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Abstract: Mechanotransduction translates forces into biological responses and regulates cell
functionalities. It is implicated in several diseases, including laminopathies which are pathologies
associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle,
adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging.
Although the exact mechanisms governing laminopathies and gene expression are still not clear,
a strong correlation has been found between cell functionality and nuclear behavior. New theories base
on the direct effect of external force on the genome, which is indeed sensitive to the force transduced
by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction
pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type
lamin mutation and deregulation has been found to affect the nuclear response, altering several
downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription,
and nuclear structural integrity. In this review, we summarize the recent findings on the molecular
composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation.
We focus on A-type lamins since this protein family is the most involved in mechanotransduction
and laminopathies.

Keywords: lamin A/C; mechanotransduction; laminopathy; gene regulation; lamin partners;
Hutchinson Gilford progeria syndrome; Emery-Dreyfuss muscular dystrophy

1. Introduction

Cells perceive different types of stress, ranging from whole-body forces, such as the gravity shear
stress of the blood flow, to the microscopic forces induced by interaction with their microenvironment
through chemical, electrical, or mechanical cues, such as extracellular matrix stiffness and topography.
The mechanotransmission pathway, which transfers the stimuli from the outside of the cell deep into the
cell, starts from the extracellular matrix (ECM), goes through several cellular elements, and reaches the
cell nucleus eliciting gene expression [1]. The process begins at the interface between the ECM and cells,
where the external environment alters the size and orientation of the focal adhesions which, in turn,
cause cytoskeletal rearrangements within the cell. The cytoskeleton is a dynamic network of proteins
extending from the plasma membrane to the cell nucleus. It is composed of three main components,
microtubules, actin filaments, and intermediate filaments, each of them capable of rapid growth or
disassembly, according to the cell requirements. The cytoskeleton regulates and mediates vesicular
trafficking and cellular signaling, but primarily it confers mechanical stability to the cell and transmits
forces from the cytosol to the cell nucleus [2–5]. At the nuclear envelope, the stimulus is then internalized
via the LInker of Nucleoskeleton and Cytoskeleton (LINC) complexes, which mediate the connection
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between the cytoskeleton and the nuclear lamina [6–8]. The nuclear lamina is a thin, but dense, protein
meshwork under the inner nuclear membrane, composed of karyoskeletal intermediate filament
proteins, named lamins [9–11]. The nuclear lamina gives mechanical stability to the nucleus and plays
a fundamental role in other cellular functions, such as nuclear localization, cell migration, chromatin
organization, epigenetic regulations, and DNA replication and repair [12–17]. Interestingly, the nuclear
lamina also plays a role in both tissue regeneration as well as in cancer and laminopathies, including
forms of cardiomyopathy, muscular dystrophy, lipodystrophy, and aging-related progeria [18–22].
Consequently, understanding the role of lamins in nuclear processes is a key step in revealing the
mechanisms behind human diseases and to learn how to treat such diseases. In this review we thus
focus on the A-type lamins, the most involved ones in the mechanotransduction process. We then
examine the correlation between A-type lamin mutations and laminopathies.

2. Lamins

Lamins are the main structural constituents of the nuclear lamina, a mesh-like structure that
supports the integrity of the cell nucleus [9,23,24]. In mammalian cells, there are seven lamin isoforms,
all of which are a member of the type V intermediate filament (IF)-family. Lamins are classified into
two main categories: A-type and B-type. The first group includes the lamins A and C, and the minor
isoforms A∆10 and C2, all resulting from the alternative splicing of the LMNA gene. The second group
includes lamin B1, coded by the gene LMNB1, and lamins B2 and B3 from the alternative splicing of
the LMNB2 gene. In human somatic cells, the main lamins are A, C, B1, and B2. The isoforms A∆10
are expressed in tumor cells, and C2 and B3 have been detected only in the germ cells [25–29].

Lamins are dynamic proteins that aggregate and separate according to different stimuli, supplying
distinct mechanical properties to the lamina meshwork. To understand how lamins are rearranged,
both in vitro and in vivo approaches have been used. In the 1990s, in vitro studies showed that A- and
B-type lamins create a mix of heterodimers that together form a half-staggered paracrystalline array.
However, these arrays are observed only after the extreme overexpression of lamins, and it seems
that they can only be formed in in vitro experiments [30,31]. In fact, in vivo studies performed with
3D-highly-resolved microscopy techniques and by studying lamin knockout and knockdown or their
mutations, indicate that A- and B-type lamins form separate networks that overlap below the nuclear
membrane and play different roles in cell activities [32–38]. It is also known that A-type and B-type
lamins are differentially expressed according to the cell phenotype [24,32]. In particular, the B-type
lamins are constitutively expressed by cells during development, and because they are essential for
organogenesis, vital cellular processes cannot take place without them [39,40]. In fact, studies on mice
that are lacking lamins B1 and/or B2, reported death shortly after birth with severe defects in neuronal
development [41–43]. This essential role of B-type lamins in cell viability explains the limited number
of mutations observed in LMNB genes and the consequent lower number of associated heritable
diseases (see Section 5) [44,45]. Nevertheless, lamin B1 may be involved in cellular senescence, due to
its reported loss in senescent cells [46–48]. Instead, A-type lamins are predominantly expressed in
the most differentiated cells (except for certain cells of the hematopoietic system and mammalian
germ cells), and play a pivotal role during their differentiation [49–51]. Indeed, while the nuclei in
embryonic stem cells are extremely soft, with a low expression of A-type lamins, the nuclear stiffness
and the number of A-type lamins increase during cell differentiation and embryonic development.
Unlike B-type lamins, a lack of A-type lamins is not incompatible with cellular life, as highlighted
by the various mutations of A-type proteins causing the heritable diseases known as laminopathies.
These kinds of disorders manifest themselves predominantly in mesenchymal tissues and include
forms of lipodystrophy, muscular dystrophy, cardiomyopathy, and aging-related progeria [14].

All the lamins are characterized by similar amino-acid sequences and molecular structure,
which differ in terms of molecular weights: LMNA-encoded lamins A, AD10, C correspond to 70, 66,
and 61 kDa, respectively, and B-type lamin isoforms correspond to 67/68 kDa. All these proteins consist
of three structural domains: A N-terminal head, a central coiled-coil region, and a large globular
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carboxyl-terminal tail (indicated in orange, pink-red, and with dotted line, respectively, in Figure 1) [25].
The amino-terminal head consists of an unstructured variable sized region. Instead, the central α-helical
rod domain is highly structured and spans almost half of the entire protein (about 350 residues) and it
is arranged in at least three α-helical segments (coil 1A, coil 1B, and coil 2), characterized by typical
coiled-coil heptad-repeat pattern and connected by short intermediate sub-domains termed L1 and
L12 [23]. The carboxyl-terminal tail domain includes an immunoglobulin-like (Ig-) fold domain,
the nuclear localization signal (NLS) for lamin transport into the cell nucleus, the chromatin binding
site and, except for lamin C, a cys-aliphatic-aliphatic-any residue box (CAAX) [23,52,53]. The Ig-fold
domain mainly consists of two β-sheets, made up of five and four β-strands, respectively, connected
by a short loop forming a compact β-sandwich [54]. Lamin C is translated as a mature protein [55] and
lacks 98 C-terminal amino acids present in pre-lamin A, including the −CAAX box [56,57]. Instead,
B-type lamin proteins and lamin A protein, are initially translated in the prelamin form, characterized
by specific -CAAX box (CSIM, CAIM, and CYLM for lamin A, B1, and B2, respectively), tied to the end
of the C-terminal domain [58–61]. The prelamin forms are subjected to post-translational modifications
to reach the respective mature forms [55,60,62]. The post-translational modification begins with the
farnesylation of the C-terminal cysteine, via the farnesyltransferase enzyme (Ftase) that adds a 15-carbon
farnesyl isoprenoid to the carboxyl terminal cysteine [59,63]. The three residues (aaX) are then cleaved
off by the prenyl-CaaX-specific endoprotease: while the RAS converting enzyme 1 (Rce1), also known
as Farnesylated proteins-converting enzyme 2 (FACE-2), acts on the B-type lamins, both Rce1 and
zinc metalloproteinase Ste24 homologue (Zmpste24), also known as Farnesylated proteins-converting
enzyme 1 (FACE-1), can be responsible for the cleavage of prelamin A [64,65]. Then the carboxyl terminal
cysteine is carboxymethylated by the isoprenylcysteine carboxyl methyltransferase (ICMT). While the
mature B-type lamins permanently maintain this form, which facilitates their stable localization
at the nuclear envelope, pre-lamin A undergoes an additional step [66]. Indeed, pre-lamin A is
subjected to Zmpste24-dependent cleavage between Tyr-646 and Leu-647, resulting in the removal
of the last 15 amino acids, releasing the mature lamin A [67–70]. Mature lamin A terminates at
Tyrosine 646 (Y646) and has 18 amino acids less than its precursor [52]. Figure 2 shows the lamin A
post-translational modifications during maturation. The B-type lamin permanent farnesyl moiety plays
a relevant role in B-type lamins localization in cell cycle. During the cell cycle, lamins show several
other types of post-translational modifications such as sumoylation, ubiquitylation, and acetylation,
which are involved in lamin turnover and lamin translocation to the cell nucleus [71–73]. The only
easily-reversible modification is phosphorylation, which enables a rapid alternation between the
activation/inactivation protein states [58]. This process governs lamin functions, such as its targeting
to specific locations or the immobilization of interacting protein complexes. Above all, it regulates
lamin A/C solubility and controls the lamina meshwork formation [58,74,75]. Phosphorylation is a
modification required at the onset of mitosis and during interphase, and involves several protein
kinases (e.g., Cdk1, Cdk4, Cdk6) [58,68,76–79]. During mitosis, the nuclear envelope breaks down,
and the nuclear lamina dismembers; while the phosphorylated A-type lamins are solubilized in
the cytoplasm and the nucleoplasm, B-type lamins maintain close associations with the nuclear
envelope due to its farnesyl moiety, as shown by Moir et al. by using confocal fluorescence imaging
of PAM cells expressing green fluorescent protein (GFP)–laminA and (GFP)–laminB fusion proteins.
During G1 phase, the phosphorylation process guarantees lamin turnover, during which non-essential
A-type lamins are degraded and the others are reassembled into the nuclear lamina [38,74]. However,
irrespective of the cell cycle phase, phosphorylation modulates the solubility of the intermediate
filament proteins driving lamina assembly/disassembly, as a mechanosensing response to external
mechanical stimuli [80,81]. The tension-induced changes in A-type lamins, suppressing the affinity
to the kinases, explain the high lamin turnover process [82]. This highly transient attitude of A-type
lamins is shown by dynamic studies on GFP-lamin A proteins. For example, Bronshtein at al. used
continuous photobleaching (CP) experiments to extract the ratio of free-to-bound lamin A in the cell
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nucleus. They observed that the fraction of freely diffusing lamin A in the nucleoplasm was ∼60%,
meaning that 40% of lamin A was bound immobile [83].Cells 2020, 9, x 4 of 35 

