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Abstract. The subloading surface model possesses the distinguished capability to describe the 
plastic strain rate for the rate of stress inside the yield surface accurately and the stress-
controlling function to pull-back the stress to the yield surface even when it goes out from the 
yield surface in the numarical calculation. The spring-back phenomenon of the high strength 
steel is analyzed by the commercial software Marc implemented the subloading surface model 
and thus the high accuracy of the simulation is verified in this article.  
 
1 INTRODUCTION 

The subloading surface (Hashiguchi) model [1] [2] [3] [4] possesses the distinguished 
advantages which are not furnished in the other elastoplasticity models, i.e. the conventional 
elastoplasticity model and the unconventional models (cyclic elastoplasticity models), e.g. the 
multi surface model [5], the two surface model [6] and the superposed-kinematic hardening 
model [7] inheriting the yield surface enclosing purely-elastic domain from the conventional 
elastoplasticity model. In particular, the smooth elastic-plastic transition is always described by 
excluding a purely-elastic domain and the automatic controlling function to attract the stress to 
the yield surface is furnished in the subloading surface model. Consequently, it provides the 
high ability in both aspects of the accuracy for the description of physical property and the 
efficiency of numerical calculation. The subloading surface model has been implemented in the 
commercial software Marc in MSC Software Corporation [8] as the standard installation by the 
name “Hashiguchi model”, which can be used by all Marc users (contractors). Nowadays, the 
high tensile (strength) steel sheets and aluminum sheets exhibiting far larger springback than 
the ordinary mild steel sheets are widely used in automobile industries, etc. The springback 
cannot be described by the constitutive models which use the yield surface enclosing a purely-
elastic domain, i.e. the conventional model and the cyclic kinematic hardening models (multi-
surface, two-surface and superposed kinematic hardening models), since a plastic strain rate in 
the unloading process is not described appropriately by these models. The spring-back 
phenomenon of the high strength steel is analyzed by the Marc so that the high accuracy of the 
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simulation is verified in this article, illustrating several numerical results including the 
comparison with experimental result. 
 
2 ADDITIVE DECOMPOSITION OF STRAIN INCREMENT AND ELATIC STRAIN 

INCREMENT  
The infinitesimal strain tensor ε  is additively decomposed into the elastic strain tensor eε  

and the plastic strain tensor pε  as follows: 

= ,   =p pe ed d d+ +ε ε ε ε ε ε                                              (1) 
First, the elastic strain eε  and its increment are linearly related to the Cauchy stress tensor σ  
and its increment as follows: 

= =,   e ed d− −: :E Eσ σε ε1 1                                             (2) 
where the fourth-order tensor E  is the elastic modulus tensor which is given by 

( )= (1 )(1 2 ) (1 )2 j jij ik l i kijkl kl l
E EE         + ++ − +                            (3) 

E  and   are the Yong’s modulus and the Poisson’s ratio, respectively. 
 
3. SUBLOADING SURFACE MODEL 

The concept and the constitutive equation of the subloading surface model [1][4] is described 
concisely in this section. 
 
3.1 Yield surface and its evolution  

First, we incorporate the following Mises yield condition with the isotropic and the kinematic 
hardenings is adopted. 

( ) = ( )ˆf F Hσ                                                        (4) 
with 

( ) = = 3 / 2 || ||ˆ ˆqef 'σ σ                                          (5) 
ˆ  −σ σ α                                                         (6) 

where ( )F H  is the isotropic hardening function of the isotropic hardening variable H  and 
)( = 'α α  is the kinematic hardening variable and their evolution rules are given as follows: 

  21 2 0 1 20 [ exp( ){1 1 exp( )]}, / =( ) =  = hF h h dF dH F h h HFF H H ' −+ − −                 (7) 

,   || ||2 / 3qp pqp eeH dH d d '= = = ε                                  (8) 

