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Abstract: Classifying point clouds obtained from mobile laser scanning of road environments
is a fundamental yet challenging problem for road asset management and unmanned vehicle
navigation. Deep learning networks need no prior knowledge to classify multiple objects, but
often generate a certain amount of false predictions. However, traditional clustering methods often
involve leveraging a priori knowledge, but may lack generalisability compared to deep learning
networks. This paper presents a classification method that coarsely classifies multiple objects of
road infrastructure with a symmetric ensemble point (SEP) network and then refines the results
with a Euclidean cluster extraction (ECE) algorithm. The SEP network applies a symmetric function
to capture relevant structural features at different scales and select optimal sub-samples using an
ensemble method. The ECE subsequently adjusts points that have been predicted incorrectly by the
first step. The experimental results indicate that this method effectively extracts six types of road
infrastructure elements: road surfaces, buildings, walls, traffic signs, trees and streetlights. The overall
accuracy of the SEP-ECE method improves by 3.97% with respect to PointNet. The achieved average
classification accuracy is approximately 99.74%, which is suitable for practical use in transportation
network management.

Keywords: deep learning; Euclidean cluster extraction; point cloud; mobile laser scanning; road
infrastructure; symmetric ensemble point network

1. Introduction

Three-dimensional point clouds obtained from mobile laser scanning (MLS) in road environments
have received considerable attention due to the increasing demand for their accurate understanding [1].
Point clouds can provide completeness and a rich level of detail for the objects located on roads. On
the other hand, the massive volume of points collected by an MLS system may contain local redundant
data that may increase the data volume. This type of data sets may also feature a variable point
density and a high number of incomplete structures due to the presence of occlusions [2]. These
problems, for example, prevent the directly exploitation of the three-dimensional high-precision
map and autonomous vehicle navigation, as described in [3]. Consequently, classification of road
infrastructures from such dense point clouds needs to be investigated both theoretically and practically.
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The following subsections review relevant works in the literatures that include detection and
classification of objects from geospatial data, including either images and point clouds as data sources.
Briefly speaking, the works are grouped into rule-feature-based and deep-learning-based methods.

1.1. Rule-Feature-Based Classification Methods

In early research works, a set of predefined discriminant rules were used to extract a single object
(e.g., [4,5]). These rules are effective but show limitations when adopted in complex environments
which may often contain considerable uncertainty and outliers [6,7]. To classify multi-objects, machine
learning techniques with leveraging priori knowledge have been proposed [8], such as random
forest (RF) [9], support vector machine (SVM) [10], decision tree [11] and Euclidean cluster extraction
(ECE) [12].

Interesting applications of RF are briefly introduced here. Becker et al. used RF and gradient
boosted trees to train the classifier by considering a multi-scale pyramid with decreasing point densities,
combined with HSV colour values of aerial photogrammetry data [13]. Road curbs and markings in
MLS data are detected by a binary kernel descriptor and RF classifiers [2]. Niemeyer et al. integrated an
RF classifier with the conditional random fields method, and demonstrated a 2% increase in the overall
classification accuracy with contextual features considered [14]. The limitation of this classification
method is the over-smoothing problem wherein both small and large objects can be easily wrongly
classified [15]. Other applications also demonstrated the active effects of RF in various scenarios
(e.g., [16,17]).

An SVM approach with geometrical and contextual features was proposed to extract 3D objects
in urban scenes [18]. In order to classify images, an SVM-based edge-preservation multi-classifier
relearning framework was developed to classify the high-resolution images and achieve highly accurate
interpretation [19]. Xiang et al. segmented the initial point clouds, and then extracted features with
three popular classifiers—SVM, RF and extreme learning machine (ELM) [20]. On an average, both
SVM and RF classifiers reached similar precisions and recall rates in classifying grounds, trees and
buildings. Other similar applications also reported desirable performances of SVM [21,22]. However,
these classifiers often label each point independently from their local features and do not consider the
semantic labels of the neighbouring points, which often leads to noisy results, especially in complex
scenes [23].

Given a set of points, the points within each cluster are similar to each other and the points from
different cluster are dissimilar. On the basis of this concept, the Euclidean cluster extraction (ECE)
adopts a 3D grid subdivision of the space that is fast to build and useful for situations where either a
volumetric representation of the occupied space is needed, or the data in each resultant 3D grid can be
approximated with a different structure [12]. This strategy could cope effectively in the case of road
infrastructure, which may be segmented into clusters based on the Euclidean distance.

