access to the locked netlist
(at the gate-level) and a functioning chip purchased from the
market. The attacker then uses the input/output behaviour
of the functioning chip along with a SAT solver to infer
the correct key. First published for breaking combinational
circuits, the SAT attack has since been applied to sequential

1i.e., inputs that help eliminate incorrect keys from the keyspace.

circuits as well [7]–[9]. However, since the attack operates at
the gate-level, these techniques are not scalable to practical
designs with hundreds of thousands of gates and flip-flops.

Recent work has advocated for defenses that perform logic
locking during high-level synthesis (HLS); the resulting RTL
locked netlists are large and consequently less vulnerable
to conventional gate-level SAT attacks. To defeat such RTL
locking mechanisms, an attack that works at higher levels of
abstraction is desirable. The research question that we attempt
to answer is: “Can one scale the SAT attack to locked RTL?”

We propose a satisfiability modulo theories (SMT) based
algorithm to determine the secret key of a locked RTL design.
The algorithm models an RTL design as a RTL finite state
machine with datapath (RTL-FSMD) by applying the rewriting
approach in [10]. We abstract out the details of the hardware
into a behavioral program on which we launch an SMT based
attack. Our attack finds distinguishing input patterns (DIPs)
iteratively (similar to [6]) to rule out equivalence classes of
incorrect keys and stops when no DIPs are found.

For linear arithmetic with m component keys2, our algo-
rithm is guaranteed to stop within m iterations. Our method
works even for non-linear arithmetic since this is supported by
the state-of-the-art Z3 SMT solver [11]. Further, our algorithm
works on sequential circuits since the analysis is performed
on an algorithmic abstraction of the design. We show that the
locking keys inserted by TAO [1] can be recovered on HLS
benchmarks. To the best of our knowledge, this is the first
attack on RTL locking.

The paper is organized as follows. Preliminary concepts,
including the attack model, the TAO locking approach and
the FSMD model, are given in Section II. Section III dis-
cusses existing approaches to attack gate-level locking. Our
attack/unlocking algorithm is given in Section IV. Section V
presents the experimental methodology, results and limitations.

II. BACKGROUND

This section presents the background required to understand
the SMT-based attack.

A. Attack Model

We assume a malicious foundry that wishes to steal the RTL
IP. To protect against this threat, we assume that the designer

2The actual key size is proportional to m.
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Fig. 1: An example of TAO obfuscation.

uses an RTL locking tool like TAO to produce locked RTL3,
performs synthesis and physical design and sends the layout of
the locked design to the foundry. As in prior work, we assume
the foundry is able to extract the gate-level netlist of the
locked chip from its layout. Further, using techniques proposed
in [12], we assume the foundry extracts RTL descriptions of
the datapath and controller from the gate-level description of
the locked chip. Finally, the foundry purchases a functioning
(unlocked) copy of the chip from the market and can apply
inputs to the chip and observe corresponding outputs (this is
the oracle chip). Using this setup, the foundry attempts to
recover the secret key to obtain the correct RTL.

B. TAO: An RTL Locking Approach

TAO [1] is an algorithm-level locking technique that ap-
plies during high-level synthesis (HLS). TAO hides selected
constants, control branches and datapath operations based on
an input locking key K. The key K is provided by the designer
through an additional port to the design and partitioned into
sub-keys used for each element to lock. The circuit will work
correctly only when the correct locking key is given.

1) Constant locking: TAO identifies all the constants in the
input behavior. It assumes a predefined-number of bits x to
implement all constants. Each constant cpi of the behavior is
locked as cei = cpi ⊕ ki, where cei is the locked value stored
in hardware and ki is a x-bit key. The correct constant can be
obtained by reversing the operation cpi = cei ⊕ ki.

2) Branch Locking: Each branch in the input behavior (and
hence in the controller FSM) is locked with a one bit key. If the
condition cp == 1 is checked in a control state, the condition
is modified as cp ⊕ kj == 1, where kj is a one bit key. kj is
part of the locking key K and locks this condition checking.
The right branch is taken by the controller with the correct kj .