1  || ||=
3 / 2

)( pp
kd dd

F
c


− εεα α                                      (9) 

where qe  is the equivalent stress and qpe  is the equivalent plastic strain. 1h , 2h , kc  and   
are the material constants. 
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3.2 Subloading surface 
The subloading surface model is premised on the following basic concept in order to describe 

the plastic strain increment induced by the rate of stress inside the yield surface, renames the 
normal-yield surface. 
Subloading surface concept: The stress approaches the yield surface when the plastic strain 
increment is induced, exhibiting a continuous variation of tangent modulus, but it recedes from 
the yield surface when only the elastic strain increment is induced.  
Then, the subloading surface which passes through the current stress point and is similar to the 
yield surface, renamed the normal-yield surface, is introduced and the ratio of the size of the 
subloading surface to that of the normal-yield surface is adopted as the measure designating the 
degree of approaching to the normal-yield surface. 

The subloading surface is given as follows (see Fig. 1). 
( ) = ( )f RF Hσ                                                   (10) 

where  
 −σ σ α                                                       (11) 

α  stands for the conjugate (similar) point in the subloading surface to the point α  in the 
normal-yield surface. The function ( )f σ  is given explicitly conforming to Eq. (5) as follows: 

( ) = || ||3 / 2f 'σ σ                                                  (12) 
By letting c  denote the center of similarity of the normal-yield and the subloading surfaces, i.e. 
the similarity-center, which is called elastic-core since the most elastic deformation behavior 
is induced when the stress lies on it fulfilling 0R =  as will be explained later, the following 
relation holds (see Figure 1). 

( )= R −− αc α c                                                  (13) 
which yields 

= ˆR− cα c                                                     (14) 
ˆR= +σ σ c                                                     (15) 

where 
ˆ −


 −
αc c

σ σ c
                                                     (16) 
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Fig. 1. Normal-yield, subloading and elastic-core surfaces. 
 
The evolution rule of the normal-yield ratio is given by 

 ( )|| ||= for   p pdR RU d d  Oε ε                                        (17) 
where 

( ) cot   2 1
( )e

e

R RU R R
u   −

= −
                                                 (18) 

    The evolution rule of the kinematic hardening rule is given by 
1  =

3 / 2
( )p p

kd d d
F

c


− || ||ε εα α                                   (19) 

    Now, let the following elastic-core surface (see Fig. 1) be introduced, which always passes 
through the elastic-core c  and maintains a similarity to the normal-yield surface with respect 
to the kinematic-hardening variable α .  

( ) ( ), i.e. /( ) ( )= =ˆ ˆc cf fF H F H c c                           (20) 

where c  designates the ratio of the size of the elastic-core surface to that of the normal-yield 
surface and thus let it be called the elastic-core yield ratio. The function ( )ˆf c  is given for Eq. 
(5) by 

( ) = 3 / 2 || ||ˆ ˆf c c                                                   (21) 
The translation rule of elastic-core is given by 

|| ||= ˆ( )p pc
cd d dc


−ε εc nR                                           (22) 

where (<1)　  is material constant, c  is a material parameter and 

ˆ cn

n
pdε

Elastic-core surface

( ) ( )=ˆf F Hc

( ) ( )=ˆ cf F Hc
Limit 

elastic-core surface
3

0

Subloading surface
( )  ( )=ˆf F Hσ

Normal-yield surface

c
ĉ

α

σR
σ σ

σ

3

1 2

( ) = ( )f RF Hσ

α
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( ) ( )  (|| ||=1)= || ||
ˆ ˆˆ ˆ ˆ

ˆ|| ||/ cc
f f 
 

n nc c c
c c c

                              (23) 

In order to describe the Masing effect [10], the material parameter u  involved in Eq. (18) 
for the function ( )U R  is extended as follows: 

exp( ) exp( )= exp( )   ( )c cc c u uu u uu C uu    −                          (24) 

where u  (average value of u ), cu  are the material constants and 
ˆ cC  n n: ( ) C−                                               (25) 

The increment form of Eq. (14) leads to 
(1 )= ˆdRd Rd Rd+ − −cα α c                                      (26) 

