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Abstract

Background: According to published data, radiomics features differ between lesions
of refractory/relapsing HL patients from those of long-term responders. However,
several methodological aspects have not been elucidated yet.

Purpose: The study aimed at setting up a methodological framework in radiomics
applications in Hodgkin’s lymphoma (HL), especially at (a) developing a novel feature
selection approach, (b) evaluating radiomic intra-patient lesions’ similarity, and (c)
classifying relapsing refractory (R/R) vs non-(R/R) patients.

Methods: We retrospectively included 85 patients (male:female = 52:33; median age
35 years, range 19–74). LIFEx (www.lifexsoft.org) was used for [18F]FDG-PET/CT
segmentation and feature extraction. Features were a-priori selected if they were
highly correlated or uncorrelated to the volume. Principal component analysis-
transformed features were used to build the fingerprints that were tested to assess
lesions’ similarity, using the silhouette. For intra-patient similarity analysis, we used
patients having multiple lesions only. To classify patients as non-R/R and R/R, the
fingerprint considering one single lesion (fingerprint_One) and all lesions
(fingerprint_All) was tested using Random Undersampling Boosting of Tree Ensemble
(RUBTE).

Results: HL fingerprints included up to 15 features. Intra-patient lesion similarity
analysis resulted in mean/median silhouette values below 0.5 (low similarity
especially in the non-R/R group). In the test set, the fingerprint_One classification
accuracy was 62% (78% sensitivity and 53% specificity); the classification by RUBTE
using fingerprint_All resulted in 82% accuracy (70% sensitivity and 88% specificity).

Conclusions: Lesion similarity analysis was developed, and it allowed to demonstrate
that HL lesions were not homogeneous within patients in terms of radiomics signature.
Therefore, a random target lesion selection should not be adopted for radiomics
applications. Moreover, the classifier to predict R/R vs non-R/R performed the best
when all the lesions were used.

Keywords: Lymphoma, PET/CT, Radiomics, Similarity, Feature selection, Silhouette,
Response prediction, Outcome prediction
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Introduction
Hodgkin’s lymphoma (HL) is a hematological disease characterized by an excellent

long-term outcome (Mottok & Steidl, 2018). However, up to 15% of patients with early

stage, and up to 30% of patients with advanced stage HL, are primary refractory or ex-

perience recurrence (LaCasce, 2019). Therefore, the identification of cases at high risk

for first-line therapy failure or recurrence would significantly impact on HL patient

management. Presently, prognostic stratification and, consequently, the therapeutic

strategy in HL rely mainly on stage and the presence of risk factors (Ansell, 2018).

However, current staging system and prognostic factors provide limited information

about the lymphoma biology and fail in identification of refractory HL patients at base-

line (Mottok & Steidl, 2018).

Novel strategies for the characterization of disease are emerging. Detection of

tumor-specific mutations in cell-free circulating tumor DNA (ctDNA) by next-

generation sequencing (NGS) techniques has been described with encouraging re-

sults for therapy monitoring and assessment of minimal residual disease (Mottok &

Steidl, 2018; Spina et al., 2018). Recently, radiomics and artificial intelligence

(image mining) emerged as promising strategies for advanced image analysis with

various purposes. Broadly, radiomics in PET images quantifies the heterogeneity of

tracer uptake within a region or volume of interest (ROI or VOI). Thereafter, data

on heterogeneity extracted from images are fed into statistical models or machine

learning algorithms developed for clinical purposes (e.g., prognostication). Differ-

ently, artificial intelligence-based methods using labeled images as input data, au-

tonomously identify distinctive components of the ROI/VOI, through a “learning

process”, that allow the algorithm to predict a label on unseen data (Sollini et al.,

2019a; Sollini et al., 2020; Sollini et al., 2019b). Preliminary data in HL supported

the use of image mining to predict patients’ outcome (Ben Bouallègue et al., 2017;

Milgrom et al., 2019; Lue et al., 2019; Ganeshan et al., 2017; Knogler et al., 2014).