3Note that TAO performs locking during high-level synthesis and outputs
locked RTL with separate datapath and controller.

3) Datapath Locking: TAO adds decoy multiplexer-based
interconnections between registers and the functional units.
Each MUX is controlled by a key bit kl. The correct output
is connected to 0 or 1 input of this MUX based on the correct
value of kl. This MUX multiplexes the correct and the spurious
data flow in each control state. Only with the correct key, the
correct operations are performed.

C. FSMD Model

An FSMD is a specification model that can repre-
sent all hardware designs and is defined as a 7-tuple
〈Q, q0, I, V,O, f, h〉, where Q is the finite set of states, q0 ∈ Q
is the reset (initial) state, I is the finite set of inputs, V is the
finite set of storage variables, O is the set of outputs, f :
Q× 2S → Q is the state transition function, h : Q× 2S → U
is the update function of the output and the storage variables.
Here S is a set of relations over arithmetic expressions and
Boolean literals and U is a set of storage variables and output
assignment statements. The FSMD is inherently deterministic
[13]. In our attack implementation, we represent the FSMD
model of the RTL design, referred to as an RTL-FSMD model.
In RTL-FSMD, V has all the registers and the memories in
the design. TAO generated locked RTL is converted into an
RTL-FSMD using a rewriting (explained in Section IV-B). It
also embeds the key values and describes how the behavior
evolves with different key values.

Consider the design in Fig. 1. The operations r1 = a + c
and r2 = b+ d are performed in the datapth in states s1 and
s2, respectively. The MUX in the yellow box is added to lock
the first operation and is controlled by the key bit kj . The
correct key value is kj = 0. Therefore, if kj = 1 is supplied,
r1 = d + c will be executed producing a wrong result. The
locked RTL behavior is shown in the locked FSM with an
additional transition between s1 and s2. The key is implicit to
the controller FSM. However, when the RTL-FSMD is reverse
engineered from the layout, the key kl in unknown and creates
additional transitions in the RTL-FSMD.

III. RELATED WORK

The paper builds on a body of work in hardware security
on logic locking, an idea first proposed by [6]. However the
SAT attack [14] was able to defeat all locking schemes at the
time of its publication in a matter of minutes. However, the
SAT attack was evaluated on small gate-level locked netlists.
Subsequent attacks on logic locking have sought to scale
the original SAT attack [15], [16], extend its applicability
to sequential circuits [7]–[9], and use hints from the locked
netlist’s structure to recover the secret key [17], [18]. Several
locking countermeasures have been proposed to thwart these
attacks [4], [19]–[21]. However, none has yet been shown to
be provably secure. These attacks and defenses focus on the
gate-level abstraction and have been demonstrated on small
circuits like the ISCAS benchmarks. Recently, there has been
an attempt to perform logic lock at the RTL [1], [22] and at the
C level [23]. TAO is an example of such a scheme. However,
to the best of our knowledge, the security of RTL locking has



not been studied; the proposed SMT attack is the first one on
RTL locking. While SMT has been used to unlock gate-level
netlists [24], these methods do not apply to RTL unlocking.

IV. ATTACK METHODOLOGY

A. Problem Formulation

The objective is to find the locking key K using an SMT
solver and by querying an activated IC (the Oracle).

The RTL-FSMD P (I,O,K) ∈ ZM+N+K has M primary
inputs, N primary outputs and K unknown keys. It represents
the input/output relation of the locked RTL design based on the
key. CO = (I,O) is the input/output relation of the activated
IC. The attacker can apply inputs to CO ∈ ZM+N and observe
the correct output. However, the attacker cannot model the
internal behavior of CO, a black-box function eval(Xi) =
Yi. For an input Xi, eval(Xi) = Yi iff CO(Xi, Yi). While
we assume that all inputs/outputs are Integer, this formulation
works for Real numbers.