Substituting Eqs. (17), (19) and (22) into Eq. (26), one obtains 

1 (1 )= ( )|| || || || || ||ˆ ˆ) ( )( p p p p p
k

k
c

cc Rd d d d d U R dR bc + −− − −ε ε ε ε n εα α cR           (27) 

The increment of Eq. (10) leads to the consistency condition of the subloading surface: 
( ) ( ) 0=

f fd d dRFRdF
  −− −
 
σ σσ: : ασ σ                                 (28) 

 
3.3 Plastic strain increment 

Adopt the associated flow rule for the subloading surface: 

 || || )=  ( > 0= pp dd d d  εε n                                 (29) 

where d  is the plastic multiplier and 
( ) ( )

  (|| || 1)= = =
|| ||

|| ||/f f ' ''
 

  
σ σ σn n nσ σ σ

    (30) 

     Substituting Eq. (29) into Eqs. (7), (17), (19) and (22), one has 
|| ||p

HfdF F dH F d' '= = ε                                            (31) 
( )=dR RU d                                                  (32) 

= kndd  fα                                                    (33) 

= cnd dc f                                                       (34) 
where  

2 / 3Hf =                                                       (35) 
1  

3 / 2
( )kkn F

c


 −f αn                                           (36) 

|| || ˆ( )pc
n cc dc


 − εf nn R                                           (37) 

    The substitutions of Eqs. (31), (32), (33) and (34) into Eq. (28) leads to 
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2 )(1 03 ][ nkn c
UF R dRd d RF d d'    + =− −+ +: : f fσn n σσ                  (38) 

from which the plastic multiplier d  and the plastic strain increment pdε  are given as follows: 

,  = =p p
p dd d

M M
d   ε σ: :σn n n                                     (39) 

where 

2 )(13[ ]p
kn nc

UF RRM F R
' += + + −f fn: σσ                            (40) 

3.4 Stain increment vs. stress increment relations 
The strain increment is given by substituting Eqs. (2) and (39) into Eq. (1) as follows:  

1 1    = = ( )p p
dd d d

M M
− − + +E Eε σ: :nn n: σ σ:n                            (41) 

from which the plastic multiplier described in terms of the strain increment, denoted by d  
instead of d , in the flow rule of Eq. (29) is given as follows: 

,=   =p
p p

dd dd
M M


+ +

EE
E E

εε ε n :n ::: nn nn n: : : :                          (42) 

The stress increment is given from Eq. (41) with Eq. (42) as follows: 

= =( )p p
d ddd

M M


+ +− − EEE EE E
E E
ε εε :n: nn ::: ::σ nn n n n: : : :

               (43) 

The loading criterion is given as follows (Hashiguchi, 2000, 2017): 

 for > 0
 for 0

p

p

d d
d d

 


= 

O E
O E

ε ε
ε ε

n ::
n ::

                                        (44) 

 

4 IMPLEMENTATION OF SUBLOADING SURFACE MODEL TO IMPLICIT 
NONLINEAR FEA CODE 

The subloading surface elastoplastic constitutive model innovated by Hashiguchi has rich 
functionalities describing plasticity phenomena such as isotropic hardening, kinematic 
hardening, marsing effect, stagnation, tangential plasticity and so on in addition to the most 
beneficial scheme of smooth transition description of elastic to elastoplastic region. In order to 
implement these full functionalities of subloading surface model, stress integration is performed 
explicitly so-called forward Euler integration method. With the conventional explicit 
integration scheme for nonlinear finite element analysis such as explicit creep analysis, program 
can not take large time step size due to stability limit. This is critical disadvantage of explicit 
integration method in general. Therefore, we tried to invent new solution scheme using explicit 
stress integration method for the implementation of subloading surface model into Marc general 
purpose finite element code mainly used statically loaded nonlinear analysis. 
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4.1 Forward Euler stress integration 
   The stress calculation phase occurs twice in nonlinear finite element software, internal force 
calculation before matrix solution phase for incremental displacement calculation and stress 
recovery phase after incremental displacement calculation. Total stress is calculated using 
incremental strain converted with incremental displacement in case of additive decomposition 
based large displacement finite element analysis. In case of large time step is taken for speed 
performance purpose, stress integration based on forward Euler fails due to excessive 
incremental strain, this characteristic called stability problem in explicit time step integration 
scheme. In order to resolve this stability limit problem, we developed a scheme that incremental 
strain is subdivide into small enough incremental strain then total incremental stress calculated 
using multiple sub-steps, hereafter called SSM Strain Subdivided Method. This logic requires 
multiple stress calculation steps within a single global stiffness matrix solution step that 
consumes lots of calculation time and also difficult to parallelize efficiently. In the other hand, 
element stiffness calculation and stress recovery phase can be easily parallelized by Domain 
Decomposition Method, hereafter called DDM, or OpenMP based multi-threading. 