 

 
Figure 1. The general structure of lamins. From top to bottom: single chain structure, dimer 
organization and tetramer structure. The structural organization of human lamins consists of head, 
central rod, and C-terminal tail containing the globular Ig-like domains. Dotted lines represent 
unstructured regions. The central rod domain is divided into the three coiled coil domains C1a, C1b, 
and C2, separated by the flexible linkers L1 and L12. Two single chains associate with their coiled coil 
domains to form parallel (polar) homodimers, which bind other identical homodimers via head-to-
tail interactions thus forming a polar structure (chain A and chain B). In line with other IF structures, 
the homodimers interact laterally with other identical homodimers arranged in an antiparallel way. 
The resulting structure is an antiparallel (apolar) tetrameric filament (chain A, chain B, chain C, and 
chain D). 

 
Figure 2. Prelamin A post-translational modifications during the maturation phase. (a) Cysteine 
farnesylation of prelamin A at the -CAAX box by Farnesyltransferase enzyme (FTase). (b) Hydrolysis 
of –aaX motif by either RCE1 or ZMPSTE24 enzyme and C-terminal methylation at terminal cysteine 
via ICMT. (c) Mature lamin A structure after the cleavage of the last 15 amino acids via ZMPSTE24 
enzyme. 

Regardless their differences in terms of stability at the nuclear periphery, all lamin types arrange 
in a similar way to form the lamina network. In particular, the process starts with the dimer assembly, 

Figure 1. The general structure of lamins. From top to bottom: single chain structure, dimer organization
and tetramer structure. The structural organization of human lamins consists of head, central rod,
and C-terminal tail containing the globular Ig-like domains. Dotted lines represent unstructured regions.
The central rod domain is divided into the three coiled coil domains C1a, C1b, and C2, separated by the
flexible linkers L1 and L12. Two single chains associate with their coiled coil domains to form parallel
(polar) homodimers, which bind other identical homodimers via head-to-tail interactions thus forming
a polar structure (chain A and chain B). In line with other IF structures, the homodimers interact
laterally with other identical homodimers arranged in an antiparallel way. The resulting structure is an
antiparallel (apolar) tetrameric filament (chain A, chain B, chain C, and chain D).

Cells 2020, 9, x 4 of 35 

 

 
Figure 1. The general structure of lamins. From top to bottom: single chain structure, dimer 
organization and tetramer structure. The structural organization of human lamins consists of head, 
central rod, and C-terminal tail containing the globular Ig-like domains. Dotted lines represent 
unstructured regions. The central rod domain is divided into the three coiled coil domains C1a, C1b, 
and C2, separated by the flexible linkers L1 and L12. Two single chains associate with their coiled coil 
domains to form parallel (polar) homodimers, which bind other identical homodimers via head-to-
tail interactions thus forming a polar structure (chain A and chain B). In line with other IF structures, 
the homodimers interact laterally with other identical homodimers arranged in an antiparallel way. 
The resulting structure is an antiparallel (apolar) tetrameric filament (chain A, chain B, chain C, and 
chain D). 

 
Figure 2. Prelamin A post-translational modifications during the maturation phase. (a) Cysteine 
farnesylation of prelamin A at the -CAAX box by Farnesyltransferase enzyme (FTase). (b) Hydrolysis 
of –aaX motif by either RCE1 or ZMPSTE24 enzyme and C-terminal methylation at terminal cysteine 
via ICMT. (c) Mature lamin A structure after the cleavage of the last 15 amino acids via ZMPSTE24 
enzyme. 

Regardless their differences in terms of stability at the nuclear periphery, all lamin types arrange 
in a similar way to form the lamina network. In particular, the process starts with the dimer assembly, 

Figure 2. Prelamin A post-translational modifications during the maturation phase. (a) Cysteine
farnesylation of prelamin A at the -CAAX box by Farnesyltransferase enzyme (FTase). (b) Hydrolysis of
–aaX motif by either RCE1 or ZMPSTE24 enzyme and C-terminal methylation at terminal cysteine via
ICMT. (c) Mature lamin A structure after the cleavage of the last 15 amino acids via ZMPSTE24 enzyme.
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Regardless their differences in terms of stability at the nuclear periphery, all lamin types arrange
in a similar way to form the lamina network. In particular, the process starts with the dimer assembly,
which is the fundamental soluble unit of the lamina; lamins dimerize using their α-helical heptad repeat
periodicity, where amino acids in positions “a” and “d” contain preferentially hydrophobic residues,
while repeats “e” and “g” are charged residues. A hydrophobic seam runs along the α helix axis,
acting as a dimerization interface between the two parallel-oriented proteins. The two α helixes are
coiled around each other, thus resulting in lamin dimerization. The dimers then aggregate head-to-tail,
forming small polymer filaments. Although these filaments are then rearranged into a regular woven
meshwork pattern, their assembly mechanism and the 3D structure are not well understood [9,23].
In fact, because of its intrinsic flexibility the lamin structure has been determined only by low-resolution
electron microscopy. The high-resolution X-ray technique only solved the limited and short fragments
listed in Tables 1 and 2 [84]. Recent studies support the hypothesis that lamin filament tetramers
assemble in cross-sections. However, while in vitro tests have shown that lamins are organized in
10 nm thick-filaments [23,85], cryo-electron tomography tests have revealed that lamins assemble into
thinner fibers (about 3.5 nm thick), with a larger globular zone only at the Ig-fold domain [9]. In this
context, Ahn et al. proposed a new model describing the tetrameric arrangement of lamins, which is
consistent with the 3.5 nm thickness restriction and the two proposed binding regions, named eA22 and
A11 [23,86]. To facilitate the comprehension of the model, Figure 3 reports the polar dimer structure as
a single chain. Further studies are required to validate the proposed model.
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Figure 3. Tetrameric structure of the lamins proposed by Ahn et al. The structure of the polar dimers is
reported as a single chain. In this innovative model, both the interactions A11 (C1b domain interaction)
and eA22 (C2 domain interaction) are satisfied, while still maintaining the antiparallel layout of
the dimers.