1.2. Deep-Learning-Based Classification

Recently, deep learning network techniques have been successfully applied to data segmentation
and classification. Basically, the deep learning networks are composed of multiple processing layers,
with the aim of learning the representations of data with multiple levels of abstraction. Convolutional
neural networks (CNNs) [24] are the primary architecture that has been used in deep learning methods
for segmenting and classifying objects [25,26]. In applications such as the classification of individual
tree species, depth images are learned by a CNN to describe the characteristics of each species [27].
For detecting multi-class geospatial objects, a weakly supervised deep learning method was proposed
by leveraging pair-wise scene-level similarity to learn discriminative convolutional weights, and by
using pairwise scene-level tags to learn class-specific activation weights [28]. In [29], an automated
framework combining CNN and three-dimensional point-cloud features is applied to aerial imagery
for the detection of severe building damages caused by disasters. These methods focused on the
classification/extraction of objects in 2D aerial or satellite images.
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Based on CNN, a fully convolutional network (FCN) takes inputs of arbitrary size and produces
outputs of the corresponding size. It introduces skip connections as a way of fusing information from
different depths, which correspond to different image scales [30]. The U-net [31] concatenates feature
maps from the contracting path. It combines low-level details and high-level semantic information, and
achieved good performance on biomedical image segmentation. The SegNet [32] consists of an encoder
network and a corresponding decoder network, which maps the low-resolution encoder features to all
input-resolution features for a better segmentation accuracy. The DeconvNet [33] fused detail and
semantic features for segmentation purpose. The up-sampling of DeconvNet is similar to the SegNet.

In two-dimensional images, the elementary radiometric information is organised in regular
grid of pixels where spatial relationships among them can be caught by using moving filtering
windows. However, three-dimensional point clouds are unorganised point structures in which the
density maybe uneven [34]. To overcome this drawback, the point clouds are transformed into
regular three-dimensional voxels or two-dimensional raster structures before feeding them to a deep
learning network. Voxel-based (e.g., ShapeNet [35]), multi-view-based (e.g., Multi-view CNN [36])
and point-based CNN (e.g., PointNet [37]) techniques are popular networks to process 3D data and to
extract the features/characteristics of objects based on the CNN techniques.

Some interesting investigations on 3D data segmentation and classification are briefly introduced
here. By projecting point clouds into raster data sets, road markings are extracted, classified and
completed based on the popular U-net, CNN and generative adversarial network (GAN) networks,
respectively [38]. By generating a CNN to leverage a spatially local correlation, PointCNN [39] is
proposed to classify multiple benchmark data sets using an χ-Conv operator, which weighs and
permutes point clouds. Instead of sigmoid as the activation function, Zhang et al. [40] used a rectified
linear unit neural network (ReLu-NN) to speed up the convergence and reduce the number of neurons
to avoid over-fitting airborne laser scanning data. KD-networks are designed for three-dimensional
data recognition with open indoor data [41]. In the case of high-resolution three-dimensional data,
OctNet is presented by hierarchically partitioning the space with unbalanced octrees [42].

A multi-layer perception (MLP) can be viewed as a logistic regression wherein the input is first
transformed using a non-linear learnt transformation, which then projects the input onto a space where
it becomes linearly separable. This intermediate layer is referred to as a “hidden” layer. A single
hidden layer is sufficient to make MLPs a universal approximator. In the case of very deep network
with hundreds of layers, ResNet [43] is proposed for solving the gradient vanishing problems by using
residual blocks. Although slightly better than the approach of directly processing unsorted points, the
direct application of MLP on unsorted point clouds does not perform well [37].

Instead of transforming irregular point clouds to voxel grids, Qi et al. [37] directly exploited
the point clouds for segmentation and classification by designing a PointNet, which is permutation
and transformation invariant. Evaluated on modelNet40 [36], the PointNet is robust and performs
at the same level as, or, in some cases, even better than, other state-of-the-art solutions. Interesting
applications are demonstrated, for example, in learning local normal and curvatures [44] and in
segmentation based on sections along the road [45]. Later, Qi et al. [46] introduced a PointNet++

network to cope with the uneven point cloud density. This network has been applied to the classification
of coniferous and deciduous trees [47]. VoteNet demonstrates significant improvements in object
detections and the authors suggest to apply in downstream point cloud segmentation [48].

The PointNet and its variants were tested in indoor environments and provided reliable results,
offering a new option of being transferred to other domains [37]. However, the PointNet and PointNet++

process each point in the local point set individually and does not extract the relationships, such as
distance and edge, between the point and its neighbours [49]. This may result in problems when
classifying small objects and neighbouring objects that lie within a short distance from one another.
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1.3. Motivations and Main Contributions