Accordingly, literature data support the concept that radiomics features differ be-

tween lesions of refractory/relapsing HL patients from those of long-term re-

sponders. However, several methodological aspects have not been elucidated yet.

Firstly, lesion to choose for radiomic feature extraction has not been defined. Sec-

ondly, feature selection strategy to adopt in view of the morphological characteris-

tics of the lymphoma lesions. Indeed, in most cases, adenopathies are ovaloid, and

lesions with different size may be contemporarily present. Consequently, volume-

related features may constitute confounding factors. Lastly, definitive data on pre-

dictive ability of the radiomic-based models are lacking because published data are

affected by major methodological biases.

The present study aimed at developing a methodological framework for radiomics ap-

plications in lymphoma. Our primary aim was to propose a volume-related feature se-

lection approach. Secondarily, our objective was to test whether HL lesions within a

patient share a set of radiomics features (HL signature); to test this hypothesis, we eval-

uated radiomics intra-patient lesions’ similarity, with the final goal to inform target le-

sion identification for radiomics analysis. Finally, we hypothesized that the radiomics

signature is able to distinguish patients with favorable vs unfavorable outcome; we

tested this hypothesis by means of inter-patient similarity analysis.
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Materials and methods
Study design and patient selection

The present was an observational retrospective three-center investigation. Figure 1

shows the study design. In one center, we selected patients with pathological diagnosis

of HL, who performed a pre-treatment PET/CT scan, and fell in the category of non-

relapsing/refractory (i.e., long-term responder defined as disease free after at least 4

years from first-line treatment completion, non-R/R) or relapsing/refractory (R/R)

treated with at least two chemotherapy lines and candidate to immunotherapy. Exclu-

sion criteria were extravasation at injection site and no clinical data availability. In the

other two centers, R/R pathologically proven HL patients candidate to immunotherapy

who performed a pre-treatment PET/CT scan in loco were included. The same above-

Fig. 1 Study design
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mentioned exclusion criteria were applied. Pre-treatment [18F]FDG-PET/CT was the

baseline (i.e., staging) for non-R/R and the one before immunotherapy initiation in R/R

HL patients. We identified 107 patients (male:female = 66:41; median age 35 years,

range 19–74) fulfilling the inclusion/exclusion criteria. Clinical data were retrieved

from the institutional records. The study, performed in accordance with the Declar-

ation of Helsinki, was approved by the local ethics committee of all centers. The signa-

ture of a specific informed consent was waived in view of the observational

retrospective study design.

Image processing

PET/CT images were acquired according to standard institutional procedure protocols,

as detailed in Supplemental Table 1. Images were retrieved and qualitatively evaluated.

HL [18F]FDG-avid lesions were identified and classified as lymph nodal or extra-nodal,

then were semi-automatically segmented with 40% of SUVmax threshold to define the

VOI. Fifty-two radiomic features (histogram, co-occurrence and higher order, listed in

Supplemental Table 2) were calculated within each VOI. The LIFEx package, version

4.9 (www.lifexsoft.org) (Nioche et al., 2018), was used for both lesion segmentation and

features extraction. Lesions smaller than 64 voxels were excluded since they did not

fulfil the minimum size criterion for feature extraction required by LIFEx.

Datasets for intra-patient lesion similarity analysis
For intra-patient similarity analysis, we included patients with multiple lymph nodal le-

sions (> 2 lymph nodal and having or not extra-nodal lesions) of at least 64 voxels on

PET images. The first dataset included non-R/R HL patients, and the second dataset in-

cluded the R/R ones. Each dataset was further divided in lymph nodal and extra-nodal

subsets based on lesions’ site.

Dataset for inter-patient similarity analysis
We included patients with multiple lesions (irrespective of location:lymph nodal and/or

extra-nodal) to explore the ability of the fingerprint to classify patients as non-R/R vs

R/R. The classification procedure was split in a training and a test analysis using 70%

and 30% of cases, respectively, preserving the composition of the original dataset.