Cells can modulate the nuclear biophysical properties by changing the phosphorylation level of the
lamins, thereby affecting both the structural lamina conformation and stiffness [87]. Cells also react in
response to the extracellular stimuli by modulating the lamins expression levels, thus highlighting the
major role of the A-type lamins in nuclear stiffness [8,16]. In fact, under stress, A-type lamin-deficient
cells exhibited reduced nuclear stiffness, misshapen nuclei, and decreased cell viability; whereas
lamin B1-knockdown cells had no effect on the nuclear stiffness, but increased nuclear blebbing
and altered nuclear integrity, which are correlated to scarcity in cell survival [11,16]. There are also
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mild variations in the lamina levels that affect fundamental cell processes, such as the cells ability to
differentiate. For instance, Discher et al. demonstrated that A-type lamin expression increases about
30-fold from soft (like brain) to stiff (bone) tissue, while B-type expression differed less than 3-fold.
In accordance with their constitutive expression, B-type lamins are not sensitive to mechanochemical
regulation [82,88,89]. While it is possible to consider the amount of B-type lamins as being constant,
mass spectrometry has shown an A-type lamin expression level proportional to E0.7, where E represents
the tissue microelasticity. The coefficient 0.7 is calculated as a geometric mean between A and C lamins,
even though the specific scaling factors are 1.0 and 0.5, respectively. It is therefore evident that B-type
lamins dominate in the soft tissue, while A-type lamins play a key role in guiding cell functions in
stiff tissues [82,89], in fact its expression level correlates with cell phenotype [50,90,91]. For example,
in mesenchymal stem cells (MSCs), A-type lamins are almost absent during stemness maintenance
but increase during differentiation; low levels of lamins have been found during the adipogenic
differentiation but increase during the differentiation to chondrogenic and osteogenic phenotypes as
shown in [92] by single cell immunofluorescence and by immunoblot experiments. This trend has
been confirmed by in vivo tests using histological and micro computed tomography measurements
of mouse femurs. The results showed that in mice lacking A-type lamins, bone loss occurs due to a
preferential MSC differentiation toward adipocytes and not osteoblasts. Moreover, Li et al. determined
the femoral bone loss observing a significant decrease in trabecular number, an increase in trabecular
separation, and a much lower cortical thickness. These data suggested that the MSC preferential
differentiation toward adipocytes is a key feature in age-related bone loss. [93].

Table 1. Wild type human lamin A/C fragments obtained by X-ray.

PDB Code Segment X-ray Resolution a.a. Chain

1X8Y [94] Coil 2B 2.2 Å 305–389 Single chain (A)
3V5B [95] Coil 2B 3 Å 313–386 Single chain (A)
1IFR [54] Globular domain 1.4 Å 436–552 Single chain (A)
2XV5 [96] Coil 2B 2.4 Å 328–398 Dimer (A + B)
6SNZ [86] Coil 1B 2.6 Å 65–222 Tetramer (A + B + C + D)
6JLB [23] Head-coil 2 3.2 Å 1–300 Tetramer (A + B + C + D)

The table lists the fragments PDB codes, the corresponding domains, the X-ray resolutions achieved, the amino
acids involved, and the name of the solved chains of the A-type lamins.

Table 2. Wild type human lamin B1 fragments obtained by X-ray.

PDB Code Segment X-ray Resolution a.a. Chain

3UMN [97] Globular domain 2 Å 428–550 Trimer (A + B + C)
3TYY [97] Coil 2B 2.4 Å 311–388 Dimer (A + B)

The table lists the fragments PDB codes, the corresponding domains, the X-ray resolutions achieved, the amino
acids involved and the name of the solved chains of the lamin B1.

3. Lamin Binding Partners

Lamins are located in the cell nucleus. Once reticulated in a mesh forming the lamina, they localize
close to the nuclear envelope (NE), where they interact with several other proteins. Although most of the
NE-associated proteins directly bind to A- and/or B-type lamins, others need mediators [68,98]. A-type
lamins anchor proteins involved in cell signaling and chromatin remodeling. Lamins are thus involved
in a wide range of nuclear functions, such as cell proliferation, cell migration, genome organization,
and DNA repair, as well as serious diseases, such as laminopathies [99–102]. Lamin binding partners
are divided in the three main groups. The architectural partners connect lamins to the nuclear envelope,
chromatin, or other subnuclear structures, thus providing nuclear mechanical support. The signaling
partners that are involved in the regulation of many cellular functions, such as cell differentiation and
homeostasis. The chromatin and gene-regulatory partners that regulate chromatin localization and
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gene expression. Table 3 summarizes the main binding partners of lamin A/C and their interaction
domains. Figures 4 and 5 represent protein localization and protein-lamin A/C connections.

Table 3. Main binding partners of human lamin A/C.

Binding Partner Description A-Type Lamin
Binding Region Reference

Lamin B Despite their distinct assembly pathways, “the
stage is set” for the assembly of A-type lamins. ND * [36]

Nuclear Actin

Essential for the integrity of the nuclear
envelope, it mediates chromatin movement

during transcription and mitosis. Failure of this
binding impairs the role of nuclear actin, as

happens in Hutchinson-Gilford Progeria
Syndrome (see details in Section 5).

461–536 and 564–608 [103,104]

Emerin

Protein of the LEM-domain family; it is
relatively immobile in the INM and it anchors

the lamina. It also binds directly to the
barrier-to-autointegration factor (BAF),
retaining chromatin close to the nuclear

envelope during cell interphase and acts on
gene expression inhibition. Loss of emerin

causes Emery-Dreifuss muscular dystrophy
(see details in Section 5).

384–566 [105–107]

LAP1

Integral membrane protein that binds both A-
and B-type lamins. Its role has not been

characterized yet, but it is involved in Primary
dystonia, a central nervous system

laminopathy caused by a mutation in torsin A.

ND * [108]

LAP2α

The most-studied architectural partner for
A-type lamins. It is located inside the nucleus

and is necessary to maintain lamin A/C in a
soluble and low-assembly state. Its binding to
transcriptional regulators suggests its influence
in gene regulation either directly, or indirectly
through the lamins. Mutations in LAP2α which
disrupt the binding to the A lamin are known

to cause dilated cardiomyopathy.

319–566 [101,109–111]

Nesprin 1α

Nuclear membrane protein that directly binds
A-type lamins and emerin and anchors them at

the nuclear envelope. Human fibroblasts
lacking A-type lamins present mis-localized
nesprin 1α and emerin (which are located at

the endoplasmic reticulum level) inducing an
impaired nuclear geometry and peripheral
chromatin loss as occurs in Emery-Dreifuss

muscular dystrophy.

ND * [112,113]

SUN1/2

Essential during cell mitosis. Its important role
has been recently suggested in anchoring and

opening the nuclear pore complex, and
therefore, regulating the nuclear influx of

transcription factors.

389–664 [6,7,114,115]

SREBP1 a/c

Known to activate genes required for
cholesterol biosynthesis and adipocyte

differentiation. They bind the Ig-fold domain of
A-type lamins. Deregulation of this binding is

involved in lipodystrophies.

389–664 [116,117]

MAN1
LEM-domain protein; it binds BAF directly, but

also DNA. It is involved in TGF-β-signaling,
important for bone development.

394–664 [118,119]
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Table 3. Cont.

Binding Partner Description A-Type Lamin
Binding Region Reference

PKCα

Serine/threonine kinase, activated by many
signal pathways and involved in lamin

phosphorylation. Once activated, it translocates
to the nucleus and binds to the A-type lamin

tail to trigger post translational modifications.

500–664 [120]

12(S)-LOX

Lamin binding enzyme 12(S)-lipoxygenase
converts arachidonic acid (AA) to

12(S)-hydroxy eicosatetraenoic acid
[12(S)-HETE] and is involved in the lipid
signaling pathway. It also activates PKCα

mediating prostate tumor cell metastasis.

463–664 [121,122]

cFos

Early response transcription factor
sequestrated at the nuclear envelope by A-type

lamins. During MAP kinase signaling, this
binding is released and c-Fos can facilitate cell

proliferation.

81–219, 243–388 and
453–571 [123,124]

Rb

Transcriptional regulator that has a central role
in cell-cycle control and in apoptosis

mechanisms. It directly binds to A-type lamins
and to LAP2α. It appears that Rb tumor

suppressor activity depends on its attachment
to both proteins.

247–355 [125,126]

MOK2

DNA-binding transcriptional repressor that
modulates gene expression activated by the

cone-rod homeobox protein (Crx), by
competing binding to the same binding sites. It

also seems to influence RNA processing.

243–387 [127,128]

IMPORTIN α

Nuclear import receptor. It is supposed to
prevent lamins from assembling in the

nucleoplasm.
ND * [129]

BAF

Non-specific double-stranded DNA-binding
protein. It can bridge DNA and interacts with

histones. It also binds several transcription
activators including Crx, with an analogous

function to MOK2. Alterations in BAF
expression lead to impaired chromatin

structure, nuclear envelope defects and altered
gene expression.

432–544 [105,107,130,
131]

LAD

Lamina-associated domains containing lowly
transcribed genes. They are dynamic structures
involved in chromosomes organization, gene

repression, and cell differentiation. LAD
disruptions have been correlated to diseases

such as Hutchinson Gilford progeria syndrome
(see details in Sections 4 and 5).

ND * [109,132,133]

Core histones Their interaction with A-type lamins affects
chromatin localization and gene expression. 396–430 [100,102]

PCNA Necessary to activate the DNA replication
machinery, it binds to the Ig-fold domain. 436–552 [134]

DNA

The lamin-DNA interaction occurs directly, but
non-specifically, by contacting the minor

groove. The DNA-binding region is identical in
both lamin A and lamin C. Some lamin A

mutations drastically reduce the DNA affinity,
leading to gene regulation problems.