Deep learning networks need no prior knowledge to classify multiple objects, but often may
generate a certain amount of false predictions. Classic segmentation/clustering methods, however,
often involve leveraging a priori knowledge and require less data, but may lack generalisability in
comparison to deep learning networks. This study proposes a symmetric ensemble point (SEP) network
based on PointNet [37] for coarse classification of infrastructure elements along roads (including road
surfaces, buildings, trees, walls, streetlights and traffic signs) from point clouds obtained with MLS.
In addition, we use a Euclidean cluster extraction (ECE) method to refine the prediction of points that
previously have been incorrectly classified. The proposed approach takes advantage of PointNet’s
ability to directly process raw point clouds, the ensemble method’s ability to enhance model robustness
and the Euclidean distance clustering’s ability to classify neighbouring points at a fine scale. The main
contributions of this paper are as follows:

• A novel road infrastructure classification method is developed by combining an SEP network that
directly classifies massive point clouds and an ECE method which has potential to adjust falsely
predicted points;

• To enhance the robustness of the network and to avoid over-fitting by introducing an ensemble
method that trains sub-models and casts them into four bootstrap sample sets; and

• To validate the proposed method with public and an experimental data set.

Section 2 introduces the proposed model for a coarse-to-fine classification of infrastructure
elements. Section 3 provides details of the public and experimental data. Section 4 shows the
implementation details and discusses the classification results. Eventually, a summary of the proposed
method for infrastructure classification from point clouds is presented in Section 5.

2. Materials and Methods

The proposed SEP-ECE framework for a coarse-to-fine classification of multiple road infrastructure
elements from unstructured and unordered point clouds includes the following components (Figure 1):
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where the left part shows the coarse classification network and the right part shows the refining method
to adjust falsely predicted points.
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• Coarse classification with an SEP network by normalisation of raw point clouds and extraction of
object features based on an encoding and decoding network (Section 2.1);

• Application of an ensemble method for optimising the classification results (Section 2.2).
• Fine classification with the ECE method (Section 2.3) for the adjustment of false predictions that

often occur when classifying objects with similar local features, such as traffic signs, streetlights,
trees, buildings and walls.

2.1. Encoder-Decoder with Normalised Point Clouds

Regarding the point-level labelled data, multi-object classification from point clouds can be
regarded as a semantic segmentation problem. MLS data usually contains three-dimensional
coordinates (x, y, z) and colour (r, g, b)/intensity (i) information [50]. In order to extract point
features in more details, six information channels (x, y, z, r, g, b) from the point cloud are introduced as
the input data, although the model may also support other channel combinations such as (x, y, z) or
(x, y, z, i). To achieve rotation invariance of the unstructured point cloud, it is necessary to normalise
the input data and their colours using a P matrix of size N × 9, where N is the number of points and the
nine columns include the three-dimensional point coordinates, their RGB values, and corresponding
3D coordinates in local coordinate systems.

A sub-net called T-net [37] trains a 9× 9 coordinate transformation matrix A using P matrix as
the input. By multiplying P and A, a 64× 64 feature rotation matrix is also obtained through training.
This operation results in the normalisation of point coordinates (x, y, z) and colour information.
For successful optimisation, L2 regularisation is performed to avoid over-fitting the network, and
matrix A is restricted to closely represent an orthogonal matrix. The minimisation is performed on the
following Function [37]:

Losstotal = Lossso f tmax +
∣∣∣∣∣∣I−AAT

∣∣∣∣∣∣2 (1)

where I is the unit matrix; Losstotal is the total loss function for the optimisation;
∣∣∣∣∣∣I −AAT

∣∣∣∣∣∣2 is the
regular penalty function, to restrict the T-net transformation; Lossso f tmax is the loss function of the
Softmax layer [51], and the cross-entropy Loss is used to measure the difference between the predicted
result and the label.

Based on the normalised point clouds, learning object features are related using feature encoding
and decoding method. A series of MLP can be seen as dimensional maps, from low to high level [31].
With a group of MLPs, the features of point clouds are mapped onto a higher dimensional space to
be classified, which is sparser and independent. Normally, more high-level layers may extract more
features from the point cloud, but the computing time would quickly increase. Thus, five MLP layers
(64, 128, 256, 512, 1024) are tested and selected to increase the feature dimensions of the point cloud.
In lower dimensions, the network attempts to learn some local features, while in the higher dimensions,
the network assembles those local features into global features. Then, a symmetric function (max
pooling) is used to find the edge information of those features. At this stage, sub-sampled features are
obtained in the higher dimensional space (1024).

To increase local features and avoid the gradient vanishing problem, we concatenate the original
normalised features with global feature maps. As with the feature encoding part, the decoding part
also includes five MLP layers (512, 256, 128, 128, 64). This architecture reorganises smoother feature
maps in low dimensions, performing better during the classification.

In order to make the network converge faster, the Adam algorithm is used to optimise this task [52].
This algorithm adapts a learning rate and quickly brings the parameters closer to an optimal solution.
However, in some cases, it may cause the parameters to converge into a very sharp local minimum.
Hence, in order to make the model flatter and robust, a momentum method [53] is applied to finely
tune the parameters. The details of the designed point cloud normalisation and MLP are given in
Table 1.
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Table 1. Details of the designed point cloud normalisation and multi-layer perception (MLP)
for classification.

