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Abstract. The subloading-overstress friction model is formulated for the unified description of 
the dry and the fluid frictions which exhibit the negative and the positive rate dependences, i.e. 
the decrease and the increase, respectively, of friction resistance. The validity of this model will 
be verified by the comparisons with test data in this article.

1 INTRODUCTION 
The dry friction without a lubrication exhibits the decrease of friction resistance with the sliding 
velocity, which is called the negative rate-sensitivity. On the other hand, the fluid friction 
exhibits the increase of friction resistance with the sliding velocity, which is called the positive 
rate-sensitivity. The generalized friction model, called the subloading-overstress friction model
[1], is formulated based on the subloading surface model [2] [3] [4], which is capable of 
describing the dry and the fluid frictions by the unified formulation. 
   The validity of the subloading-overstress friction model is examined by the comparisons with 
test data in this article. Then, the capability of describing both the dry and the fluid frictions is 
verified by these comparisons. 

2 SLIDING DISPLACEMENT AND CONTACT TRACTION VECTORS 

The sliding displacement vector u , which is defined as the sliding displacement of the counter 
(slave) body to the main (master) body, is orthogonally decomposed into the normal sliding 
displacement vector nu  and the tangential sliding displacement vector tu  to the contact surface 
as follows: 

= n tu u u                                                           (1) 
where 
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n  being the unit outward-normal vector of the surface of main body and 
=n nu    n nu u                                                   (3) 

 Contact traction and sliding velocity. 

    The sliding displacement vector u  can be exactly decomposed into the elastic sliding 
displacement eu  and the viscoplastic sliding displacement pvu  in the additive form even for 
the finite sliding displacement, i.e. 

= pe vu u u                                                           (4) 
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setting 
= enn

eeu    n nu u                                                   (8) 
The minus sign is added for n

eu  to be positive when the counter body approaches the main body. 
The plastic sliding displacement pvu  is derived by the unloading to the contact traction-free 
state along the hyperelastic constitutive equation which will be formulated in Section 3. The 
viscoplastic sliding flow rule will be formulated to fulfill =pv

nu 0  in Section 4. 
The contact traction vector f  acting on the main body is additively decomposed into the 

normal traction vector nf  and the tangential traction vector tf  as follows (see Figure 2): 
= = fn n tt f f  f nf f t                                               (9) 

where 
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The minus sign is added for nf  to be positive when the compression is applied to the main 
body by the counter body.  

The contact traction vector f , nf  and tf  are calculated from the Cauchy stress σ  applied 
to the contact surface by virtue of the Cauchy�s fundamental theorem as follows: 
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 Coulomb-type normal- and subloading-sliding surfaces 

3 HYPERELASTIC SLIDING EQUATION 

Let the contact traction vector f  be given by the hyperelastic relation with the elastic sliding 
displacement energy function ( )e u  as follows: 
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                                                          (13) 

The simplest function ( )e u  is given by the quadratic form: 
( ) 2/e e e  u u Eu                                                  (14) 
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where the second-order symmetric tensor E  is the elastic contact tangent modulus tensor 
fulfilling the symmetry = TE E . The substitution of Eq. (14) into Eq. (13) leads to 

ef Eu                                                                (15) 
The inverse relation of Eq. (15) is given by 

=e u E f                                                             (16) 
The elastic contact tangent modulus tensor E  is given for the isotropy on the contact surface 
as follows: 
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where n  and t  are the normal and tangential contact elastic moduli, respectively. Their 
values are quite large usually as 2 5 310 10 GPa/mm  for metals because the elastic sliding is 
caused by elastic deformations of the surface asperities. Equations (15) and (16) with Eq. (17) 
leads to 
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Now, introduce the normalized rectangular coordinate system 1 2 3 1 2� � � � � ,( ,  ,  ) ( ,   )e e e e e n
fixed to the contact surface, which changes with the rotation of the contact surface. The elastic 
sliding displacement and the contact traction are described as follows: 
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Hence, Eq. (15) is described in the simple form as follows: 
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    The sliding velocity vector 
u  is the objective vector, since it is not an absolute velocity vector 

but the mutual velocity vector between surface points on the master and the counter bodies. 
Therefore, it is not necessary to use a corotational velocity vector but we only have to use the 
time derivative for the sliding velocity vector. Further, note that one does not need to adopt a 
corotational rate but one has only to use the time derivative for the contact traction vector f  by 
the fact: The contact traction f  is calculated from the hyperelastic equation with the 
substitution of the elastic displacement eu  which is obtained by subtracting the plastic 
displacement vector pvu  from the displacement vector u . 
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4 NORMAL-SLIDING YIELD AND SUBLOADING-SLIDING SURFACES  

Assume the following sliding-yield surface with the isotropic hardening/softening, which 
describes the sliding-yield condition. 