411–553 [135,136]

* ND = not determined, yet.
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Figure 4. A-type lamin-binding partners at the nuclear envelope (NE) level. Lamina underlines
the nuclear membrane and consists of A-type lamins (in blue) and B-type lamins (in red). Proteins
interacting with A-and B-types lamins are schematized and their localization into the cell nucleus.
The proteins interacting with lamins at the level of the nuclear envelope are thought to have mainly
a mechanical and structural role; proteins bridging directly lamins and chromatin play a key role in
reinforcing the nucleoskeleton and in mechanical regulation of gene transcription; others regulate
cell signaling.Cells 2020, 9, x 10 of 35 
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at its C-terminus. (Bottom) List of A-types lamin binding proteins and their relating binding sites. 
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rearranged at the molecular level (Figure 6D) thus affecting the lamina 3D mesh. Some researchers 
have demonstrated that shear stress applied to isolated nuclei causes the lamin A immunoglobulin 
domain to unfold (Figure 6D). They identified the 522Cys amino acid as a stress-sensitive site, which 
opens the domain, thereby altering the interactions of the lamins [82]. In line with this theory, other 
researchers observed an impaired Ig-fold domain opening in pathologic cells [139,140]. This theory 
is supported by mutations affecting the Ig-fold domain that covers 27% of the total amount of the 
known laminopathic-related mutations. A more detailed analysis is given in Section 5 and reported 
in Figure 8. In the same context, Makarov et al. proposed another lamin molecular structure 
rearrangement according to different stress conditions (Figure 6D). They presented the flexible 
linkers L1, L12 (shown in Figure 1), the additional putative linker, named L3, and the dimer head-tail 
interaction (Figure 2), all as springs involved in the lamina stretch and compaction properties. In in 
vitro conditions, Makarov et al. proposed two possible dimer states named “semi-relaxed” and 
“compression configuration”, compatible with the dimensions (40–50 nm) obtained from rotary 
metal shadowing EM (Figure 7). Electrostatic interaction drives the lamins coiled coils sliding to each 
other favoring the lamin contraction. Moreover, the lamin tail domain plays a relevant function in 
lamins arrangement because of its peculiar positive charge right after the rod domain (aa 403–407). 
This positive charge favors electrostatic interactions, crucial for lamin assembly. In particular, at the 
tetrameric level the positively charged tail allows the crosslinking to the negatively charged coil 1A, 
L1 and coil 1B regions. This flexible connection with the rod at the tetrameric interface would allow 
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Figure 5. A-type lamin-binding proteins and their known binding site. (Top) a scheme of the pre-lamin
A structural domains, schematized in the N-terminal head, the central coiled-coil region (including
the coil 1A, coil 1B and coil 2 shown in the previous figures), and the C-terminal tail including the
Ig-fold domain. The residues bar indicates the positions of the respective amino acids. The amino acids
after residue 646 are normally removed by proteolytic cleavage to generate mature lamin A. Lamin C
is identical to lamin A till residue 566 and contains 6 lamin C-specific amino acids at its C-terminus.
(Bottom) List of A-types lamin binding proteins and their relating binding sites.

4. Lamin A/C Roles in Cell Mechanotransduction

The overall cellular response is activated by the mechanotransduction pathway, where the A-type
lamins play a key role [14,137,138]. Mechanotransduction is the cell capacity to transduce the mechanical
signals into a biological response by acting on several cell functions, such as cell growth or differentiation
and disease progression. In this context, the lamina first acts as a mechanosensor (Figure 6A,B), so that
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it can sense the external stimuli, and then as a mechanotransducer, converting the information into
other cellular responses. Because of mechanical external stimuli, lamins are rearranged at the molecular
level (Figure 6D) thus affecting the lamina 3D mesh. Some researchers have demonstrated that shear
stress applied to isolated nuclei causes the lamin A immunoglobulin domain to unfold (Figure 6D).
They identified the 522Cys amino acid as a stress-sensitive site, which opens the domain, thereby
altering the interactions of the lamins [82]. In line with this theory, other researchers observed an
impaired Ig-fold domain opening in pathologic cells [139,140]. This theory is supported by mutations
affecting the Ig-fold domain that covers 27% of the total amount of the known laminopathic-related
mutations. A more detailed analysis is given in Section 5 and reported in Figure 8. In the same context,
Makarov et al. proposed another lamin molecular structure rearrangement according to different stress
conditions (Figure 6D). They presented the flexible linkers L1, L12 (shown in Figure 1), the additional
putative linker, named L3, and the dimer head-tail interaction (Figure 2), all as springs involved in
the lamina stretch and compaction properties. In in vitro conditions, Makarov et al. proposed two
possible dimer states named “semi-relaxed” and “compression configuration”, compatible with the
dimensions (40–50 nm) obtained from rotary metal shadowing EM (Figure 7). Electrostatic interaction
drives the lamins coiled coils sliding to each other favoring the lamin contraction. Moreover, the lamin
tail domain plays a relevant function in lamins arrangement because of its peculiar positive charge
right after the rod domain (aa 403–407). This positive charge favors electrostatic interactions, crucial for
lamin assembly. In particular, at the tetrameric level the positively charged tail allows the crosslinking
to the negatively charged coil 1A, L1 and coil 1B regions. This flexible connection with the rod at the
tetrameric interface would allow further compression of the entire structure in rest condition. Instead,
under stress condition, the interactions of the lamins are broken, and all the flexible regions of the
lamins are stretched, thereby extending the rod domain via proximal re-organization of electrostatic
and polar interactions [84]. Although the stress-induced rearrangement of the lamins is not clear,
the molecular changes in the lamins alter their interaction with other molecules, affecting the entire
structure of the lamina meshwork (Figure 6F) [141]. In addition to the stress-related changes in terms
of lamin rearrangement, the total amount of lamins is also sensitive to mechanical stimuli. Stem cell
studies have revealed how the physical properties of the environment modulate the expression of
A-type lamins, irrespectively of the initial lamin levels [82,142]. For instance, Swift et al. demonstrated
that glioblastoma tumor cells grown in subcutaneous flank sites, returned a lamin-A:B ratio which
was 1.5-fold higher than the same cells implanted in a mice brain. If B-type lamin expression can be
considered as being almost the same in the two implantations, the increase in A-type lamins in the
flank condition validates their compliance to external stimuli [82]. In relation to the stress-dependent
mechanisms modulating the expression of A-type lamins, there are several theories ranging from the
lamin A-phosphorylation mechanism to the feedback-controlled transcription regulation. For instance,
Buxboim et al. found an increased level of phosphorylated soluble lamins in cells cultured on a soft
matrix. They suggested that there is a stress-mediated A-type lamin localization balance between
the nuclear lamina and the nucleoplasm, which is controlled by phosphorylation [80]. The inverse
correlation between phosphorylation and matrix stiffness has also been reported. For example,
cells cultured on soft tissue (0.3 kPa) showed a wrinkled nuclear envelope and higher phosphorylation
activity, which promote the disassembly and turnover of lamins. On the other hand, cells on a stiffer
matrix (40 kPa) are characterized by flattened, smooth, and stiffer nuclei, with fewer phosphorylated
lamins at amino acid Ser22, which is one of the best characterized phosphorylation sites in lamin
A/C [80,82]. The higher amount of lamins associated with the lamina mesh, in turn increases the
stiffness of the matrix (Figure 6J). The increase in lamina stiffness may also be due to an increase in
the nuclear translocation of some transcription factors, such as the lamin-promoting transcription
factor retinoic acid receptor g (RARG), myocardin-related transcription factor (MRTF), serum response
factors (SRF), and Yes-associated protein 1 (YAP1), which are proteins involved in epigenetic cell
regulation (Figure 6K) [82,143–145]. It has also been demonstrated that A-type lamin knockdown
correlates with inhibited RNA polymerase II transcription and with the suppression of the proteins
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involved in regulating cytoskeletal-related gene activation (Figure 6H) [146]. As a result, the modulated
cytoskeletal transcription provides feedback on the external force transmission to the actin-associated
lamina (Figure 6R) [25]. Although the lamina role in the transcription factor translocation is not
clear, two hypotheses have been developed. They both focus on the nuclear pore complex (NPC),
a multiprotein structure which spans the nuclear envelope and is the only gate for the nuclear transport
of macromolecules [8,74,147,148]. The first theory suggests a binding mechanism between the nuclear
pore and the lamina, which, when cells are subjected to external stimuli, activates the NPC opening,
influencing the influx of transcription factors [6,149,150]. The nuclear pore opening has already been
experimentally validated [149,150]. The second theory proposes the involvement of lamina in NPC
formation and localization. In fact, A-type lamin appears to play an essential regulatory role in pore
distribution across the nuclear envelope and in the formation of “pore-free islands” zones without the
presence of NCPs. These regions are rich in A-type lamins and emerin, but they lack B-type lamins.
This emphasizes the importance of A-type (rather than B-type) lamins in mechanotransduction [74,151].
Other studies have added new insights into the relationship between A-type lamins and nuclear pores:
In cells lacking lamin A, NPCs are found in lamin C-rich regions and in lamin C-deficient cells, they are
distant from lamin A. These observations suggest that nuclear pores are linked directly to lamin C,
rather than to lamin A, because the lamin C Ig-fold domain shows less steric hindrance compared to the
same domain of lamin A [24]. To further investigate the role of lamins in this regulatory mechanism,
Maeshima et al. performed studies by silencing proteins. In emerin-reduced cells, the pore-free islands
were not affected, while the knockdown of A-type lamin led to a dramatic dispersion of the islands
and emerin release into the cytoplasm [74]. Mimura et al. demonstrated that an ectopic expression of
A-type lamins induces the formation of pore-free islands, underlying the direct role of A-type lamins
in pore dynamics and in keeping emerin proteins in the nuclear envelope [151]. There is also a zone
rich in condensed heterochromatin in pore-free islands. Since heterochromatin houses silent genes,
this result suggests that the A-type lamins might rearrange the NPC distribution in order to promote
molecular transport only in NE regions where heterochromatin is located [74,152]. Aside from the
exact mechanism regulating the transcription factor nuclear translocation, which remains unclear,
some researchers have investigated the effect of the nuclear transcription factor localization in terms
of cell activities. They observed that the lamina network modulation is based on A-type lamin
transcription feedback regulation (green arrows in Figure 6), where the LMNA-mRNA expression level
depends on the existing amount of LMNA-related proteins, which is regulated by a tension-dependent
degradation rate. It seems that the high level of A-type lamins induced by the external stimuli via
inhibited phosphorylation (Figure 6A,B,D,F,J), facilitates the translocation of RARG into the nucleus
(Figure 6K), which then promotes the lamin A transcription (Figure 6M), thereby increasing the
number of peripheral lamins (Figure 6Q) [82,144]. The same researchers also demonstrated that a
low expression level of lamin A leads to the highest cytoplasmic level of RARG, with the consequent
lowest promotion of LMNA. The lamina feedback regulation model describes how the stress-regulated
protein turnover ensures steady-state A-type lamin level that changes according to the matrix stiffness.
In particular the lamin level results proportional to (tissue stiffness)0.7 [80,82].