Layer
Number

Network
Components Layer Name Properties

1

Point cloud
normalisation

Input layer Input patch size 24× 4096× 1× 9
2 T-net1 Matrix multiply 24× 9× 9

3 Convolution (Conv.) 1 Number of filters 64; filter size 9× 1;
ExpandDims 24× 4096× 64× 1

4 Conv.2 Number of filters 64; filter size 1× 1
ExpandDims 24× 4096× 64× 1

5 T-net2 MatMul 24× 64× 64

6

MLP encoder from
Conv.3 to Conv.7;

MLP decoder from
Conv.8 to Conv.12

Conv.3 Number of filters 64; filter size 1× 1
ExpandDims 24× 4096× 64× 1

7 Conv.4 Number of filters 128; filter size 1× 1
ExpandDims 24× 4096× 128× 1

8 Conv.5 Number of filters 256; filter size 1× 1
ExpandDims 24× 4096× 256× 1

9 Conv.6 Number of filters 512; filter size 1× 1
ExpandDims 24× 4096× 512× 1

10 Conv.7 Number of filters 1024; filter size 1× 1
ExpandDims 24× 4096× 1024× 1

11 MaxPool MaxPoolGrad 4096× 1 ExpandDims
24× 1× 1024× 1

12 Concatenate Layer 6 and Layer 11 ExpandDims
24× 4096× 1088× 1

13 Conv.8 Number of filters 512; filter size 1× 1
ExpandDims 24× 4096× 512× 1

14 Conv.9 Number of filters 256; filter size 1× 1
ExpandDims 24× 4096× 256× 1

15 Conv.10 Number of filters 128; filter size 1× 1
ExpandDims 24× 4096× 128× 1

16 Conv.11 Number of filters 128; filter size 1× 1
ExpandDims 24× 4096× 128× 1

17 Conv.12 Number of filters 64; filter size 1× 1
ExpandDims 24× 4096× 64× 1

18 - Conv.13 Number of filters 7; filter size 7× 1
ExpandDims 24× 4096× 7× 1

19 - Softmax -

2.2. Optimal Ensemble Method

This sub-section is related to a Softmax classifier and an ensemble method. In order to obtain the
class probability of each candidate, a cross-entropy is set as the loss function. This in turn helps to
measure the difference between the predicted results and the labels.

Yi = so f tmax(Xi) =
exp(xi)∑
j exp

(
x j

) (2)

Lossso f tmax = HYgt(Y) = −
∑

i

Ygti log(Yi) (3)

where Xi is the output of the last perception of the i-th class (i is ignored in the following), Y is
the output of the Softmax layer, and Ygt is the probability distribution of labels (i.e., the ground
truth). The Softmax layer converts the value from the last perceptron into a probability distribution.
An end-to-end classifier f(Q) is used to output the label Li = f (pi) of the point qi in the point cloud Q.
The model outputs a series of scores that indicate the probability for each candidate class. The label of
this point is the maximum score of the series.
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An ensemble method (Figure 2) is used to obtain a more robust model and to avoid over-fitting of
the network. Based on a bagging strategy, the training samples are sub-sampled and constructed into
four bootstrap sample sets for training four sub-models. Each sub-model outputs the classification
result of the test sample in the form of a vote. The class with the largest number of votes is chosen as
the prediction result of the point qi [54,55].
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During the bagging vote, the weight of each sub-model is set as 1
m , where m is the number of

sub-models ( f ). All expectations in E( fk), where k denotes the k-th sub-model, are approximately
equal, so that the entirety model expectation E(F) can be simplified as:

E(F) = E

 m∑
k

γk ∗ fk

 = m∑
k

γk ∗ E( fk) = γ ∗
m∑
k

E( fk) =
1
m
∗m ∗ µ = µ (4)

Var(F) = Var
(

m∑
k
γk ∗ fk

)
= Cov

(
m∑
k
γk ∗ fk,

m∑
k
γk ∗ fk

)
=

m∑
k
γ2

k ∗Var( fk) +
m∑
k

m∑
p,k

2 ∗ ρ ∗ γk ∗ γp ∗
√

Var( fk) ∗
√

Var
(

fp
)

= m2
∗ γ2
∗ σ2
∗ ρ+ m ∗ γ2

∗ σ2
∗ (1− ρ)

= m2
∗

1
m2 ∗ σ

2
∗ ρ+ m ∗ 1

m2 ∗ σ
2
∗ (1− ρ)

= σ2
∗ ρ+ σ2

∗
(1−ρ)

m

(5)

where γk is the weight of each sub-model; F is the overall model; σ2 is the variance of each sub-model
due to the introduction of bootstrap sample strategy and identically distributed samples; and ρ is
the correlation factor of the sub-models. The variance of the whole model is computed from each
sub-model and its weight γk in the bagging vote. If each sub-model has an equal weight (γ), the
variance of the whole model is computed from the average results of each sub-model. Equation (4)
shows that the expectation of the whole model is approximately equal to the sub-model expectation.
Equation (5) certifies that the variance of the whole model is equal to or less than the variance of
each sub-model, because the variance of the mean model decreases when the number of sub-models
increases. In a special case of Equation (5), when ρ = 1, the variance of the sub-model is equal to the
one of the whole model. In other words, the performance of the whole model relies on the performance
of each sub-model.