Statistical analysis
Patient characteristics were summarized in frequency tables, and descriptive statistics

were provided. Features were normalized to Z-score prior to any model building.

Feature selection
For features selection, volume-related criteria were applied. In most cases, LH adenopa-

thies are numerous. The lesions are, generally, similar being ovaloid or rounded. On

the other hand, lesions with different size may be contemporarily present. Conse-

quently, shape- and volume-related features may constitute confounding factors. Add-

itionally, the rationale for volume-related criteria was related to the fact that in HL,

typically small and large lesions co-exist, and that size affects lesion’s heterogeneity (lar-

ger lesions have been reported to be more heterogeneous than the smaller ones (Nyflot
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et al., 2015; Hatt et al., 2015; Sollini et al., 2017)). Therefore, the rationale for volume-

related criteria was aimed at identifying all potentially relevant information and discard

collinear variables, without ignoring volume component that may be relevant to predict

disease aggressiveness. To do that, features were a-priori selected if they were highly

correlated or uncorrelated to the volume (i.e., MTV) applying as cutoff a p value of the

chi-squared test < 0.0001 as significance for uncorrelation and > 0.8 for correlation, re-

spectively (Fig. 2).

Fingerprint building
Selected features were then used in a principal component analysis (PCA). The trans-

formed features accounting for at least 95% of the total variability were selected to

build up the fingerprint. We built a specific fingerprint for each dataset (i.e., non-R/R

and R/R) and tested the intra-patient lesions’ similarity (Fig. 2).

Similarity analysis
The similarity index defined by the silhouette, computed for each patient, was used to

assess intra-patient lesions’ similarity. The analyses were performed within the two

groups (non-R/R and R/R), exploiting, firstly, only nodal lesions and, then, both nodal

and extra-nodal lesions. Specifically, the silhouette index was computed comparing the

cohesion (i.e., how similar was a lesion to other lesions of the same patient) of a lesion

with its separation (i.e., how similar was a lesion to those belonging to other patients),

standardizing values in order to range between − 1 and 1. Considering each patient as

a grouper for the observations (i.e., lesions) belonging to him/her, one silhouette index

is obtained per every patient, based on her/his lesions. Accordingly, silhouette values

close to 1 indicated that the lesion well matched to those belonging to its own cluster

(i.e., within the same patient) and poorly to those belonging to neighboring clusters

(i.e., other patients). Vice versa, negative silhouette indicated that the lesion poorly

matched to those belonging to its own cluster (i.e., within the same patient) and well to

those belonging to neighboring clusters (i.e., other patients) (Fig. 2). The silhouettes

computed within datasets (non-R/R and R/R) and subsets (nodal and extra-nodal) were

Fig. 2 Fingerprint building and similarity analysis
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compared. Particularly, in the nodal subset, the histogram of the silhouette values for

non-R/R and R/R dataset was computed, and mean and median were compared. In the

nodal + extra-nodal subset, the variation in the silhouette values was analyzed. Details

on computation of the silhouette index are provided in the Supplementary material.

To test inter-patient similarity (i.e., classify patients as non-R/R and R/R), we used

the Random Undersampling Boosting of Tree Ensemble (RUBTE)—suitable for unbal-

anced data (Seiffert et al., 2010). A logistic regression (LR) including only the silhouette

value for each patient (based on both nodal + extra-nodal lesions) was settled in order

to investigate the discrimination power of the silhouette. Classification was then per-

formed using one lesion per patient (setting 1) and all lesions, in a data augmentation

like perspective, (setting 2). Data augmentation is a typical strategy to overcome the

overfitting phenomenon—a common problem related to machine learning approaches.

Indeed, overfitting occurs when a high dimensional space (typical in the case of high di-

mensional covariates) is used for fitting data where the number of observations is not

sufficiently high. Therefore, the fit of the algorithm on data is close to interpolation in

the training phase. In doing so, the performances in reproducing the observed

phenomenon are optimal, but then the algorithm fails in predicting unseen data during

test phase, due to the insufficient ability of estimating the variability of the prediction.