As shown in Fig. 2, the RTL-FSMD consists of a set of
states and transitions among the states which represent the
control flow. Each transition is associated with a condition
and a set of operations that execute in parallel. The data
dependencies among the operations represent the data flow.
We unroll each loop and the RTL-FSMD is thus a directed
acyclic graph. The RTL-FSMD has a start/reset state from
which any execution starts and terminates. We assume the
behavior is deterministic. A trace in an RTL-FSMD represents
a path from the reset state back to the reset state. For a trace
τ , the condition of execution Cτ over I ∪ C ∪K, where I is
the set of inputs, C is set of integer constants and K is the set
of unknown keys, represents the symbolic condition that must
be satisfied by the initial data state to execute the trace. The
Cτ is the weakest precondition of the the trace τ [25]. The
data transformation Dτ of τ is an ordered tuple of algebraic
expressions 〈ej〉 over I ∪ C ∪K such that ej represents the
value of the output oj ∈ O after execution of the trace. Cτ
and Dτ can be obtained by the symbolic execution of the trace
[13].

The RTL-FSMD consists of a finite set of traces
{τ1, τ2, . . . , τk}. The output of an RTL-FSMD will be obtained
by the execution of one trace depending on the input values.
Each trace has a non-overlapping condition of execution since
the behavior is deterministic. Therefore, the outputs O in
the RTL-FSMD can be represented as P (I,O,K) : O =
(ite Cτ1Dτ1 (ite Cτ2Dτ2 (ite . . . (ite Cτk−1

Dτk−1
Dτk)) . . .))

where (ite C D1 D2) (aka if-then-else) indicates if the
condition C is True return the value D1 else D2. For a
given input Ii and a key Kl and corresponding output Oj , the
execution of the P is P (Ii, Oj ,Kl). The trace τx is executed
for this input and key combination, i.e., Cτx is evaluated to
True for Ii and Kl. Therefore, P (Ii, Oj ,Kl) represents the
transformation Dτx of τx, i.e., P (Ii, Oj ,Kl) = Dτx .

B. Rewriting Method

The HLS-generated RTL consists of a datapath and a
controller FSM [26]. In each transition in the FSM, control
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signals are assigned with value 0/1. Our objective is to identify
the corresponding RTL operations performed in the datapath.
The control signal assignments in each controller FSM are
replaced with corresponding RTL operations. This way, the
datapath and the controller details are abstracted out and we
have a RT-level behaviour. The concept is explained in Fig. 2.
To obtain the RTL operations in each state, we extend the
rewriting method presented in [10] as discussed below.

In the datapath, signal flow is controlled by the control sig-
nals. For each datapath module, input → output assignments
are termed as micro-operations. For example, for a multiplexer
out = MUX(in1, in2, sel), there are two possible micro-
operations, i.e., out← in1 and out← in2 and the associated
control signal assertions are sel = 0 and sel = 1, respectively.
Given a control signal assignment, we can identify the active
micro-operations due this control signal assignment. A micro-
operation not associated with any control signal is always
active. The rewriting method identifies the spatial sequence
of data flow needed for an RTL operation in a reverse order.
The method consists in rewriting terms one after another in
an expression. The micro-operations of the form r ← rin
in which a register occurs in the left-hand side (LHS) are
found first. Next, the right-hand side (RHS) expression rin is
rewritten by looking for an active micro-operation rin ← s or
rin ← s1 < op > s2. Next, s (s1 or s2 in the latter case) are
rewritten provided they are not registers. The rewriting takes
place from left to right in a breadth-first manner and terminates
when all signals in the RHS expression are registers.

C. Algorithm Description

The problem of finding the distinguishing input pattern
(DIP) can be modelled as follows: Given two key values K1

and K2 and an input Id, the output obtained is O1 and
O2, respectively. The input Id is DIP for K1 and K2 iff
P (Id, O1,K1) ∧ P (Id, O2,K2) ∧ (O1 6= O2). Once a DIP
is found, the output is obtained from the activated IC. The
DIP formulation is strengthened by adding this input/output
relation for both K1 and K2. This process repeats in an
iterative manner until no DIP found. In this time, we will
check the SAT of the DIP formula with (O1 ≡ O2). Any



Algorithm 1: Algorithm to recover the keys.
Input : P, eval
Output: The values of K

1 i = 1 ;
2 F1 = P (I,O1,K1) ∧ P (I,O2,K2);
3 while sat[Fi ∧ (Y1 6= Y2)] do
4 Idi = a DIP value that satisfy [Fi ∧ (Y1 6= Y2)];
5 Od

i = eval(Id);
6 Fi+1 = Fi ∧ P (Idi , O

d
i ,K1) ∧ P (Idi , O

d
i ,K2);

7 i = i+ 1;
8 end while
9 K = the value of K in the sat assignment of

Fi ∧ (Y1 ≡ Y2);

assignment of K1 or K2 for this formula is the correct key.
One can recover K using Algorithm 1.