Although the feedback loop of lamins has not yet been completely validated, all the results
on stress-related changes in A-type lamin expression, highlight the lamina role in protecting the
nuclear integrity (Figure 6N) and in regulating cell functionality (i.e., cell proliferation, migration
and differentiation) (Figure 6P,Q) [10,11,82,153]. In fact, from a mechanical point of view, the lamina
meshwork behaves like a viscoelastic structure. During micropipette aspiration tests, the nuclear
compliance has been calculated as a combination of time, aspiration pressure, and lamin expression
level. While B-type lamins give elasticity to the nucleus thereby facilitating its return to the original
shape, A-type lamins appear to behave like a viscous fluid that impedes nuclear deformation.
To better understand the nuclear compliance, the researchers calculated the elongation response time
(τ = viscosity/elasticity). This parameter is an index of time required for nucleus rearrangement
after a stress stimulus, indicating the time that the viscous component needs to dissipate the stored
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energy after a rapid stretching. It is a function of the lamin A:B concentration ratio and the elongation
response time resulted in ~2.5 (laminA:B). The τ variation consistent with the specific amount of A-type
lamins (almost 10,000-fold across various glial, epithelial, and mesenchymal cell types with or without
knockdown or over expression of lamin-A) impedes rapid nuclear distension on stiff substrates, acting
as a shock absorber for nuclear integrity [82,154]. However, micropipette aspiration tests measure
the nuclear mechanical response to a large (>100%) non-physiological and sudden extensional stress
applied to a small area, and do not separate the chromatin and lamin contributions to the whole
nuclear response [155]. To circumvent these effects, a tailored micromanipulation force measurement
technique has been developed to perform nuclear force-extension measurements on isolated cell nuclei,
gradually stretched at a physiological rate to physiological strains. The authors of this technique
tested the differential contribution of nuclear components. They found that A-type lamins are major
determinants in nuclear strain stiffening at large extension (>3 µm), while the chromatin is responsive
above all to small extensions (<3 µm). Cells subjected to small extensions showed the chromatin
modulation of the nuclear stiffness via euchromatin/heterochromatin levels, returning a linear force
response. The nuclear spring constant increases to 2.5-fold, if subjected to long extensions. In line with
previous studies, the authors suggested that the nuclear stiffening is largely due to both the geometry
and stoichiometric ratio of the lamin A to lamin B increase in cells on a stiff substrate [155].

In addition to the cellular mechanical support, lamins cover a multitude of other functions,
related to chromatin organization, gene regulation, and cell fate determination. The substrate
stiffness correlates to the amount of A-type lamins and the phenotype of the cells [154,156,157].
For example, Heo et al. showed that compliant external stimuli favor the MSC differentiation into
adipocytes, induced by scarce cell focal adhesions and therefore, soft nuclei and inhibited A-type lamin
production [157]. Other researchers, instead, demonstrated that more rigid substrates (around 10 kPa)
induce cell spreading and a higher A-type lamin expression with consequent cells differentiation
into myocytes [82,158]. Finally, Discher et al. observed that high substrate stiffness (in 100 kPa
magnitude order) induces high expression levels of A-type lamins, high lamina network organization,
and MSC differentiation to osteogenic phenotype [4,82]. Other researchers have investigated the
phenomenon from a different point of view, looking at the fundamental factors for cellular phenotype
maintenance during in vitro expansion. For example, Raimondi et al. observed the long-term
maintenance of the stemness in MSC grown in a three-dimensional scaffold that was able to maintain
the cell nucleus in a roundish configuration, weakly subjected to external forces [159]. The cellular
phenotype expression, similarly to the modulation of all the other cellular functions, can be explained
by considering the lamin interaction with the chromatin either directly or through histones and
other lamin-associated proteins (Figure 6C). As demonstrated by biochemical assays and electron
microscopy, these interactions occur both at the nuclear edge and within the nucleoplasm, rearranging
the chromatins and altering the accessibility of transcription factors to gene- binding sites (Figure 6E)
with a consequent change in gene expression (Figure 6I,Q) [10,160–163]. For example, lamina-associated
domains (LADs) play a fundamental role determining the overall spatial organization of genomes
and form repressive chromatin environments with low gene-expression levels [164,165]. They are
dynamic domains characterized by spatial positioning that varies according to cell-type specific
gene expression activities [161]. In mammalian cells, LADs cover about 30–40% of the genome and
mainly bind to the heterochromatic histone markers, such as H3K9me2, H3K9me3 and H3K27me3,
which are localized in proximity to the nuclear envelope. However, they can also be observed in the
nucleoplasm. For example, after mitosis, LADs are seemingly randomly redistributed throughout the
nucleus of the daughter cells, with only a subset displaced at the nuclear periphery [166]. Fluorescence
microscopy has revealed that nucleoplasmic lamin A binds the LADs, holding them mainly close to the
nucleoli. When this occurs, the chromatins are rearranged with a consequent increase in transcriptional
activity [31,166–168]. The interaction between LADs and lamins takes place in all cellular phases,
and their balance varies depending on the cellular state. In support of this scenario, some researchers
have studied the localization and the conformation of the chromosomal territories, correlating them
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with the state of pluripotent stem cells. For example, biochemical assay in combination with high
spatial resolution fluorescence microscopy measurements showed that pluripotent stem cells are
characterized by a low level of lamin A and heterochromatin (H3K9me3) expression as well as high
levels of euchromatin (H3K4me3) expression. In these cells the chromatin is homogeneously diffused,
thus facilitating the link with the transcription factors, while in adult cells or during the cellular
differentiation phase, dense areas of heterochromatin appear to inhibit the diffusion of transcription
factors and binding to the DNA [169,170]. Discher’s studies on MSCs seem to support this model.
In fact, at the point where MSCs grow on high-hardness substrates (in the order of 100 kPa), there was
an approximately 30-fold increase in lamin A expression. This massive increase in lamin A sequesters
the LADs, influences their localization and their bond with chromatin, leading to a remodeling of
the DNA packaging, and therefore, regulating the gene transcription activity and the cell phenotype
(Figure 6T) [82].Cells 2020, 9, x 14 of 35 
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gene transcription (I), which, combined with the increased transcription factor nuclear localization 
(L), act on cell differentiation activity (T). Orange is used to highlight the key position of the lamina 
at the crossroads of the mechanotransduction pathway, and green highlights all the revealed 
downstream effects of the lamina reorganization. Green arrows represent the lamins feedback loop. 