“Artificially” augmenting the data enables to add such variability in order to improve

the performance of the algorithm in terms of prediction generality. Different strategies

aimed to “artificially” augment the data may be used (van Dyk & Meng, 2001). In the

setting 2, the silhouette value (equal for all the lesions belonging to the same patient)

was used as a grouping factor. Thereafter, the majority vote rule was used for aggregat-

ing responses available at lesions level to a single response at patient level (i.e., for ag-

gregating multiple lesions into a single outcome—patient R/R or patient non-R/R).

Accordingly, the patient was assigned to the class R/R or non-R/R according to the ma-

jority of her/his lesion assignments (Penrose, 1946). We built a specific fingerprint per

each setting (single versus all patient lesions) using the abovementioned framework for

feature normalization, selection, reduction, and PCA. Conventional metrics including

sensitivity, specificity, and accuracy were used to test the RUBTE performance.

Results
Intra-patient similarity

Datasets for intra-patient lesion similarity analysis

Seventy-six patients resulted to have multiple nodal lesions. Intra-patient nodal lesion

similarity was tested in 26 non-R/R and 50 R/R patients.

Twenty-seven patients had both nodal and extra-nodal lesions. The intra-patient nodal

+ extra-nodal lesion similarity was tested in 8 non-R/R and 19 R/R cases (Table 1 and Fig.

1).

Fingerprints for intra-patient lesion similarity analysis

We built one fingerprint for each dataset and subset using the volume highly correlated

and unrelated features, as detailed in Table 2.

Fingerprints_1 and _2 were used to explore the intra-patient nodal lesion similarity

in non-R/R and R/R patients, respectively. Fingerprints_3 and _4 were built on nodal
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and nodal + extra-nodal non-R/R lesions, respectively. Fingerprints_5 and _6 were built

on nodal and nodal + extra-nodal R/R lesions, respectively (Fig. 1).

Intra-patient nodal lesion similarity analysis

In the nodal non-R/R subset, 18/26 (69%) silhouette values resulted positive using fin-

gerprint_1 (mean 0.11 ± 0.42). The histogram of the silhouette values is shown in Fig-

ure 3a.

In the nodal R/R subset, 38/50 (76%) silhouettes resulted positive using fingerprint_2

(mean 0.24 ± 0.45). The histogram of such values is given in Fig. 3b. Figure 3c shows

the overlap of the two histograms. Overall, the silhouettes in the non-R/R dataset

showed a more uniform distribution compared to the R/R ones.

The mean values of the distributions of the silhouettes in non-R/R and R/R resulted

not statistically different (p value = 0.08). Conversely, the median value of non-R/R was

lower than the median value of R/R (0.11 versus 0.39). Overall, the comparison between

histograms demonstrated a higher intra-patient lesion similarity in the R/R dataset than

in the non-R/R one.

Intra-patient nodal and extra-nodal lesion similarity analysis

In the non-R/R dataset, only 4/8 (50%) silhouettes resulted positive using the fingerp-

tint_3 (mean -0.01 ± 0.46), as shown in Figure 4a. If both lymph nodal and extra-nodal

lesions were considered, 6/8 (75%) silhouettes had positive values (mean 0.12 ± 0.61,

Figure 4b).

In the R/R dataset, 12/19 (63%) silhouettes resulted positive using the fingerptint_5

(mean 0.13 ± 0.46, Fig. 5a). Seventeen out of nineteen (90%) silhouettes had positive

values (mean 0.42 ± 0.43) when both nodal and extra-nodal lesions were used (Fig. 5b).