Algorithm 1 always terminates. The formula P (Idi , O
d
i ,K1)

is an equation linking the unknown keys. So, we add an equa-
tion relating the unknown keys in each iteration. Each iteration
gets a DIP that rules out one incorrect equivalence classes
of keys. Therefore, the equation from each iteration results
in an independent equation. If P involves linear arithmetic,
one can obtain the values of the K unknown variables by
solving the K independent equations connecting them. So,
Algorithm 1 finishes in ‖K‖ steps for linear arithmetic. For
non-linear arithmetic, the algorithm resolves when sufficient
equations are set up. The search space reduces in each itera-
tion. Therefore, the algorithm completes in a finite number of
iterations. The key recovered is consistent with all the observed
input/output patterns and thus represents the correct key.

D. An Illustrative Example

In the locked RTL code in Listing 1, two constants are
locked with k1 and k2. Moreover, the condition is locked with
a Boolean variable c1. Assume that k1 = 5, k2 = 3, c1 =
False in the original program. Our objective is to recover
these values from the locked RTL with the help of an oracle.
Listing 1: if-else block
c = a > b
i f ( c xor c1 )

o u t = a + k1
e l s e

o u t = b ∗ k2

Consider the SMT code in Listing 2. The function A in this
SMT code models the functionality of the behavior in Listing
1. The SMT code to obtain DIP is given by the next three
assert statements. “Does there exist an assignment of a and
b such that for two different values of k1 (i.e., k11 and k12)
and k2 (i.e., k21 and k22), we have two different outputs?”.
Z3 returns a = 1, b = 1 and the corresponding output is 3.

The assertions added in iteration 2 are shown in the first
part of the Listing 3. The process continues for three more
iterations and the assertions added into the DIP model are
shown in the rest of Listing 3. In the 4th iteration, Z3 returns
UNSAT . We obtain k1 = 5, k2 = 3, c1 = False by
reversing SAT (i.e., (assert (= out1 out2))) as correct keys.

Listing 2: SMT code to obtain the DIP for Listing 1
( d e c l a r e−c o n s t a I n t )
( d e c l a r e−c o n s t b I n t )
( d e c l a r e−c o n s t k11 I n t )
( d e c l a r e−c o n s t k21 I n t )
( d e c l a r e−c o n s t k12 I n t )
( d e c l a r e−c o n s t k22 I n t )
( d e c l a r e−c o n s t ou t1 I n t )
( d e c l a r e−c o n s t ou t2 I n t )
( d e c l a r e−c o n s t c1 Bool )
( d e c l a r e−c o n s t c2 Bool )
( d e f i n e−fun G ( ( a I n t ) ( b I n t ) ) Bool (> a b ) )
( d e f i n e−fun A ( ( a I n t ) ( b I n t ) ( x1 I n t ) ( x2 I n t )

( x3 Bool ) ( c Bool ) ) I n t ( i t e
( xor c x3 ) (+ a x1 ) (∗ b x2 ) ) )

( a s s e r t (= ou t1 (A a b k11 k21 c1 (G a b ) ) ) )
( a s s e r t (= ou t2 (A a b k12 k22 c2 (G a b ) ) ) )
( a s s e r t ( n o t (= ou t1 ou t2 ) ) )
( check−s a t )
( ge t−model )

