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Abstract. This extended abstract presents a coupling method for the Fluid-Structure
Interaction (FSI) problem, which aim is to be conservative and to use classical spacio-
temporal discretization methods on each sub-domains; fluid and structure. In this way,
the coupling is based on a monolithic formulation and solved by a co-simulation algorithm.
The structural sub-domain is spatially discretized by finite elements method and tempo-
rally discretized by Newmark implicit scheme. While the fluid sub-domain is discretized
by finite volumes method and Runge-Kutta order 2 explicit scheme. The long-term ob-
jective is to couple two existing commercial softwares. The proposed method is validated
using the one-dimension piston test case.

1 INTRODUCTION

There are various fields of application for the FSI simulation, aerospace [1], bio-medical
[10], civil engineering [13]... The three past decades the research have been really active
and numerous coupling methods have been developed. Several classifications and defini-
tions are used, here the classification used is based on the formulation of the problem.
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Thus, in term of formulation, the FSI problems are divided into two main categories;
the partitioned coupling treats the problem in a uncoupled way while the monolithic
coupling treats the sub-domain fluid, the sub-domain structure and the FSI-interface as
a single system, see Fig.1. The partitioned methods have the advantage to be easy to
implement but lacks accuracy due to the time-lag involved by the methods itself. The
monolithic methods are better in term of accuracy and stability but also are difficult to
implement and not easily generalizable.

Fluid Structure

pressure

displacement

Fluid
velocity←−−−→ Interface ←−−−→

velocity
Structure

Figure 1: Partitioned formulation versus Monolithic formulation

In order to guarantee the energy conservation, the method presented here is based on
a monolithic formulation. Nevertheless, to avoid the difficulties of implementation and
generalization, the algorithm used is based on the GC coupling method [4] [5], which
has initially been introduced for the coupling problems of structural sub-domains. This
method allows the construction of an algorithm, predictor/corrector like, without time
lag between the two sub-domains, using the Lagrange multiplier method. This coupling
method has been extended to the FSI problems, and has already shown promising results.
As an instance, Casadei [3] has proposed an explicit coupling method for finite elements
and finite volumes vertex centered. Li has coupled finite elements and SPH particles [7].
More recently, Meduri has proposed a coupling method fully Lagrangian of finite elements
fluid and structure [8].

The aim here is to extend this coupling method to more classical spatio-temporal
discretization methods for both physics in order to use an existing and efficient commercial
solvers. Thus, the structural sub-domain uses a Lagrangian formulation and is discretized
thanks to the finite elements in space and thanks to an implicit Newmark scheme in
time. The fluid is written using an Arbitrary Lagrangian Eulerian (ALE) formulation,
discretized by the means of finite volumes method (cell-centered and vertex-centered) and
an explicit second order Runge-Kutta scheme. Finally each sub domain uses its own time
step. In this way the global integration method is heterogeneous and asynchronous.

In a first step, the discretization methods of each sub-domain are briefly recalled. Then
the coupling method is presented. Finally, this one is validated using the 1D piston test
case.

2 CONSTITUTIVE EQUATIONS

The domain Ω × [0, T ] closed, spatially partitioned, without overlap, by a fluid sub-
domain Ωf and a structural one Ωs, such as Ωf ∩Ωs = ∅, is considered. The external fluid
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sub-domain boundary is called Γf , respectively Γs for the structural sub-domain. Finally
ΓFSI is the boundary between the two sub-domain, see Fig. (2).

Ωs

Γs

Ωf

Γf

ΓFSI

Figure 2: Geometry of the fluid-structure interaction problem

The fluid considered is compressible, inviscid and submit to the perfect gas law. The
sub-domain structure is considered homogeneous, continuous and isotrope. It is con-
sidered linear elastic, under small displacement. The small perturbations hypothesis is
assumed.

2.1 Structural sub-domain

The structural sub-domain Ωs is spatially discretized because of the finite element
method. This one is based on a Lagrangian formulation and the weak formulation of
the equation of motion. Thus, under the hypotheses and the boundaries conditions, the

discretized admissible state vector Us(t) =
[
ds,vs, as

]T
(t) is sought. Where ds, vs, as

are the discretized fields of displacement, velocity and acceleration respectively :

Msas(t) +Ksds(t) = Fs(t) ∀t ∈ [0, T ] (1)

Where in the semi-discretized equation (1), Ms is the mass matrix, Ks is the stiffness
matrix and Fs is the vector of the external force.