Table 1 Baseline characteristics of HL patients with both nodal and extra-nodal multiple lesions

Non-R/R R/R Overall

Age, years

Median and range 46 (19–66) 33 (24–71) 35 (19–71)

Sex

Male 5 15 20

Female 3 4 7

Target HL lesions, n

Nodal 48 105 153

Extra-nodal 50 134 184

Bone 46 84 130

Liver 2 5 7

Lung – 19 19

Spleen 2 24 26

Other – 2 2

Overall (nodal + extra-nodal) 98 239 337

Mean lesion number ± standard deviation 12 ± 9 13 ± 11 12 ± 10

Median lesion number, range 10 (4–27) 9 (3–40) 9 (3–40)
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The introduction of extra-nodal lesions improved the silhouette index in 3 and in 5

patients in non-R/R (Fig. 4c) and R/R datasets (Fig. 5c), respectively. Overall, these re-

sults demonstrated a higher intra-patient lesion similarity in the R/R dataset than in

the non-R/R.

Inter-patient similarity

Datasets for inter-patient similarity analysis

Eighty-five patients resulted to have multiple lesions (Table 3 and Fig. 1). Eighteen out

of 27 non-R/R patients had only lymph nodal lesions, while 9/27 patients had both

lymph nodal and extra-nodal lesions.

In the R/R dataset, 36/58 patients had only lymph nodal lesions, 20/58 patients had

both lymph nodal and extra-nodal lesions, and 2/58 patients had only extra-nodal

lesions.

When one lesion was used for the classification (setting 1), the training set included

22 non-R/R and 37 R/R lesions, while the test set included 9 non-R/R and 17 R/R

lesions.

When all lesions were used for the classification (setting 2), the training set included

115 non-R/R and 255 R/R lesions, respectively. The test set included 57 non-R/R and

116 R/R lesions, respectively.

Fingerprints for inter-patient similarity analysis

Intra-patient lesion similarity analysis results, with mean/median silhouette values

below 0.5 (low similarity especially in the non-R/R group), did not support the random

choice of a target lesion for inter-patient similarity analysis. Therefore, two alternative

approaches were tested for classification. Firstly, the largest nodal or extra-nodal lesion,

as for conventional approach, was used for the classification (fingerprint_One). The fin-

gerprint_All was built using all nodal and extra-nodal lesions. Details about fingerprints

built for inter-patient similarity analysis, including the volume highly correlated and

unrelated features, are provided in Table 4.

Inter-patient similarity analysis

The classification accuracy based on fingerprint_One was 62% with 78% of sensitivity

and 53% of specificity in the test set.

The silhouette value significantly discriminated non-R/R from R/R (odds ratio =

1.85). Therefore, it was included in the RUBTE as grouping factor for lesions belonging

to the same patient. The RUBTE sensitivity and specificity in the test set were 70% and

88%, respectively (accuracy = 82%).

When lesions were aggregated at patient’s level through the “majority vote,” the abil-

ity in discriminating R/R raised to 89% (accuracy = 73%), but a significant loss in sensi-

tivity was observed (38% versus 88%).

Discussion
We proposed a volume-related feature selection approach to reduce dimensionality and

identify those parameters that are relevant for HL characterization. It is known that a

multitude of radiomics parameters are strongly correlated one to another, implying
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high redundancy that affects radiomics models’ performance. Dimensionality reduction

and feature selection are crucial mandatory steps before any modeling (Sollini et al.,

2020; Park et al., 2019). In fact, as recommended, an adequate ratio between the num-

ber of features and the number of patients should be preserved. Additionally, lesion

morphology and size in lymphoma patients are similar within and among patients.

Therefore, radiomics features unbiased from the volume and shape descriptors need to

be identified in radiomics applications in lymphoma. Our approach allowed us to select

a set of features (ranging from 2 to 15) to be used for model building. The main advan-

tage of the proposed method for features reduction and selection relies on the concept

that a fingerprint, comprising volume-related and non-volume related features, is able

to represent all the lesions of a patient.