Hence, to ensure the effectiveness of the whole model, the sub-model needs to have enough
capability for classification. In addition, the introduction of bagging vote reduces the random errors
in the stage of data training. It enhances the generalisation ability and improves the accuracy of
the network.
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2.3. Refining Classification with ECE Method

The SEP network may correctly classify most objects, such as road surfaces and buildings.
However, a small number of points are falsely predicted when they have similar features, for example,
in the case of pole-like structures or planar surfaces. To correct these points, an ECE method is
implemented [12] under the assumption that the point clouds of neighbouring objects have a distance
between each other.

A simple Euclidean data clustering approach is applied by creating a 3D grid subdivision of the
space using a k-d tree data structure [56]. We define a cluster of points Su =

{
qu ∈ Q

}
to be a distinct

from cluster Sv =
{
qv ∈ Q

}
if:

min‖qu − qv‖2 ≥ dth, (6)

where dth is an imposed maximum distance threshold and Q is the input dataset from the results of
SEP network. The above equation states that if the minimum distance between two sets of points
qu ∈ Q and qv ∈ Q is larger than a given distance value, then the points in qu are set to belong to an
object cluster Su and the ones in qv to another distinct object cluster Sv. In the following, the algorithm
to cluster points is described by using approximate nearest neighbour queries:

(1) a k-d tree structure for the input point cloud dataset Q is created;
(2) an empty list of clusters C and a queue of the points that need to be analysed S is set up;
(3) the following steps are run per every point qu ∈ Q:

• qu is added to the current queue S;
• The following operations are executed per every point qu ∈ Q:

� search for the set Qu
w of point neighbours of qu in a sphere with radius rth < dth;

� for every neighbour qu
w ∈ Qu

w, if the point has not been processed yet, it is added to S;

• when all points in S have been processed, add S to the list of clusters C and reset S to an
empty list.

(4) the algorithm terminates when all points qu ∈ Q have been processed and are assigned to a cluster;
(5) for a cluster SC in C do:

• all the classes in this cluster are counted and the main class is selected as the representative
class of this cluster;

• the properties of the cluster are checked with prior knowledge, such as bounding boxes,
density, gravity centres, heights.

The proposed SEP network coarsely classifies points into groups; while the application of the ECE
method refines the classification results, especially to detect and revise the falsely predicted points that
may be in small and neighbouring objects.

3. Experimental Data

In this experiment, we have used two datasets: (1) the publicly available Stanford 3D semantic
parsing data set for comparing the networks’ performances with respect to state-of-the-art solutions;
and (2) the experimental data set collected by Leica Pegasus 2 MLS in a road environment. These data
sets are addressed in the following as Data Set 1 and 2, respectively.

3.1. Stanford 3D Semantic Parsing Data Set 1

The publicly available Stanford 3D semantic parsing data set [57] concerns building indoor data
collected by Matterport scanners in six areas including 271 rooms. Each point is annotated with one of
the semantic labels from 13 categories (ceiling, floor, wall, column, beam, window, door, table, chair,
bookcase, sofa, board and clutter). Although the target of our investigations is the classification of
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road infrastructures, the use of this indoor data set gives a chance to compare the performances of the
symmetric point (SP) network against the results obtained by the PointNet approach in [37], which
may be considered as a state-of-the-art solution.

3.2. Experimental Road Data Set 2

A data set collected by Leica Pegasus 2 MLS in Jianning East Road (LanZhou, China) has been
adopted to validate the proposed coarse-to-fine classification method (see Figure 3). The Leica Pegasus
2 mainly includes a laser scanner, eight cameras and a triple-band GNSS. The test road is 500 m apart
from the Yellow River. The length of the test road is approximately 3.5 km, with 273.52 million points
having associated 3D spatial coordinates and RGB information. Regarding the point density on the
ground, the average point spacing was approximately 20 cm and 6 cm in the driving and perpendicular
directions, respectively. Point clouds have been manually annotated into six classes (buildings, road
surface, trees, walls, traffic signs, streetlights) and clutters (Examples of each class is shown in Figure 4).
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Figure 4. Example of six classes (from left to right: streetlight, building, wall, tree, road, traffic sign)
identified in the classification experiment based on Data Set 2. Data are coloured with laser intensity.