Figure 6. The role of lamina in mechanotransduction. Starting from the extracellular matrix, integrins
transmit the external impulse to the cytoskeleton (A), which then transfers the stimulus to the lamina
structure (B). The lamins first act as a mechanosensor and rearrange their molecular structures (D),
hiding the sites for phosphorylation (F). The inhibited phosphorylation activity increases the amount
of lamins at the nuclear envelope with a consequent increase in lamina stiffness (J). At this level,
the lamina mesh guarantees the nuclear protection (N) and higher stress sensitivity (O), which impact
on the rearrangement of the lamina (S) and affect cell motility (P). Lamina rearrangement is correlated
to the higher nuclear localization of some transcription factors (K), whose activity is also enhanced by
the alteration in chromatin structure (C). The rearrangement of the lamina leads to a reorganization
of the chromatin (C), thus altering the sites available to the transcription factors (E) for lamins (G),
cytoskeleton (H), and differentiation genes (I). The reorganization of the chromatin sites and the
higher nuclear availability of transcription factors alter the transcription of the lamins (M,G) which
thus provides feedback on the lamina stiffness (Q). The chromatin reorganization also acts on the
transcription of the cytoskeleton components (H), which in turn affects the force transmission to the
lamina at the upstream level (R). To conclude, the chromatin reorganization affects the differentiation
gene transcription (I), which, combined with the increased transcription factor nuclear localization (L),
act on cell differentiation activity (T). Orange is used to highlight the key position of the lamina at the
crossroads of the mechanotransduction pathway, and green highlights all the revealed downstream
effects of the lamina reorganization. Green arrows represent the lamins feedback loop.
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staggering of linkers L1, L12, and L3 (total length about 40 nm) for electrostatic interactions.

In summary external mechanical stimuli-induced lamina structural modulations mediate several
cellular functions, such as viability, proliferation, migration, and differentiation. Lamina is therefore
a key player in cell development, wound healing, hematopoiesis, and it is also involved in human
diseases such as cancer and laminopathies.

5. Lamin A/C Mechanotransduction in Laminopathies

Laminopathies are heritable human diseases associated with several mutations in lamins and
lamins-associated proteins [14,22,137]. A total of 90% of known laminopathies relate to the LMNA gene
(Figure 8), and only two diseases are reported to be linked to mutations in LMNB1 or LMNB2 genes:
the autosomal-dominant leukodystrophy and Barraquer-Simons syndrome, respectively [44,45,171].
Laminopathies are usually classified into four groups, according to both the number and the types
of the affected tissues, as reported by UMD-LMNA, the universal mutations database (available at
www.umd.be/LMNA/). The first group represents the myopathies affecting both the skeletal and the
cardiac muscle. This disease class includes Emery-Dreifuss muscular dystrophy (EDMD), Limb-Girdle
muscular dystrophy type 1B (LGMD1B), autosomal dominant spinal muscular dystrophy (AD-SMA),
congenital muscular dystrophy (CMD), and dilated cardiomyopathy (CMD1A) [172–175]. The second
group includes lipodystrophy diseases that affect the adipose tissue with consequences on metabolic
pathway malfunction. The main pathologies are Dunnigan-type familial partial lipodystrophy (FPLD2),
and the metabolic syndrome (MS) [176,177]. The third group represents neuropathies, which affect the
neural tissue such as Charcot-Marie-Tooth disease (CMT2B1) presenting a damaged peripheral neuronal
system [178]. Lastly, the laminopathies belonging to the fourth group are multisystemic disorders,
such as premature aging syndromes, mandibuloacral dysplasia and Werner syndrome. Of these,
the most studied subtypes are the Hutchinson-Gilford progeria syndrome (HPGS), the atypical Werner
syndrome (WRN) and the mandibuloacral dysplasia with lipodystrophy of type A (MADA) [179–181].
Most of the laminopathies are autosomal-dominant diseases caused by single point mutations.
Quantitative analyses appear to indicate that 74% of the known mutations cause myopathies, whereas
11% and 15% are associated with lipodystrophy and premature aging, respectively. These mutations
mainly occur in the Ig-fold, C2 and C1b domains, which involve 27%, 21%, and 21%, respectively,
of the entire mutations set (Figure 8). Table 4 reports the four families of laminopathies, their specific
diseases and the mutated genes involved. Figure 8 gives the specific mutations of the LMNA gene for
each pathology along with some statistics correlating pathologies and gene mutation.

www.umd.be/LMNA/


Cells 2020, 9, 1306 15 of 33
Cells 2020, 9, x 16 of 35 

 

 
Figure 8. The single-point mutations of the LMNA gene. (a) List of LMNA gene mutations graphically 
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myopathies: EDMD2 (*), EDMD3 (**) LGMD1B (***), CMD (****), AS-SMA (*****), CDM1A (°) and 
DCM-CD (°°); mutations associated with various uncategorized phenotypes of muscular dystrophy, 
as reported by Dialynas et al. [182] are also reported in red (°°°). In green, those regarding 
lipodystrophies: FPLD2 (*) and MS (**). In yellow, the mutations causing the CMT2B1 neuropathy. 
Finally, blue indicates the gene mutations relative to systemic and premature aging disease: HGPS 
(*), WRN (**), RD (***), MADA (****), HHS (*****). (b) The percentages for each group of 
laminopathies. Almost 74% of the single-point mutations cause myopathies. Premature aging and 
lipodystrophy are 15% and 11%, respectively. Only one mutation has been associated with 
neuropathy. (c) The percentages for each lamin domain. Ig-fold domain, C2 and C1b involve most of 
the known mutations, representing 27%, 21%, and 21% of the entire set of mutations, respectively. 
They are followed by C1a (10%), tail (9%), the domain between C2 and Ig-fold (C2-Ig) (5%), the head 
(4%), and finally L12 (3%). No mutations have been correlated with L1. (d) Table collecting the 

Figure 8. The single-point mutations of the LMNA gene. (a) List of LMNA gene mutations
graphically associated with distinct lamin domains. Red indicates the gene mutations related to
the following myopathies: EDMD2 (*), EDMD3 (**) LGMD1B (***), CMD (****), AS-SMA (*****), CDM1A
(◦) and DCM-CD (◦◦); mutations associated with various uncategorized phenotypes of muscular
dystrophy, as reported by Dialynas et al. [182] are also reported in red (◦◦◦). In green, those regarding
lipodystrophies: FPLD2 (*) and MS (**). In yellow, the mutations causing the CMT2B1 neuropathy.
Finally, blue indicates the gene mutations relative to systemic and premature aging disease: HGPS (*),
WRN (**), RD (***), MADA (****), HHS (*****). (b) The percentages for each group of laminopathies.
Almost 74% of the single-point mutations cause myopathies. Premature aging and lipodystrophy
are 15% and 11%, respectively. Only one mutation has been associated with neuropathy. (c) The
percentages for each lamin domain. Ig-fold domain, C2 and C1b involve most of the known mutations,
representing 27%, 21%, and 21% of the entire set of mutations, respectively. They are followed by
C1a (10%), tail (9%), the domain between C2 and Ig-fold (C2-Ig) (5%), the head (4%), and finally L12
(3%). No mutations have been correlated with L1. (d) Table collecting the percentages related to the
mutations classified according to both the domain and the group of laminopathies.
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Table 4. Classification of laminopathies.

Group Pathology OMIM Code Gene Involved Reference

1
Emery-Dreifuss muscular

dystrophy, autosomal
dominant (EDMD2)

181350 LMNA [171,174,183–185]

1
Emery-Dreifuss muscular

dystrophy, autosomal
recessive (EDMD3)

616516 LMNA [174,184,185]

1
Limb-girdle muscular

dystrophy, type 1B
(LGMD1B)

159001 LMNA [171,174]

1 Congenital muscular
dystrophy (CMD) 613205 LMNA [172]

1
Autosomal dominant spinal

muscular atrophy
(AD-SMA)

182980 LMNA [173]

1 Dilated cardiomyopathy 1A
(CMD1A) 115200 LMNA [175,184,186]

1
Dilated cardiomyopathy
with conduction system

defects (DCM-CD)
n/a LMNA [187,188]

2
Dunnigan-type familial
partial lipodystrophy

(FPLD2)
151660 LMNA [171,177,184,189]

2 Metabolic syndrome (MS) n/a LMNA [176]

2
Barraquer-Simons syndrome

(acquired partial
lipodystrophy -APL)

608709 LMNB2 [44]

3 Charcot-Marie-Tooth
disease, type 2B1 (CMT2B1) 605588 LMNA [178]

3 Autosomal dominant
leukodystrophy (ADLD) 169500

LMNB1: present an
extra copy of the

gene
[45]

4 Hutchinson-Gilford progeria
syndrome (HGPS) 176670

LMNA:
LaminA-∆50
permanently
farnesylated

[171,184,190–192]

4 Atypical Werner syndrome
(WRN) 277700 LMNA [171,180,187]

4 Restrictive dermopathy (RD) 275210 LMNA [193]

4
Mandibuloacral dysplasia
with type A lipodystrophy

(MADA)
248370 LMNA [171,181,184,194,195]

4 Heart-hand syndrome,
Slovenian type (HHS) 610140 LMNA [196]

Laminopathies subdivided in four groups: myopathies (1), lipodystrophies (2), neuropathies (3), and systemic
diseases (4). Figure 8 shows all the specific mutations of the LMNA gene for each pathology (here omitted for the
sake of clarity).