In view of the multisite disease, identification of the lymphoma lesion to be processed

for radiomics analyses is crucial. We proposed an innovative approach for radiomic-

wise lesion similarity assessment to provide the evidence for target selection. Conven-

tionally, the largest lesion or the one with the highest FDG uptake is used but the ra-

tionale for this method has never been supported by any evidence. We demonstrated

that the lesions within a patient may show different grades of similarity. Intra-patient

Fig. 3 Histograms of the silhouette values. Histogram of the silhouette values of lymph nodal lesions in non-
relapsing/refractory (a) and relapsing/refractory (b) patients. The overlap of two histograms (c) shows a more uniform
distribution of the silhouettes in the non-relapsing/refractory compared to the relapsing/refractory ones

Fig. 4 Silhouette results among non-relapsing/refractory patients. Patient-wise silhouette among non-
relapsing/refractory patients with lymph nodal (a) and all (b) lesions. Variations of patient-wise silhouette
with/without extra-nodal lesions (c)
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lesion similarity within R/R patients was higher compared to non-R/R. Interestingly,

intra-patient lesion similarity in the R/R dataset was confirmed also when extra-nodal

lesions were included in the analysis. In the non-R/R group, the addition of extra-nodal

lesions to nodal ones had a minor effect on similarity.

The non-relapsing/refractory (non-R/R) group is a homogeneous subset of patients; it

included all cases before treatment initiation, and they were included in one single in-

stitution. On the other hand, the relapsing/refractory (R/R) group included patients

treated with several lines of treatment coming from different centers. These two sce-

narios allowed us to explore lesion similarity in two opposite situations. Furthermore,

we aimed at identifying a radiomic fingerprint that could be representative of HL le-

sions irrespective of all the variables, with the long-term goal of wide application of the

fingerprint among different centers. We, indeed, found that the R/R, even if it could be

Fig. 5 Silhouette results among relapsing/refractory patients. Patient-wise silhouette among relapsing/
refractory patients with lymph nodal (a) and all (b) lesions. Variations of patient-wise silhouette with/
without extra-nodal lesions (c)

Table 3 Baseline characteristics of HL patients with multiple lesions

Non-R/R R/R Overall

Age, years

Median and range 42 (19–66) 33 (19–74) 35 (19–74)

Sex

Male 15 37 52

Female 12 21 33

Target HL lesions, n

Nodal 121 227 348

Extra-nodal 51 144 195

Bone 47 89 136

Liver 2 5 7

Lung – 24 24

Spleen 2 24 26

Other – 2 2

Overall (nodal + extra-nodal) 172 371 543

Mean lesions number ± standard deviation 6 (± 6) 6 (± 8) 6 (± 7)

Median lesions number, range 4 (2–27) 4 (2–40) 4 (2–40)
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expected to be more heterogeneous, resulted to have higher intra-patient similarity as

compared to non-R/R.

It should be acknowledged that the number of observations (i.e., lesions) may have

partially affected these findings. However, we did not expect to provide definitive re-

sults but to propose a methodological framework for future investigations. Indeed, our

“proof-of-concept” approach resulted encouraging for further development for response

prediction. We foresee the necessity of research in this direction since among the avail-

able studies, the bias related to a significant disproportion between the patient groups

(responders vs non-responders being the latter less than 10% of the whole cohort (Mil-

grom et al., 2019)) may have significantly influenced the results. Additionally, the intra-

patient lesion similarity in non-R/R patients was scarce even when a higher number of

lesions were analyzed (Fig. 3a), suggesting that this group of patients was intrinsically

more heterogenous. This finding was expected since non-R/R HL, naïve from any treat-

ment, included patients who later on experienced long-term response, relapse, and re-

fractory disease; therefore, it was the most heterogenous group. Conversely, R/R

patients may be biologically more homogeneous, since treatments might result in re-

sistant clones’ selection. Moreover, the non-neoplastic cells of tumor microenvironment