4. Implementation Details, Results and Discussion

The SEP network has been coded by in Python 3.5 and Tensorflow 1.0. A computer powered by
one GPU (Intel Xeon E5-2620, 32 GB RAM, Nvidia GeForce GTX 1080Ti from Gigabyte Technology Co.
Ltd, New Taipei City, Taiwan) has been used to run the code. The ECE model has been performed with
C++ language with point cloud library (PCL).

Precision, accuracy and recall are used to evaluate the quality of the obtained classification outputs:

Precision = TP/(TP + FP)
Accuracy = TP + TN

TP + TN + FP + FN
Recall = TP

TP + FN

(7)
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where TP, FP, TN and FN denote the numbers of true positives, false positives, true negatives and
false negatives, respectively. The overall accuracy has been computed from the confusion matrix for
quantitative assessment.

4.1. Comparative Analysis of Data Set 1

Five areas from the Stanford 3D semantic parsing data set have been selected to train the deep
learning network and another independent area has been adopted for testing the model performance.
The overall accuracy of PointNet and the symmetric point (SP, without using the ensemble method)
network have resulted in 77.24% and 79.81%, respectively (see Table 2). The overall accuracy has
improved by 2.57% with the help of symmetric MLP with respect to PointNet. This improvement
illustrates the validation of the SP network. Based on this SP network and the ensemble method, the
coarse classification is proposed and tested on Data Set 2. The difference in the selection of the training
and testing data sets caused the accuracy of the PointNet computed here to be different from the results
published in [37].

Table 2. Comparison of classification accuracy obtained by using PointNet and SP network.

PointNet [1] SP Network

Overall accuracy 77.24% 79.81%

4.2. Implementation Details and Classification Results of Data Set 2

4.2.1. Implementation Details

The experimental Data Set 2 is split into 12 areas. The training and testing samples have been
selected in a 5:1 proportion. Ten areas (1–9, 11) have been used to train the model. This task has
required approximately one processing day. Two remaining areas (10 and 12) have been used to check
the performance of the model. Processing has taken approximately one hour.

A batch has been randomly selected from the whole data set. Each batch consisted of 24 blocks. In
each block, 4096 points have been used for training and testing the network. Each point is represented
by a 9 dimensional vector composed of x, y, z, R, G, B and 3D normalised coordinates in the block.
The default parameters for training the ten areas (1–9, 11) have been defined with 50 maximum
epochs to run, 0.001 learning rate, 0.9 momentum, 300, 000 decay step, and 0.5 decay rate. These
training parameters were tested to help the network converge rapidly in our device. Meanwhile, the
proposed five MLP layers efficiently used the 11 GB graphics memory of the Nvidia GeForce GTX
1080Ti graphic board.

Based on the results of coarse classification with the SEP network, the ECE model is then applied
to revise the false predicted points. The default parameters of cluster tolerance and minimum cluster
size are 40 cm and 8000 points, respectively. Furthermore, height differences between streetlights and
traffic signs are also used to distinguish among pole-like objects.

4.2.2. Coarse Classification Results with SEP Network

The classification results of the testing data are summarized in Table 3, Figure 5 (testing area 10)
and Figure 6 (testing area 12), where the visualisation of raw data is shown on the top of the figure,
while the classification results are displayed at the bottom. Blank areas at the bottom of Figures 5 and 6
are due to clutters, and clipped incomplete structures which have been filtered out from the data set to
clearly highlight the classification results. Indeed, the clipping of cars and outliers on the road surface
has resulted in the discontinuity of the road surface.
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Figure 5. (a) view of raw data, (b) coarse classification and (c) coarse-to-fine classification results of
testing area 10. Grey colour denotes the road surface; green colour is the trees; blue colour denotes the
building; pink means the streetlight, red colour is the wall and the purple pole-like structure is the
traffic sign.
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Figure 6. (a) view of raw data, (b) coarse classification and (c) coarse-to-fine classification results of
testing area 12, where grey colour denotes the road surface; green colour is the trees; blue colour denotes
the building; pink means the streetlight, red colour is the wall and the purple pole-like structure is the
traffic sign.

Table 3. Coarse classification results of Data Set 2 with the proposed SEP network.