The pathological mechanisms of the laminopathies are unclear. The main challenge is to explain
how over 500 mutations associated with ubiquitously expressed proteins, give rise to a relatively low
number of pathologies (less than twenty) that affect only a limited number of tissues, above all the
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mechanically stressed muscles [11,25,197]. Following the knowledge that cells expressing mutated
A-type lamins present lobulations in the nuclear envelope, loss of peripheral heterochromatin,
and anomalous nuclear pore complex distribution, two main models were hypothesized to explain
the onset of laminopathies [8,15,183]. According to the “structural model”, the mutation in A-type
lamins alters the nuclear resistance to external mechanical stimuli, resulting in nuclear fragility,
increased stress sensitivity, and possible premature senescence. This model would explain why
the striated muscle tissues, which are the most exposed to mechanical strain, are mainly affected
by laminopathies [8,10,197]. The second hypothesis, the “gene expression model”, suggests that
altered gene expression is mainly induced either by impaired lamin-chromatin interactions, changes
in chromatin organization, or deregulation of the specific genes peripheral position [8,16,99]. In this
model, A-type lamin mutations cause gene deregulation, leading to the tissue specificity, which is a
feature of most laminopathies [198–200]. In fact, some studies show how A-type lamin mutations
can alter the gene expression either directly, through their link with heterochromatin, or indirectly by
the disruption of protein interactions [74,83,201]. Primarily, it has been observed that loss of A-type
lamins was associated with the impaired activation of mechanosensitive genes such as EGR1 and
IEX1 [202]. Moreover, HGPS fibroblasts have shown heterochromatin loss at the nuclear periphery
and altered histone methylation, confirming the deregulation of gene expression due to A-type lamin
mutation [100]. Finally, in the case of EDMD, it was also observed that gene-deregulation induced by
lamin mutation can affect the stem cell proliferation and differentiation capability. This observation
is based on experiments in which EDMD-affected myoblasts still maintain a high proliferative rate,
and are no longer able to differentiate [203]. In line with the lamina role in cell mechanotransduction
described in Section 5 (Figure 6), it is possible to strike a balance between both these models by focusing
on how the lamina acts as both mechanosensor and mechanotransducer [138,179,202,204]. We here
report the supporting evidence of impaired mechanotransduction, and its consequences on other
cellular mechanisms, in the case of age-related and myopathies diseases.

Several studies have focused on mutations associated with age-related diseases such as
Hutchinson Gilford Progeria Syndrome (HGPS) and restrictive dermopathy (RD) and their effects on
lamina-impaired structure and activities [205]. In particular, HGPS has attracted much attention because
of its similarity to the physiological aging process, both involving the expression of a mutant prelamin
A named progerin [206,207]. HGPS is a rare genetic disease, usually caused by a mutation in the exon
11 of LMNA gene, as a consequence of the substitution of 1824 nucleotide C for T, which determines the
translation to the mutant prelamin A progerin. The progerin protein is characterized by a deletion of
C-terminal 50 amino acids including the ZMSPTE24 cleavage site [191,201,208,209]. The permanently
attached farnesyl group causes lamin A to accumulate at the inner nuclear membrane leading to
extreme lamina stiffness and therefore an impaired mechanotransduction pathway [179,207,210,211].
Moiseeva et al. proposed a self-reinforcing aging mechanism, based on the defective lamin A Ser22
phosphorylation site exhibited in HGPS cells; they suggested that a small accumulation of progerin
inhibits the Ser22 phosphorylation site in lamin A, thus preventing Cdk 4/6-kinase activity during
interphase. The missed turnover enhances the progerin accumulation leading to the impaired lamina
structure [76]. In line with this, the nuclear stiffness in HGPS cells increases with increasing passage
in culture. The increased nuclear stiffness in turn alters the lamina sensitivity to external stimuli
and therefore its ability to rearrange, according to the different stress conditions [142,201,204,212].
For instance, HGPS skin fibroblasts subjected to 24 h of repetitive biaxial strain, showed larger
fractions of propidium iodide-positive cells compared to unstrained and healthy cells, which is an
index of the increased mechanosensitivity induced by biomechanical strain [212]. More recently,
Bikkul et al. investigated how a Farnesyltransferase inhibitor (FTI) influences genome organization.
They demonstrated the combinatorial FTI drug effect in restoring specific chromosome positioning
toward the nuclear periphery. The drug probably acts by restoring the ability of unfarnesylated progerin
to make the physiological lamina connection, presumably through LADs [213]. As highlighted in
Figure 6, altered mechanotransduction may also be caused by cytoskeletal impairment, as reported in
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a progeria mouse model that showed reduced expression of the cytoskeletal vimentin, a protein not
only involved in cell-matrix stabilization via association with integrins, but also in withstanding the
mechanical force of cells [209]. Moreover, progerin expression in vascular smooth muscle cells returned
impaired LINC complexes at the nuclear envelope due to one of its main proteins named SUN1.
The authors showed the stabilization, accumulation, and reduced motility of SUN1, which may cause
impaired shear stress sensitivity at the lamina level [214]. In the same context, it has been demonstrated
that the reduced force transmission due to LINC disruptions in HGPS-affected smooth muscle cells,
ameliorate aortic diseases, resulting in less DNA damage, fewer nuclear blebs, and reduced cell
death [204]. In addition, Simon et al. showed that the deletion of C-terminal 50 amino acids in progerin
affects one of the two nuclear actin-binding sites. This then leads to impaired rearrangements of nuclear
actin, in response to mechanical stresses and contributes to the aberrant structure of the lamina and of the
nuclei in HGPS cells [104]. In fact, nuclear actin is essential for nuclear envelope integrity via interactions
with lamins and emerin, another A-type lamin binding partner [104,106,215]. Whatever the main cause
of the impaired lamina structure and mechanical properties, it affects the translocation of altered nuclear
proteins, as reported in physiological aged cells and in both HGPS and RD [216–218]. In addition,
the pathological lamina alters the chromatin condensation and rearrangement, affecting its accessibility
to nuclear proteins [216]. Indeed, progerin accumulation in skin fibroblasts has been correlated to
altered repressive histone mark H3K27me3, disrupted heterochromatin-lamina interactions, and loss
of natural chromatin compartmentalization between active and inactive zones [219]. According to
all this evidence, McCord et al. suggested that progerin accumulation leads to a disruption in the
normal nuclear envelope scaffold. This alteration affects the chromatin-lamina association and the
heterochromatin distribution of the mark H3K27me3, with reduced LADs in the same gene-poor
genomic regions, and loss of spatial chromatin compartmentalization at late cell passages [219]. In fact,
both HPGS and RD mutation have been correlated to the loss or rearrangement of heterochromatin and
instable genomes, supporting the role of LMNA mutation in perturbing the epigenetic control of the
chromatin structure [99,211,217,220,221]. Changes in chromatin organization and epigenetic regulation
may in turn have a profound impact on gene expression and genome stability [162]. In particular,
the reduced level of heterochromatic histone marks has been associated with impaired retinoblastoma
protein signaling thus affecting the proliferation of altered stem cells in HGPS [202,222,223]. Moreover,
HGPS cells have been correlated to impaired signaling pathways, such as the Notch and Wnt/β-catenin
signaling that affect the cell fate regulation-differentiation and ECM-gene expression [90,190,224,225].
Indeed, Notch proteins are transmembrane proteins principally constituted by an extracellular
surface receptor and a Notch intracellular domain. The presence of neighboring cells activates the
notch-dependent signaling by cleaving the intracellular domain. The cleaved domains translocate
to the nucleus and activate the target gene expression. HGPS-related cells showed upregulation
of Notch-regulated genes (e.g., HES1, HES5, HEY1, and TLE1) caused by reduced levels of the
transcriptional corepressor NcoR and the increased nuclear level of the transcriptional coactivator
SKIP, which in physiological conditions associates with the nuclear matrix [226]. In line with the
Notch-related signaling role in cell fate regulation and stem cell differentiation, Scaffidi et al. found
an altered differentiation potential in progerin-expressing cells that exhibited enhanced osteogenesis
compared to the adipogenesis [227]. On the other hand, Wnt-proteins are signaling proteins involved
in embryonic development and adult cell self-renewal. Once linked to its receptor, a Wnt-protein
causes the β-catenin cytoplasmic accumulation. This accumulation in turn causes the β-catenin
translocation to the nucleus where it binds to the T-cell factor (TCF)/lymphoid enhancer factor (LEF)
thereby inducing the target gene expression [90,226]. Hernandez et al. suggested the inhibition of
Wnt signaling as a possible cause of proliferative arrest and death of postnatal fibroblast in a progeric
mouse model. They found a reduced nuclear localization and transcriptional activity of LEF1 which,
in addition to a defective ECM synthesis role, could represent a critical factor for HGPS etiology [225].
These observations, combined with the increased mechanical sensitivity of HGPS-affected cells, may be
the cause of mesenchymal stem cell death and inefficient repair of damaged tissue [202].