Table 4 Fingerprints construction for inter-patient similarity analysis

Fingerprint_One Fingerprint_All

Dataset HL, type Non-R/R + R/R Non-R/R + R/R

Patients, n 85 85

Subset Lesions, site Nodal or extra-nodal Nodal + extra-nodal

Lesions, n 85 543

Features volume-related Name TLG
Volume_mL
Volume_vx
Compacity
GLNUGLRLM

RLNUGLRLM

GLNUGLZLM

ZLNUGLZLM

TLG
Volume_mL
Volume_vx
Compacity
CorrelationGLCM
GLNUGLRLM

RLNUGLRLM

Coarseness NGLDM

Busyness NGLDM

LZEGLZLM
LZHGEGLZLM
GLNUGLZLM

ZLNUGLZLM

ZPGLZLM

Number 8 14

Features non-volume-related Name SUVmean
SUVQ2
SUVQ3
Entropy_log10 HISTO

Entropy_log2 HISTO

EnergyHISTO
LGREGLRLM
HGREGLRLM
SRHGEGLRLM
LRLGEGLRLM
LRHGEGLRLM
HGZE LZLM

SUVQ3
Entropy_log10 HISTO

Entropy_log2 HISTO

HGREGLRLM
SRHGEGLRLM
LRHGEGLRLM
HGZEGLZLM

Number 12 7

PCA retained transformed features (mapping volume + non-
volume data)

2 + 2 7 + 2

HL Hodgkin’s lymphoma, n number, non-R/R non-relapsing/refractory, PCA principal component analysis, R/R relapsing/
refractory. For the full spelling of the feature and matrixes names, please refer to the supplementary material
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have been claimed as one of the main determinants responsible for pathogenesis and pro-

gression of HL (Mottok & Steidl, 2018; Calabretta et al., 2019). Infiltration of the tumor

microenvironment by CD68+ and CD163+ macrophages, Treg and CD4+ T cells (espe-

cially with Th2 phenotype), and high CD4/CD8 ratio is associated to the emergence of re-

sistance to conventional therapy, and a worse prognosis. Additional factors that

dysregulate tumor microenvironment promote a vicious loop between malignant cells

and the components of the tumormicroenvironment stimulating resistance to treatment

and disease progression. These factors include the recruitment of tumor-associated mac-

rophages, the secretion of cytokines with macrophage chemotactic activity reinforced by

the reactive cells, the activation of fibroblasts promoted by molecules secreted by malig-

nant cells, the expression of surface antigens (e.g., CD30L, CD40L) by inflammatory cells

that act as survival signals for the neoplastic cells, and the aberrant activation of signaling

pathways (e.g., NF-κB, PI3K) (Karantanos et al., 2017) promote a vicious loop between

malignant cells and the components of the tumor microenvironment stimulating resist-

ance to treatment and disease progression (Karantanos et al., 2017). Of note, evidence

suggests that [18F]FDG uptake is more likely related to elements of microenvironment ra-

ther than malignant HL cells (Gillessen et al., 2020; Barrington & Mikhaeel, 2014; Shim

et al., 2009). Accordingly, our findings are in line with the fact that heterogeneity of the

tumor microenvironment in naïve patients is more pronounced than that of R/R patients.

Therefore, our results support the need for development of a radiomics fingerprint in a

large cohort of naïve patients. Essentially, in this analysis, we explored and developed a

framework for radiomics analysis in lymphoma. Simultaneous presence of many lesions is

a typical finding in lymphoma, and recent data on molecular profiles suggest lesions’ het-

erogeneity (Spina et al., 2018; Banerjee, 2011).

The question, related to the choice of which and/or how many lesions, which guide

the disease, and need to be processed, is unresolved. In image mining studies, one pos-

sible approach to address this issue is the choice of the largest and/or the most meta-

bolically active lesion, as for conventional image analysis and adopted by previous

studies (Ben Bouallègue et al., 2017; Tatsumi et al., 2019). However, large heteroge-

neous lesions (often necrotic or with multiple uptake peaks) may underestimate the

volume (El-Galaly et al., 2018; Carles et al., 2017) and influence texture measurements.