Fig. 2 illustrates the FEA model used for numerical experiment in order to investigate the 
required minimum subdivided strain increment for SSM. Model consists of single cubic 
element with 1mm edge length. 

The material is elastic-plastic with material constants of Young’s modulus, Poisson’s ratio 
and initial yield stress used here are 170000 MPa, 0.3 and 510 MPa, respectively. The hardening 
coefficients, evolution of normal-yield ratio are defined as follows; 
 

 Isotropic hardening parameter: h1=0.61, h2=170 
 Kinematic hardening parameter: Ck=5200 MPa, ζ=0.2 
 Evolution of normal-yield ratio: u =60, uc=5, Re=0.5 
 

The face loads are applied on the top face of the mesh. The amplitude of the load is 830 MPa 
with pulsating cyclic history as shown in Fig. 3 

The three different limit strain cases were tested, case1 with limit strain of 1.0d-3, case2 with 
limit strain of 1.0d-4 and case3 with limit strain of 1de-5. Fig. 4 shows the numerical 
experiment result. From this numerical experiment result for limit strain impact to analysis 
stability and accuracy, limit strain of 1.0d-3 is too large and showed different result from other 
two cases and limit strain of 1.0d-4 and 1.0d-5 cases showed acceptable result. 1.0d-3 of strain 
is similar level of elastic limit of steel material and applying this level of strain in single stress 
calculation step is obviously causes accuracy problem. We selected limit strain of 1/20 of initial 
elastic strain obtained by Young’s modulus and initial yield stress. 
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Fig. 2 Finite element model for SSM numerical experiment 

 

 
Fig. 3 Pulsating Cyclic Load History 

 

 
Fig. 4 Numerical experiment result with different limit strain 

 
4.2 Mid-point tangential stiffness evaluation 

With the SSM program work flow, tangential stiffness matrix is evaluated multiple times 
since incremental strain is subdivide and stress integration calculation occurs multiple times 

-200

0

200

400

600

800

1000

0 0.005 0.01 0.015 0.02

Limit strain increment

Comp 33 of Cauchy Stress (Limit strain increment=1e-3)

Comp 33 of Cauchy Stress (Limit strain increment=1e-4)

Comp 33 of Cauchy Stress (Limit strain increment=1e-5)

264



M. Tateishi and K. Hashiguchi 

 9 

within a Newton Raphson iteration. We conducted a series of numerical experiments to find the 
best tangential stiffness evaluation timing, beginning of the increment, mid-point of the 
increment or end of the increment using the same FEA model in the previous section and 
selected mid-point tangential stiffness evaluation scheme that gives accuracy and stability. 
 
5 SPRINGBACK ANALYSES 

The metal forming analyses are of importance in the industrial production. The analysis of 
the springback by use of the subloading surface model will be described in here.  

The high strength steel sheets and aluminum sheets exhibiting far larger springback than 
ordinary mild steel sheets are widely used in automobile industries. The springback cannot be 
described by the constitutive models which use the yield surface enclosing a purely-elastic 
domain, i.e. the conventional model and the cyclic kinematic hardening models (multi-surface, 
two-surface and superposed kinematic hardening models), since a plastic strain rate in the 
unloading process is not described appropriately by these models. The schematic illustration of 
the draw-bending (so-called hat-bending) is shown in Fig. 5. 