Buildings Road Surfaces Trees Walls Traffic Signs Streetlights

Precision 82.66 98.55 77.23 80.17 100 25.00
Recall 96.16 99.95 97.05 47.96 1.47 5.35

Accuracy 96.46 96.46 96.81 96.08 97.93 97.05

As shown in Table 3 and Figures 5 and 6, the SEP network correctly classifies most road
infrastructure elements and extracts common objects, such as the road surfaces, buildings and trees.
Traffic signs and walls are sometimes conflated, as shown at the bottom of Figure 5, because the local
characteristics of both types of items are similar to a plane. Tree trunks and traffic signs sometimes
are also mixed due to similar geometric shapes (both have a cylindrical surface). The same confusion
also appears in small areas between walls and buildings. Different scales of point features may cause
object misclassification. On the other hand, larger variations of object numbers also influence the
classification results. The next fine-scale classification step processes these falsely predicted points
which commonly exist in deep learning classification.
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4.2.3. Refining Classification Results with SEP-ECE Method

The fine-scale classification is based on the results from the SEP network. As demonstrated in
Figures 5 and 6, a small number of points are falsely predicted. For example, a part of a wall is wrongly
classified as a road surface and a part of a traffic sign as tree. The classified points are then fed into the
ECE model. The coarse-to-fine classification results with the SEP-ECE method are shown in Figures 5
and 6. The falsely predicted points from the SEP network are revised with the ECE model, especially
as far as walls, trees, traffic signs and streetlights are concerned.

The examples shown in Figure 7 demonstrate that most of the falsely predicted points are adjusted
to their true classes (i.e., trees, walls and traffic signs). This refining processing solves problems with
points that were misclassified due to the similarity between respective features.
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Figure 7. Example on somehow points that were predicted incorrectly with the SEP network are
detected and adjusted during the fine-scale classification with the ECE model. The white arrows on the
left image point out the misclassified points.

4.2.4. Accuracy, Precision and Recall of the SEP-ECE Method

Regarding accuracy, precision, and recall, we compared the results among the SEP-ECE method,
SEP network, SP network, and the PointNet with independent validation data from Data Set 2 (see
Tables 4–6). These results show that the proposed SEP-ECE method preformed best among the
comparisons with SEP network, SP network and PointNet. The mean accuracy of our model is 3.97%
higher with respect to PointNet. Both of the precision and recall were also improved with the proposed
coarse-to-fine classification method.

Table 4. Comparison of the accuracy among SEP-ECE method, SEP network, symmetric point (SP)
network and PointNet applied to Data Set 2. The best performances per each individual types of object
classes are shown in bold.

Accuracy Buildings Roads Trees Walls Traffic Signs Streetlights Mean

SEP-ECE 99.43 99.95 99.59 99.74 99.80 99.91 99.74
SEP 96.51 97.03 96.86 96.15 97.93 97.09 96.93
SP 96.46 96.46 96.81 96.08 97.93 97.05 96.80

PointNet 95.66 96.05 95.60 95.61 96.48 95.22 95.77

Table 5. Comparison of the precision among SEP-ECE method, SEP network, SP network and PointNet
applied to Data Set 2. The best performances per each individual types of object classes are shown
in bold.

Precision Buildings Roads Trees Walls Traffic Signs Streetlights

SEP-ECE 97.64 99.96 97.93 96.02 65.98 100
SEP 82.92 98.54 77.26 80.19 100 28.57
SP 82.66 98.55 77.23 80.17 100 25.00

PointNet 78.25 99.30 70.51 72.61 20.00 16.67
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Table 6. Comparison of the recall among SEP-ECE method, SEP network, SP network and PointNet
applied to Data Set 2. The best performances per each individual types of object classes are shown
in bold.

Recall Buildings Roads Trees Walls Traffic Signs Streetlights

SEP-ECE 99.13 99.97 99.13 90.15 77.70 55.77
SEP 96.16 99.95 97.16 50.16 1.50 5.27
SP 96.16 99.95 97.05 47.96 1.47 5.35

PointNet 94.41 98.71 92.11 68.28 23.12 11.06

When comparing the proposed SEP network and PointNet, the local characteristics of roads and
walls are similar in geometric shape, so the deeper layers of perceptron may cause the precision of the
road surfaces and recall of the walls to be lower than the ones obtained with PointNet. There are three
reasons for the imbalance in the precision and recall of traffic signs and streetlights between the two
methods: (1) asymmetric samples (e.g., between roads and traffic signs); (2) little numbers of points in
the case of small objects (e.g., traffic signs and streetlights); and, (3) the relatively complex decoder
structure raising the criteria of specific classes.

Fuzzy boundary problems that commonly existed in classification with deep learning networks
are processed by adding a priori knowledge to the fine-scale classification. The performance of the
ECE model efficiently solved the fuzzy boundary points and revised the falsely predicted points into
correct groups, especially the objects with small sizes.

Although the losses of the SEP network at the beginning are slightly higher than PointNet, both of
the methods almost converge at the same time as shown in Figure 8. After 15,000 iterations, the model
tends to stabilise. In other words, the SEP network was slightly more accurate than the PointNet, but
with a time cost that is nearly the same.Sensors 2020, 20, x FOR PEER REVIEW 15 of 19 
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4.3. Discussion

The deep learning network (SEP network) developed with the purpose of coarsely classifying
MLS data in the road environment has two key modules: (1) a symmetric encoding–decoding network
combined with the max pooling layer as a symmetric function, a local and global information structure,
and two joint alignment networks, and (2) an ensemble method to optimise the results from a
sub-sample and avoid over-fitting of the network.