On the other hand, all the lesions could be considered for radiomics analysis. As dem-

onstrated in the present study, enriching the analysis through the use of the informa-

tion derived from all lesions improved the classification performance. Results of the

classifier using the largest lesion were not satisfactory (accuracy = 60%), but the small

sample size prevents any speculation about their reliability. Conversely, the RUBTE

provided promising results when all lesions were used for the analysis, similarly to the

previous investigations (Lue et al., 2019; Ganeshan et al., 2017; Parvez et al., 2018;

Mayerhoefer et al., 2019). Unlike in the study by Milgrom et al., the authors found the

mediastinal lesion-derived features could predict patient outcome, while features ex-

tracted from all lymphoma sites did not predict refractory disease (Milgrom et al.,

2019). Overall, segmentation or annotation of all lesions is time-consuming and could

hardly be implemented into the clinical routine practice. Therefore, suitable trade-off

considering the number of cases at hand and the needed predictive power is necessary.

HL typically involves more than one site, and lesions different in size may co-exist.

We found that the PCA-derived information mapping volume data outnumbered non-
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volume ones in almost all cases, with the exception of fingerprint_One—the one built

on the largest lesion. Therefore, the huge variability in lesions’ size within patients re-

quired more covariates (i.e., features) to characterize the lesions and to be inclusive for

all lesions. Our results are encouraging for exploring the proposed framework in larger

multicenter trials. We foresee a replication study to confirm our data. Secondly, we

propose that future radiomics investigations on lymphoma have to rely on the radio-

mics features derived from all the lesions of a patient. The approach we developed may

be applied also for solid tumor studies if multiple lesions are present, in order to under-

stand from which lesion (primary, secondary or all) to extract the features for modeling

and predictions.

Some limitations should be acknowledged including the retrospective design and

sample size, even if the involvement of more centers conferred strength to results. We

pooled features extracted from images acquired using different scanners (Orlhac et al.,

2018). On the other hand, we did not search for feature cutoff in the analysis. More-

over, we had previously demonstrated that scanners and image postprocessing did not

affect final results (Kirienko et al., 2018). Additionally, to test our research hypothesis,

we evaluated the lesions within the same patient; therefore, the scanning protocol and

postprocessing were consistent among lesions. We developed a fingerprint for each

group of patients. Obviously, the development of one fingerprint representative for all

lesions regardless the site (nodal or extra-nodal) and the dataset (non-R/R or R/R)

would be the ultimate goal. However, the primary aim of this preliminary analysis was

to test if really radiomics differed in non-R/R and R/R (i.e., define a methodological

framework to demonstrate the potential predictive value of radiomics in HL). Back-

ground activity may affect segmentation and, consequently, feature calculation. None-

theless, the introduction of extra-nodal lesions improved the silhouette index in non-R/

R (Fig. 4c) and R/R datasets (Fig. 5c), respectively. We could speculate that, irrespective

of the possible issues in extra-nodal lesions segmentation, lesion texture did not result

in higher inhomogeneity. However, these results should be confirmed in larger datasets,

since in our cohort only 27 patients had extra-nodal lesions. When lesions were adja-

cent to areas of high physiological uptake, we avoided to include those lesions for

radiomics analysis in order not to introduce a bias in lesion segmentation. We operated

that choice since we expected it to be more robust and generalizable for future studies.

Additionally, we decided to avoid considering diffuse uptake disease in bone, spleen,

and liver in the present analysis in order not to introduce a potential bias in image in-

terpretation since diffuse uptake may have been related to both disease infiltration and

functional activation. Lastly, within the inter-patient analysis, we compared patient

populations in two different settings—naïve patients at staging (non-R/R) and patients

candidate to immunotherapy who failed several lines of treatment (R/R). This choice

was based on the expectation that the class of non-R/R HL accounting for patients that

did not recurred after at least 4 years from first-line treatment completion (i.e., cured

HL) would have differed the most from the class of R/R.

Conclusions
We proposed a novel approach for radiomics feature selection that allowed to build pa-

tient representative radiomics signatures. Lesion similarity analysis was developed, and

it allowed to demonstrate that HL lesions were not homogeneous within the patients in
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terms of radiomics signature. Therefore, a random target lesion selection should not be

adopted for radiomics applications. Moreover, the classifier to predict R/R vs non-R/R

performed the best when all the lesions were used. This implies that the largest lesion

is not reliable, and that the information coming from different lesions contribute to pa-

tient outcome prediction.
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