Finally the implicit Newmark scheme is used as temporal discretizaton. This one is
second order and unconditionally stable. Thus the discretized structural state vector at
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the instant t(n+1) is written as :

a(n+1)
s = M̃−1

s

(
F(n+1) −Ksd

(n+1)
pred

)
(2)

v(n+1)
s = v(n)

s +
∆t

2
a(n)
s︸ ︷︷ ︸

v
(n+1)
pred

+
∆t

2
a(n+1)
s (3)

d(n+1)
s = d(n)

s +∆tv(n)
s +

∆t2

4
a(n)
s︸ ︷︷ ︸

d
(n+1)
pred

+
∆t2

4
a(n+1)
s (4)

where M̃s = (Ms +
∆t2

4
Ks).

2.2 Fluid sub-domain

Regarding the hypotheses, the Euler equations (mass, momentum and energy conser-
vation) are used over the fluid sub-domain. Thus, the quantity of interest is the vector of

the conservative variables Uf =
[
ρf , ρfvf , Ef

]T
admissible on Ωf × [0, T ].

The Euler equations are traditionally written using the Eulerian Formulation for the
fluid problem. In other words, the laboratory referential, fixed over the time, is used.
Nevertheless, dealing here with FSI problems without overlap, a dynamic referential has
to be used to fit at each instant at the boundary ΓFSI . The Lagrangian formulation being
not really well adapted for fast transient fluid problems, the ALE formulation is used.
The ALE grid is defined thanks to its velocity w. This one is Lagrangian at the domain’s
boundaries; defined by the boundaries conditions on Γf and by the velocity continuity
condition on ΓFSI . On ]Ωf [, the interior fluid domain, w is arbitrary defined using any
desired law, under the CFL condition. Thus the continuous ALE formulation of the Euler
equations is :

∂JUf

∂t
+ J∇.(Ff − wUf ) = 0 (5)

Where J is the Jacobian of the frame transformation of the Eulerian space to ALE

space, and Ff the flux vector define as Ff =
[
ρv, ρv ⊗ v + pI, (E + p)v

]T
. We also intro-

duce the following notation F̃f = Ff − wUf

Using the integral form of the equation (5) and the finite volumes method cell centered,
the semi-discretized Euler equations are written over one finite volumes Vi with boundary
ΓVi

as:

∂∆Vi(t)Ufi(t)

∂t
= −

∑
∀Γih∈ΓVi

sih(t)F̃fih(t) ∀i ∈ [1, ..., ncell], ∀t ∈ [0, T ] (6)

Where ncell is the number of cells over the sub-domain Ωf . ∆Vi is the volume of the
ith cell and sij the area of the boundary between the ith and the jth neighbourhood cell,
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these two values being variable due to the use of the ALE formulation. Finally, F̃ij is the
numerical flux between the actual cell i and the adjacent cell j defined here using the Roe
flux difference splitting method [12].
The explicit second order Runge-Kutta scheme is used for the temporal discretization of
the equation (6).

∆V
(n+ 1

2
)

i U
(n+ 1

2
)

fi
= ∆V

(n)
i U

(n)
fi

− ∆t

2

∑
∀Γih∈ΓVi

s
(n)
ih F̃

(n)
fih

(7)

∆V
(n+1)
i U

(n+1)
fi

= ∆V
(n)
i U

(n)
fi

−∆t
∑

∀Γih∈ΓVi

s
(n+ 1

2
)

ih F̃
(n+ 1

2
)

fih
(8)

The finite volumes cell centered method, defines the vector of the conservative variables
at the center of each cell. In this way, to compute the numerical flux at the boundary of
the fluid sub-domain, it is necessary to use ghost cells, defined by extrapolation. Hence,
the variables at the interface ΓFSI are not exactly known, which induces an approximation
for the velocities continuity condition.

To avoid this problem, the fluid equations are also written using the finite volumes
method vertex centred and the same temporal discretization. Thus the velocity at the
boundaries will be computed instead of being extrapolated. The equations are written in
the same way as the equations (7) and (8) except that they are written for i ∈ [1, ..., nvertex]
where nvertex is the number of vertex.

3 COUPLING METHOD

3.1 Multi-time step monolithic formulation

The GC coupling method is based on a dual formulation of the Schur complement, that
ensures the velocities continuity through the interface ΓFSI . In this way, the Lagrangian
multiplier method is used. Thus the cinematic condition is written as :

Lsvs(t) + lfvfvertex(t) = 0 (9)

Where Ls is the row selection vector of the finite elements nodes being at the fluid-
structure interface, its size being the number of nodes. In the same way, the operator lf
is the row selection vector of the vertex of the finite volume included in ΓFSI . When the
discretized grids of the fluid and the structural sub-domain are compatible, these opera-
tors are Boolean.
Finally, based on the energy method, the semi-discretized balance equations of fluid and
structural sub-domains are written using Lagrange multipliers, thus the condition of ve-
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locities continuity is ensured :