Listing 3: Assertion refinements in successive iterations
;Iteration 2: a = 0, b = 0 → out = 0
;added assertions
( a s s e r t (= 0 (A 0 0 k11 k21 c1 (G 0 0 ) ) ) )
( a s s e r t (= 0 (A 0 0 k12 k22 c2 (G 0 0 ) ) ) )
Iteration 3: a = -5, b = -1 → out = -3
;added assertions
( a s s e r t (= −3 (A −5 −1 k11 k21 c1 (G −5 −1) ) ) )
( a s s e r t (= −3 (A −5 −1 k12 k22 c2 (G −5 −1) ) ) )
Iteration 4: a = -3, b = -4 → out = 2
;added assertions
( a s s e r t (= 2 (A −3 −4 k11 k21 c1 (G −3 −4) ) ) )
( a s s e r t (= 2 (A −3 −4 k12 k22 c2 (G −3 −4) ) ) )

E. Attack Tool-flow

Fig. 3 is our implementation flow. The tool parses the
locked RTL generated by TAO using Pyverilog [27] (RTL→
FSMD module). It uses a rewriting method yielding an RTL-
FSMD [10] and transforms the RTL-FSMD to feed into the
KLEE tool [28] to get the symbolic representation of the out-
puts as discussed in section IV-A. This symbolic representation
of the program creates the SAT formulation for DIP. It invokes
the SMT tool Z3 [11]. If Z3 cannot prove the SAT/UNSAT
of the formula in any iteration, our algorithm fails. If Z3
returns SAT, the corresponding inputs are used to get the
correct output using the functional IP. It strengthens the DIP
formula with this input/output relation and it calls Z3 again.
The algorithm unlocks the keys once Z3 returns UNSAT. The
tool flow is automated. RTL → FSMD module is in Python
and we write the rest of the tool flow in C++.

We invoke SMT solver Z3 [11] to check for Satisfiability
on line 3 of Algorithm 1. SMT solvers require the programs
to be in static single assignment (SSA) [29] form. In the
SSA form, each variable is assigned exactly once. We model
the RTL-FSMD as a formula consisting of the condition of
executions and the data transformations of all the traces. This
formula represents the one time assignment of each output.
So, it is already in the SSA form. This formula is computed
using KLEE [28] even if it is symbolic technique that does
not require the program to be in SSA form.
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V. EMPIRICAL EVALUATION

A. Methodology

To evaluate our methodology, we emulated a red team-blue
team activity in our experiments. The two teams are in separate
institutions. We use three HLS benchmarks - WAKA, ARF
and Motion for our experiments. A blue team designer (not in
the red team institution) synthesized these benchmarks with
TAO to generate the locked RTL in Verilog [1]. For each test
scenario, the number of lines in the Verilog code, the number
of multiplications, additions and subtractions in the locked
RTL are reported in the columns 2, 3, 4 and 5, respectively,
in Table I. As discussed in the section II-B, TAO applies
operation, control and constant locking. The amount of each
type of locking is controlled by input parameters. Using these
parameters, For each benchmark, the blue team generated
several locked designs with differing operations, control-flow
statements and constants obfuscated, as shown in columns 6,
7, 8 of Table I, resulting in different key sizes of up to 155 bits,
as shown in column 9 of the same table. To check the size of
the gate-level circuits targeted by our approach, we synthesized
the RTL using Synopsys Design Compiler targeting the SAED
32nm technology. We note that the designs are large with up to
14K combinational cells and 3K sequential cells, as reported
in columns 10 and 11, respectively, of Table I.

The red team uses the methodology in this paper to unlock
the designs. The red team unlocking results are tabulated
in columns 12-15 of Table I. This includes the number of
iterations (Ite) of Algorithm 1 to unlock the key, the number
of instructions (Ins) processed by KLEE and the CPU time
(Time) and the memory usage (RAM) for each test case. For
these experiments, we use Z3 SMT solver version 4.8.5 -
64 bit, with a time out of 10 hours. As shown in Table I,
our unlocking algorithm recovers the keys in a few iterations.
For successful cases, the time to unlock is under 30 minutes.
For three cases, Z3 solver times out after a few iterations.
We discuss these scenarios in the next section. None of the
previously reported combinational unlocking techniques [4],
[6], [19]–[21] apply in our setting since our locked netlists
are sequential. On the other hand, the gate-level SAT attacks

TABLE I: Results: Unlocking TAO-locked RTL designs.