 
Fig. 5. Schematic illustration of the set-up of hat-bending 

 
Fig.6 illustrates the comparison of measured stress-strain curve and the reproduced stress-

strain curve with subloading surface model using the following values of material parameters.  
Material constants : 

Initial yield stress: F0 = 402MPa 
Elastic moduli: 𝐸𝐸 = 200,000MPa, 𝜈𝜈 = 0.3,
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 {𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:  ℎ1 = 0.75, ℎ2 = 15,

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘: 𝑐𝑐𝑘𝑘 = 250𝑀𝑀𝑀𝑀𝑀𝑀, 𝜁𝜁 = 1.0,
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 𝑢̄𝑢 = 300  𝑢𝑢𝑐𝑐 = 5, 

The good agreement is observed in Fig. 6 unlike Fig. 7 that illustrates the comparison of 
measured one and reproduced one with conventional combined hardening model. Conventional 
combined hardening model in Marc uses the ratio of isotropic hardening part and kinematic 
hardening part, 80% for isotropic hardening and 20% for kinematic hardening were used in this 
case. 
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Fig. 6 Measured stress-strain curve and reproduced stress-strain curve with subloading 

surface model. 

 
Fig. 7 Measured stress-strain curve and reproduced stress-strain curve with conventional 

combined hardening model 
 

The calculation results of the shapes of the sheet after the springback are shown in Fig. 8, which 
was analyzed with the subloading surface model in the commercial software Marc (MSC 
Software, Ltd.).  The enough springback is predicted, which is caused by the plastic deformation 
in the forming process by virtue of the advantage of the subloading surface model describing 
the plastic strain rate due to the rate of stress inside the yield surface. 
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Fig. 8 Springback analysis with subloading surface model 

 
Fig. 9 Springback analysis with conventional combined hardening model 

 
In contrast, the spingback, shown in the Fig. 9, is predicted slightly by the conventional 

elastoplastic model which is realized by using the combined hardening model in Marc. The 
major reason seems to be luck of accurate reproduction of Bauschinger effect during reverse 
yielding stage with conventional plasticity model and it is obvious that some part of material is 
subjected to reverse yielding situation in this type of forming process since initially bended 
portion, partially tensile yielding state and partially compressive yielding state, will be stretched 
in the later forming stage, all stretched yielding state. Then, the importance is recognized for 
the introduction of the rigorous elastoplastic model, i.e. the subloading surface model capable 
of describing the plastic strain rate in the stress-reducing process appropriately. Hereinafter, it 
is desirable that the prediction of springback behavior will be executed by the pertinent analysis 
exploiting the subloading surface model, aiming at the epochal improvement of the prediction 
of the springback behavior in industries.  
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5 CONCLUSIONS 
The subloading surface elastoplastic constitutive model innovated by Hashiguchi was 

implemented in Marc general purpose nonlinear finite element commercial software.  
Implementation of forward Euler based stress integration formulation, that has full functionality 
to describe plasticity phenomena such as the Masing effect, stagnation and so on, into implicit 
static software is not easy since typical incremental strain is much larger than the stability limit 
of Eulerian integrator. In order to preserve unconditionally stable characteristic, we used Strain 
Subdivide Method as stress integration scheme that subdivide the incremental strain into 
acceptably small size for stress integrator. During the implementation, several numerical tests 
were carried out in order to confirm the speed performance and also accuracy using typical 
industrial problem such as tensile test of dumbbell specimen. 
The pringback simulation for sheet metal forming of high strength steel material is performed 

and the result was compared against the measured result of physical experiment. Throughout 
this numerical experiment it is confirmed that springback phenomena which has strong 
dependency on Bauschinger effect can be predicted with subloading elastoplastic constitutive 
model and the conventional elastoplastic constitutive model has limitation in accuracy for the 
prediction of springback due to luck of accurate reproduction capability of Bauschinger effect. 
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