( ) =f f                                                      (21) 
  is the isotropic hardening/softening function denoting the variation of the size of the sliding-
yield surface. The friction-yield stress function ( )f f  for the Coulomb friction law is given by 

( ) = / ntf f ff                                                      (22) 
for which   specifies the coefficient of friction.  

Then, in order to introduce the measure of approaching degree to the sliding-yield surface, 
renamed the normal sliding-yield surface, let the following subloading-sliding surface passing 
through the current contact stress and maintaining a similarity to the normal sliding-yield 
surface be introduced, which plays the general measure of approaching degree of the contact 
stress to the normal sliding-yield surface (see Figure 2). 

( ) =f rf                                                         (23) 
where (0 1)rr    is the ratio of the size of the subloading surface to that of the normal sliding-
yield surface and called the normal sliding-yield ratio, playing the role of the measure of the 
approaching degree of the contact stress to the normal sliding-yield surface.  
    The evolution rule of the isotropic hardening/softening function   in Eq. (21) is extended 
as follows: 
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                                       (24) 

    The viscoplastic sliding rate is given as follows: 

= )( 0pv
t  u n                                                 (25) 

where   and tn  are the magnitude and direction, respectively, of the plastic sliding velocity 
as shown below.  
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where v ,  ( 1)n   and  ( 1)mr   are the material parameters, while mr  is the maximum value 
of r , and  
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with 

( ) = cot 2( )s sU ur r .                                                (31) 

Here, (0 )mr r r  in Eq. (23) is renamed as the dynamic sliding-loading ratio and 
(0 1)s sr r r   is called the static normal sliding-yield ratio because it designates the normal 

sliding-yield ratio which evolves under the virtual quasi-static elastoplastic sliding process. The 
viscoplastic sliding velocity is induced by the overstress ( ) sf r f  from the subloading 
friction surface: 

( ) = ,  i.e. =s sf rr rf                                             (32) 

so that a smooth elastic�viscoplastic transition is described. 
    The sliding rate and its inverse relation are given by Eqs. (4), (15) and (25) as follows: 
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which is represented in the incremental form as follows: 
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5 CALCULATION PROCEDURE 
The calculation by the subloading-overstress friction model may be performed by the 

following procedure. 
1. vpdu  is calculated by the input of dt  into Eq. (25), and then its accumulation leads to vpu . 
2. d  and sdr  are calculated by inputs of vpdu  into Eqs. (24) and (30), and their 

accumulations lead to   and sr . 
3. The elastic sliding displacement eu  is calculated by vpe u = u u . 
4. f  is calculated by = ef Eu . 
5. r  is calculated by ( )= // ntf fr  .  
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These calculation processes are repeated for the further sliding. 

6 COMPARISON WITH TEST DATA 
The comparison of the simulation by the subloading-overstress friction model with the test 

data [5] for the dry friction is shown in Figure 3. The test curve for sliding between roughly 
polished steel surfaces under the quite low sliding velocity 0.0002 mm/stu   is simulated well 
enough by the present model, where the material parameters are selected as follows: 

1

1

3

= 0.58,  = 0.38, = 35mm ,   = 0.001/ s

=1500mm , =150,  2.0, 3

= =10000N / mm
m
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s

u r n

   
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 


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under the condition
=10MPa,  =0.0002mm/sn tf u

 Comparison with test data [5] for dry friction.

The comparison of the simulation by the present model with the test data [6] for the fluid 
friction is shown in Figure 4. The test plate is the galvannealed steel sheet which is sandwiched 
by the steel SKD-11 plates. The normal contact stress is 5.56 MPa. The friction surfaces were 
coated with the anti-rust oil prior to the tests. The drawing velocity of the test plate is set at the 
five levels 1,  10, 50, 100, 200 mm/min.  The simulation of the test result using the exponential 
function in Eq. (29) is shown by the solid lines, using the following values for the material 
constants. 
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1
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= 80mm , =10,  1.4, 8
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 Comparison with test data for fluid friction. 
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