B
en

ch

L
O

C × + -

O
pe

ra
tio

ns
C

on
di

tio
ns

C
on

st
an

ts
K

ey

C
om

b

Se
q

It
er

at
io

ns

In
st

ru
ct

io
ns

Ti
m

e
(s

)

R
A

M
(M

B
)

W
A

K
A

753 - 13 7 - - 3 65

1255 917

4 524 5.16 28

779 - 23 11 11 4 - 11 5 653 35.46 43

773 - 23 11 11 9 4 617 92.39 40

828 - 21 9 9 4 3 73 45 672 1157.13 138

A
R

F

1431 21 27 10 - 6 - 3

19715 3381

2 6185 517.80 661

1654 21 27 10 - - 1 32 2 6863 406.97 576

1647 21 65 34 65 32 5 6718 >10hrs -

M
O

T
IO

N 1140 19 11 0 - - 2 64

13938 2924

5 931 7.01 16

1239 15 29 10 37 - - 27 2 885 >10hrs -

1250 15 32 10 37 - 4 155 5 924 >10hrs -

LOC: # of lines in obfuscated Verilog RTL. ×: # of multiplications in
Verilog RTL. +: # of adds in Verilog RTL. -: # of subtracts in Verilog
RTL. Operations: # of operations obfuscated. Conditions: # of conditions
obfuscated. Constants: # of constants obfuscated. Key: # of key bits.
Comb: # of combinational cells. Seq: # of sequential cells. Iterations: #
of iterations. Instructions: # of instructions executed by KLEE.

TABLE II: Results: Unlocking a locked C code.
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on sequential circuits [7]–[9] reported results for ISCAS’89
and ITC’99 benchmarks, while we scale to much larger
benchmarks.

Our approach is not limited to HLS-generated designs. It
can work on locked C code. For example, in [23], a locked
C code is given to a cloud HLS tool to avoid stealing the
algorithm IP. To show that we can attack a locked C code,
we created several C variants with a large number of key bits
and report the results in Table II. For WAKA, we can unlock
all cases in one hour. The biggest key that we unlocked is
224 bits. For ARF and Motion, we can unlock up to 128 and
66 bits keys, respectively. For larger key sizes, Z3 times out
necessitating scalable approaches.

B. Discussion of the Results

Handling Time-outs: Solving SMT for arbitrary, non-linear
arithmetic over the reals is undecidable [30]. Thus, the SMT
solver may not prove the satisfiability of an formula com-
prising non-linear arithmetic. The SMT solver stops with an
unknown result or times out. Although we did not come across



the unknown case, we encountered time outs for five instances
(see Table I and Table II). We suspect that a time-out implies
that no more DIPs exist, i.e., the attack has terminated although
Z3 is unable to prove this formally. To substantiate this, we
negate the formula (see step 9 of Algorithm 1) and Z3 returns
the correct key in all five instances. Thus, even in the few
cases that the attack times out, it yields a correct key.

Limitations: We did not implement extraction of arrays from
Block RAM in RTL in the RTL → FSMD module yet. Also,
functions in the input C code of TAO are in-lined before RTL
generation. We will enhance our implementation to support
these two features. This will help experiment on larger test
cases.

VI. CONCLUSIONS AND FUTURE WORK

This work presents an SMT attack to recover the secret
key from a locked RTL netlist generated using the TAO RTL
locking tool. Compared to gate-level attacks on sequential
logic locking, the SMT attack abstracts all hardware details
into a behavioral program, scaling to large designs. The attack
is evaluated using a blue team-red team approach, wherein the
blue team uses the TAO RTL locking tool to generate locked
Verilog RTL along with the executable generated from input
C code as an oracle to the red team. The red team unlocked
large designs with up to 3K sequential cells and 195 key bits
demonstrating the effectiveness of the attack.

Our future work will take two directions. First, we will
leverage insights from our attack to strengthen RTL locking
against SMT attacks. Our experiments indicate that non-linear
equations are harder to solve and this could inform defenses.
Second, we will scale the attacks to target larger designs.
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