Cells 2020, 9, 1306 19 of 33

Even more evident than in the age-related pathologies, the myopathies that mainly affect the
load-bearing tissue, showed altered lamina mechanical response [228]. In this class of diseases,
Emery-Dreifuss muscular dystrophy is the first ever studied. Historically the first form of EDMD
described in 1961 by Dreifuss and Hogan, later renamed as type 1 (EDMD1), was caused by mutations
of Emerin [229]. Then, several LMNA gene mutations mainly disseminated in exons 1 and 6 have
been associated to EDMD, type 2 and type 3 [230]. Some human LMNA EDMD-related mutations
in the Ig-fold domain, such as the mutation R453W in human and L535P in C.Elegans, have been
associated with up to a five-fold reduction in lamin phosphorylation and lower nuclear deformation in
muscle cells [82,87,140,228]. This evidence suggests that the impaired Ig-fold domain behavior affects
its accessibility to cytokines (e.g., TGF-β1, TGF-β2 and interleukin 17) with a consequent reduced
phosphorylation [231,232]. Phosphorylation reduction leads to an increased amount of peripheral
lamins and therefore, to a reduced nuclear deformation and higher nuclear resistance to the strain [228].
In contrast, Mitsuhashi et al. reported a particular phosphorylation site (S458) for myopathy-related
Ig-fold mutated lamins (R453W) that would seem to increase lamin solubility [139]. In line with
Mitsuhashi, another EDMD-related lamin mutation in mouse myoblasts (LMNA N195K) was correlated
to increased nuclear deformability [183]. Focusing on skeletal muscle dystrophy, Dutta et al. showed
an increased oligomerization propensity in the W514R-mutated Ig-fold domain, which manifests
itself in the form of a misshapen laminar network and an abnormal distribution of the nuclear pore
complexes and, therefore, a defect in nuclear transport [233]. Given all this evidence and although
the correlation between the amount of peripheral-lamins and lamin-mutation is not fully understood,
the myopathic cells would seem to be characterized by an impaired lamina structure. For instance,
Mio et al. found a disruption in the assembly of lamins A, decreased viscosity, and abnormal paracrystal
formation in lamin Ig-fold mutated cells [234]. An increase or a decrease in the mechanical properties
of lamina cause several downstream consequences, such as improper nuclear deformation and
rupture, nucleocytoplasmic translocation of transcription factors, and mechanical force transmission
to the chromatin. Indeed, while an increase in peripheral lamins leads to greater nuclear fragility,
fewer lamins correspond to a greater mechanical stress per fiber and, therefore, NE rupture [234].
In fact, constant mechanical stress applied to mutant lamina protofilaments causes muscular-specific
nuclear rupture, cell death and tissue deterioration [235,236]. For instance, N195K-mutated muscular
cells show reduced nuclear stability, transient rupture of the NE, chromatin protrusion and DNA
damage [183]. On the other hand, the lamina pathological activity affects the translocation of nuclear
molecules, as demonstrated in congenital muscular dystrophy, where its impaired sensitivity causes
an altered activation of YAP signaling [8,143]. Congenital muscular dystrophy-related cells have
been correlated to increased YAP nuclear localization due to increased nuclear import, induced by
nuclear envelope defect [237]. Likewise, EDMD mice models show enhanced nuclear translocation of
activated extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). Both ERK and
JNK are part of the mitogen-activated protein kinase (MAPK) group, which regulates diverse cellular
programs according to extracellular signals. The increased amount of nuclear JNK and ERK, probably
induced by abnormal cell responses to stress, enhances the activation of transcription factors such as
Elk1, bcl-2, JunD, c-Jun, and Elk4, altering the expression of these genes with a possible impact on
cardiomyopathy development [199]. In addition, dilated cardiomyopathy cells show impaired nuclear
translocation and downstream signaling of the mechanosensitive transcription factor megakaryoblastic
leukaemia 1, which plays a pivotal role in cardiac development [202]. An impaired distribution
of lamins influences the altered force transmission to the chromatin and therefore its localization,
too. EDMD has been correlated to heterochromatin disorganization with consequences on the genes
transcription and improper cellular differentiation [203,236,238,239]. The impaired lamina behavior
acts on the transcription active site via LADs chromatin portions which, combined with molecule
delocalization in the cell nucleus, enhance the alteration in gene expression [14,74,240]. This alteration
may result from mutation-specific altered LADs that modify DNA methylation patterns. In line with
this, EDMD-affected cells show overexpression of Sox2 pathway loci, which are involved in cell fate
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specification and the transcriptional regulation of cell fate commitment. This loss in the heterochromatin
formation of Sox2 locus appears to cause maintenance of cellular pluripotency, thus inhibiting and
delaying the myogenic differentiation [99]. Mattout et al. found an impaired sequestration of
heterochromatin at the NE level and down regulation of at least 24 muscle-specific genes, in LMN-1
Y59C-expressing worms, linked to an autosomal-dominant form of Emery-Dreifuss muscular dystrophy
in human [236]. In fact, various studies have reported impaired gene regulation caused by different
lamin-related mutations. For instance, while in the presence of LMNA R453W-mutated lamins the
cells reduced their differentiation activity and showed a low level of expression of the transcription
factor myogenin, in the case of C. elegans LMN-1 L535P lamin (corresponding to human LMNA
L530P) mutation, the cells showed instead altered regulation of important genes for the pharyngeal
muscle [203,238]. This altered gene expression has also been found in congenital muscular dystrophy
cells correlated with the impaired expression of mechanosensitive genes EGR-1 and IEX-1 [8,143].
This evidence would seem to indicate that the mutation of specific lamins can affect specific chromatin
sites inducing specific altered gene transcription. In the same context, EDMD myoblasts cells have been
reported to show impaired differentiation activity and also impaired cell polarization and migration
speed [99,203,241,242]. It is worth noting that the same laminopathic effects have been observed
irrespectively of the deregulated element of the mechanotransduction pathway (e.g., actin filaments,
LINC complex, emerin protein) [243]. For instance, atrial cardiac defect-affected myofibroblasts showed
reduction of both emerin and SUN2 proteins, supposed to cause the reduced formation of F-actin stress
fibers in cyclic stretches condition [244]. Moreover, the same YAP nuclear accumulation previously
reported in mutant lamins has been revealed in congenital myopathy with a mutation in nesprin-1
protein [237]. The common element to all the laminopathies would thus appear to be deregulated cell
functionality induced by impaired mechanotransduction.

6. Conclusions

The lamina is a mesh-like structure that supports the integrity of the nucleus. It mainly consists of
lamins, dynamic type V intermediate filament proteins, that supply distinct mechanical properties
to the lamina meshwork. The lamina first acts as a mechanosensor able to sense the external stimuli,
then, as a mechanotransducer that converts the information into other cellular responses. The overall
cellular response is mainly governed by LMNA human gene encoded A-type lamins via the nuclear
stiffness modulation and the chromatin remodeling. Indeed, acting as a shock absorber, the A-type
lamins influence the nuclear influx of transcription factors and modulate the amount of external
insults transmitted to the nucleus with consequences on the nuclear damage, nuclear positioning,
cell migration, differentiation, and apoptosis. In this context, it was reasonable to suppose that the
almost 500 laminopathic mutations mapped to the human LMNA gene may be involved in altered
protective pathways and impaired transcriptional activation, as suggested by the “structural model”
and the “gene expression model” theory, respectively. According to the “structural model”, the mutation
in A-type lamins alters the nuclear resistance to external mechanical stimuli, resulting in nuclear
fragility, increased stress sensitivity, and possible premature senescence. The second hypothesis,
the “gene expression model”, suggests that altered gene expression is mainly induced either by
impaired lamin-chromatin interactions, or changes in chromatin organization or deregulation of the
peripheral position of specific genes. A-type lamin mutations cause defective lamina rearrangement
according to external stimuli that in turn affect the lamina role as shock absorber causing nuclear
damage. On the other hand, the impaired force transmission to the lamina induces an impaired
chromatin remodeling with consequences on abnormal transcription gene activation involving adaptive
and protective pathways.

In this work we have reconciled the two models basing on mechanotransduction mechanisms.
To support the mechanotransduction triggering-based mechanisms we reported the most relevant
evidence related to Hutchinson-Gilford progeria syndrome and the Emery-Dreifuss muscular dystrophy.
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Further studies are required to better understand the role of lamins in nuclear processes, aiming to
revealing the mechanisms behind human diseases and possible strategies to treat the laminopathies.
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