Five MLPs in the proposed SEP network are deeper than the one of the classic PointNet with two
MLP layers [37]. The usage of five MLPs obtained both global and detailed/local features in higher
dimension. To guarantee the quality of classification, the contact layer is proposed to combine both
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global and local features. At the same time, the contact layer guarantees the correct transfer of the object
characteristics. The symmetric structure of the encoding-decoding network refines the 9-dimension
features with higher dimension features. This helps the learned features to merge more local point
features, and it improves the classifying ability to distinguish multiple objects.

In the ensemble method, each sub-model outputs the classification result of the test sample
in the form of a vote, and the highest vote is selected as the prediction result. The usage of the
bagging vote method improves the robustness and avoids over-fitting of the network. The performed
ensemble method reduced the random errors of objects in the stage of data training, and increases the
generalisation of the network. The average performance of the Bootstrap strategy is equal or improves
the performance of the model without using bootstrap.

Most of the points are correctly classified on the basis of SEP network. However, less common
objects, or elements that share similar features, are sometimes misclassified and object boundaries
may be fuzzy. This phenomenon is quite common in classification methods based on deep learning
networks, because it is difficult to evaluate if the deep neural network has sufficiently accounted for
the geometric relationships between neighbouring points. The ECE model, however, focuses on the
distance relationships between points. As most of the road infrastructure elements are separated in
space, the ECE model adjusts the falsely predicted points and improves the accuracy, precision and
recall of road infrastructure classification. This is demonstrated in our experiment.

From the results of publicity Data set 1, the overall accuracy was 79.81% from independent
validation data, and has improved by 2.57% with the help of symmetric MLP with respect to the
method given by PointNet [37]. Furthermore, compared with Data Set 2, the overall accuracy of the
SEP-ECE method was 99.74% from independent validation data, and has improved by 3.97% with
respect to PointNet [37]. Both precision and recall were also improved with the proposed coarse-to-fine
classification method. The proposed network can be applied to other scenarios, because the basic
network comes from the classic deep learning network that does not need to manually design features.
This means that if the data set is changed, the network could also automatically learn new features.

The reasons for the lower accuracy with Data Set 1 compared to Data Set 2 are: (1) the data volume
of Data Set 2 is larger than the Data Set 1. More data trained in supervised deep learning networks
often means better accuracy in the classification results; (2) main objects (e.g., road surface vs. trees) in
Data Set 2 are easier to be classified in space than indoor objects in Data Set 1; and (3) the introduction
of the ensemble method and the ECE model improves the classification accuracy of small objects (e.g.,
streetlights).

5. Conclusions

In this paper, a coarse-to-fine classification method of mobile point clouds is proposed for
coarsely classifying road infrastructures with symmetric ensemble point (SEP) network and refining
the classification results with Euclidean cluster extraction (ECE) model. The core contributions of our
method include coarse classification with the SEP network by using a symmetric function to extract
different scales of point features and voting an optimal sub-sample with the ensemble method, and
fine-scale classification by using the ECE model to adjust the false predicted points. The SEP network
learns more local features and enhances the robustness of the network; the ECE model efficiently solves
the fuzzy boundary problems that commonly existed in classification with deep learning networks.

Both publicly available data and experimental data sets were adopted to check the ability of the
proposed SEP-ECE method against state-of-the-art techniques. Compared with publicity Data Set 1,
the overall accuracy has improved by 2.57% with the help of symmetric MLP with respect to the
method given by PointNet [37]. Compared with the experimental Data Set 2, the overall accuracy
of the SEP-ECE method improves by 3.97% with respect to PointNet [37]. The overall accuracy
from independent validate data was 99.74% in the classification of road infrastructures (including
buildings, road surfaces, trees, walls, traffic signs and streetlights). The results show that the proposed
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method efficiently improves the classification accuracy, and enhances the recall ability of classifying
multi-objects with MLS technology.

The limitations and future work are: (1) annotations are time consuming when applied
experimental data sets; (2) a fixed block size may misjudge the point category around the block
boundaries; (3) a separate ensemble branch is suggested to directly solve the problem of hard samples
(e.g., streetlights); (4) some challenging scenes need to tested (e.g., interchanges in metropolitan); (5)
the proposed road infrastructure detection method should be expanded to wider applications, e.g., [29],
and multiple sources of data should be used, e.g., [29]; and (6) if the neighbouring objects overlapped
or are closely near to each other, the fine classification step might be less accurate.
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