Msas(t) +Ksds(t) = Fs(t)− LT
s Λ(t) (10)

∂∆Vi(t)Ufi(t)

∂t
= −

∑
∀Γih∈ΓVi

(
sih(t)F̃fih(t) + LT

fih
Λih(t)

)
(11)

The Lagrange multipliers represent the interaction force between the two sub-domains.
Lf is a (nvertex × 3) matrix, where the first and the last columns are zeros vector and
the second columns is the transpose of the selection vertex vector lf . In this way, the
matrix Lf = [0, lTf ,0], allows taking into account the interaction force for the cells with
one or more vertex included inside ΓFSI , in the momentum conservation equation. Thus
the equations (9), (10) and (11) are the semi-discretized monolithic system.

Concerning the temporal discretization, the choice is to use a proper temporal scale on
each sub-domain. Regarding the hypotheses and the temporal discretization schemes, the
fluid sub-domain is discretized using a micro time scale while the structural sub-domain
is discretized using a macro time scale. Let’s calling ∆t the micro time step between the
instants t(j−1) and t(j), and ∆T the macro-time step between the instants t(0) and t(m)

such as ∆T = m∆t. Finally, applying these time-scales to the discretization methods
presented in the previous sections (equations (2), (3), (4), (7) and (8)) for the equations
(10) and (11) and selecting the velocity continuity at the micro-time step for the equation
(9), the following discretized system is obtained :
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∆T 2
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(j)
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(j)
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(12)

3.2 Co-simulation algorithm

To solve the system (12), several tricks are used. First, the discretized structural
velocities at the interface are defined at the Runge-Kutta mid-step and at the micro-time
step. A simple linear interpolation is used, such as :

Lsv
(j− 1

2
)

s = (1−
j − 1

2

m
)Lsv

(0)
s +

j − 1
2

m
Lsv

(m)
s (13)

Lsv
(j)
s = (1− j

m
)Lsv

(0)
s +

j

m
Lsv

(m)
s (14)

The same kind of interpolation is used to define the Lagrange multipliers.
The second trick is to split the fluid and the solid variables into a part called ”free”,

which is equivalent to the predictor state, without interaction at the interface, and a part
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called ”link” representing the corrected state taking into account the interaction force
from the interface. Thus the structural sub-domain is re-written as :

a(m)
sfree

= M̃−1
s

(
F(m) −Ksd

(m)
pred

)

v(m)
sfree

= v
(m)
pred +

∆T

2
a(m)
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d(m)
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= d
(m)
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∆T 2

4
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= −M̃−1
s LsΛ

(m)
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=
∆T

2
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d(m)
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=
∆T 2

4
a(m)
slink

(15)

Following the same idea on Ωf :

(
∆VU
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)
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Lets recall that the first and the last columns of the selection operator are zero vectors,
in this way

(
∆V ρ

)
flink

= 0 and
(
∆V E

)
flink

= 0.

Using the relation Us = Usfree +Uslink
respectively Uf = Uffree +Uflink

, Λ is defined
as : (

Hs +H
(j)
f

)
Λ(j) = Lsv

(j)
sfree

+ lfvvertex
(j)
ffree

(17)

The equation (17) is written in the same way at the half micro-time step t(j−
1
2
).

Then, we define:

Hs =
1

2
∆TLsM̃

−1
s LT

s

H
(j− 1

2
)

f =
1

2
∆tlfM

(j− 1
2
)

f
−1lTf

H
(j)
f = ∆tlfM

(j)
f

−1lTf

Where the mass fluid matrix Mf is defined as a diagonal matrix (nvertex×nvertex) with
Mfii =

(
∆V ρ

)
fi
.

Finally the last trick is to keep the conservative variable and the cell volumes grouped.
After the computation of

(
∆VU

)
f
, the fluid velocity at the interface taking into account

the structural interaction is known using the following relation :

vfvertex =

(
∆V ρv

)
fvertex(

∆V ρ
)
fvertex
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The monolithic coupling algorithm for finite elements / finite volumes vertex centred,
is then completely defined. For the coupling method, using the finite volume cell cen-
tered, we need to define the fluid velocity at the boundary ΓFSI . A simple first order
extrapolation from the interior cells is used.
The complete algorithm is defined on the fig. (3). The global idea is the following; the
free structural variable are computed at the macro time-step, the free fluid variables are
computed at the half micro time-step, then the structural velocity at the interface is
interpolated at the half micro-time step. Using the free velocities (fluid and solid) the
Lagrange multiplier is computed, using it the link fluid state is known and finally the
total fluid state at the half-micro time step. The process is repeated at each micro-time
step until j = m. Then, at the macro-time step, the link structural state is computed in
addition to the fluid one.

∆tt(j−1) t(j)

t(0) t(m)
∆T

Fluid

Structure

2 5 8 11

4 7 10

3 6 9 12

13

8

5

2

1

2 5 8 11

4 7 10 13

3 6 9 12

13

13

8

5

2

1

free computation free interpolation link computation Λ computation

Figure 3: Multi time-step algorithm

4 NUMERICAL TEST CASE

To validate the method presented below, the piston test case is used. This one has
been introduced by Piperno in 1995 [11]. Later, it has often been used to validate new
FSI methods [2], [6]. It is really simple, an aero-elastic problem in one dimension. The
set of parameters used here are the same as those proposed by Michler [9].
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4.1 Presentation

The problem is considered in 1D. A gas is enclosed inside a cavity closed at the left
side by a wall and at the right side by a mass-spring system. Its length is 1m.
The fluid domain Ωf is composed of air (specific heat ratio γair = 1.4 and celerity cair =
340m.s−1). Thus the fluid is considered a perfect gas compressible and inviscid. Moreover
the thermal exchanges are neglected. The structure domain Ωs is a simple mass-spring
system, with a mass of ms = 0.8Kg and a stiffness of ks = 7991N.m−1.
At the beginning of the simulation, the piston is at rest. The pressure inside the cavity
is p

(0)
f = 105Pa, the atmospheric pressure. The velocity v

(0)
f of the fluid is zero and its

density is ρ
(0)
f = 1.3Kg.m−3. The velocity of the structure v

(0)
s system is initially zero and

a displacement of d
(0)
s = 0.01m is imposed on it.

Ωf︷ ︸︸ ︷ Ωs︷ ︸︸ ︷

l
(0)
f

x

ΓFSI

d
(0)
s

Figure 4: Piston au pas de temps initial

4.2 Results

First, the results obtained for the monolithic coupling method mono time step for finite
element/finite volumes vertex centered are presented.
The Fig. (4.2) shows the position of the interface ΓFSI during time. The amplitude is
globally constant, it seems that there is no significant loss or gain of energy. However a
slight loss of amplitude, around 0, 01% after 20 cycle, is noticed. Nevertheless, this error
could be correlated to the error induced by the simulation of the same fluid domain alone,
where the right side is closed by a moving wall governing by the same mass-spring system
(this simulation is equivalent to the one-way coupling of the piston problem). In this way
the error is induced by the fluid discretization methods, not by the coupling method.

Moreover the relative error to the velocities continuity is also studied. We define

err =
|Lsv

(n)
s −Lfv

(n)
fvertex

|
max(vFSI)

. This one is of the order of 10−16 what is satisfying, see Fig.(6).

Considering the coupling finite elements / finite volumes cell centered, the interface
position is globally the same, nevertheless a little gain of amplitude is remarked over
0, 03% after 20 cycles. More over this error cannot be correlated to the fluid model
alone. The relative velocity error between fluid and structure is here more important

9
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Figure 5: Interface position according time

Figure 6: Relative error of the velocities continuity at the interface, left coupling of finite volume vertex
centred, right coupling of finite volume cell centered

around 10−9. Let’s recall that this coupling method introduced an approximation; the
free fluid velocities at the interface are extrapolated. In this way, we can make the
following hypothesis ; improving this extrapolation would improve the FSI results too.

Finally, the multi time-step method has also been studied for the finite elements /
finite volumes vertex centred coupling. The results seem to be really promising because
the quality is a few degraded even when the ratio between the micro and the macro
time-step increased. For instance, we have remarked previously that for m = 1 (mono
time-step case) the relative error of velocities was around 10−16. For m = 100, this error
remains is the same magnitude .
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5 CONCLUSION

To conclude, the presented method allows a co-simulation coupling and ensures the
energy conservation and the velocity continuity through the interface, for a mono time
step coupling of finite volumes vertex centered and finite elements. The results are weakly
defaced for a coupling using finite volumes cell centered instead of vertex centered which is
involved by the extrapolation of the fluid velocity from the cell center to the fluid-structure
interface, useful for the coupling condition. Nevertheless this error remains limited. Fi-
nally the multi time-step coupling finite volumes vertex centred / finite elements have
been studied. This one shows good results, the results deterioration is limited despite the
ratio increase between the fluid and the structural time step.

The next step is to study the coupling of finite volumes cell centered and finite elements
in 2D and using multi time-step. Even if the coupling using finite volumes vertex centered
has shown better results, we will use finite volumes cell centered because the aim is to use
the commercial software Fluent to compute the fluid sub-domain, this one is based one
finite volumes cell centered method. The velocity continuity condition at the interface
could be improved, using more complex extrapolation of the fluid variables.
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