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Abstract. The elastoplastic constitutive equation with the damage is formulated incorporating 
the subloading surface model. Further, it is extended to describe the unilateral damage 
phenomenon by formulating the actual Young’s modulus tensor as the function of the signs of 
the principal actual damaged stresses and the damage variable. Here, we may perform the 
ordinary deformation analysis simply in the virtual undamaged state. 

 
 
1 INTRODUCTION 

The past elastoplastic-damage models [1] [2] [3] [4] have been formulated in the current 
damaged configuration, so that several complicated modifications of evolution rules of internal 
variables by incorporating the damage effect are required. In addition, they are incapable of 
describing cyclic loading behavior. 
    Further, when the material undergoes the damage, the microdefects may be partly closed 
leading to the reduction of the damage effect in the plane subject to the compressional normal 
stress in the most materials. This is more often the case for very brittle materials. The partial 
closure of microcracks revives the effective area which can carry the load in compression and 
thus the stiffness may then be partially or fully recovered in compression. It is called the 
unilateral microdefect closure effect or simply unilateral damaged effect by Ladeveze and 
Lemaitre [5]. The constitutive relations for the unilateral damage effect have been formulated 
in the current damaged configuration, introducing various transformation tensor of the actual 
damaged stress tensor to the virtual undamaged stress tensor [2] [5] [6].  

The elastoplastic-damage model capable of describing the cyclic loading behavior is 
formulated by incorporating the subloading surface model [7] [8] [9] in this article. It is 
formulated in the virtual undamaged configuration, so that the elastoplastic constitutive 
equation in the ordinary subloading surface model itself is inherited to this model without any 
modification. Further, it is extended to describe the unilateral damage phenomenon by 
formulating the actual Young’s modulus as the function of the signs of the principal actual 
damaged stresses and the damage variable, in which the complicated transformation tensor is 
not required. Here, it is noticeable that the simple deformation analysis by the ordinary 
constitutive equation without the influence of the damage can be performed in the virtual 
undamaged configuration, provided that the actual damaged stress tensor is calculated from the 
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virtual undamaged stress tensor. 
 

2 HYPERELASTIC EQUATION 

The infinitesimal strain ε  is additively decomposed into the elastic strain eε  and the 
plastic strain pε  as follows: 

= peε ε ε                                                               (1) 
In what follows, we adopt the hypothesis of strain equivalence [10] insisting that the strain and 
its elastic and plastic parts in the virtual undamaged configuration are equivalent to those in the 
actual damaged configuration. It is based on the fact that the cracks possess infinitesimal 
thicknesses and various directions and thus it is assumed that the shape and the volume of the 
material in the actual configuration does not change from them in the virtual undamaged 
configuration. Mechanical quantities in the virtual undamaged configuration are specified by 
the symbols added the wave under them, i.e.   ( ) .  

The relation of the virtual Cauchy stress σ  in the undamaged configuration and the elastic 
strain eε  are given by the Helmholtz free energy function ( )e ε  and the Gibbs’ free energy 

( ) σ  as follows:  
( ) ( )

,=   =
e

e
e

  
 

σε
εε σσ                                                      (2) 

Adopting the simplest functions in the quadratic forms 
1 1 1 1( )  , ( )  ( )= = =  = =2 2 2 2

( ) ( )ee e e ee  E Eσ σε σε ε ε εεσ: : :: : σ :                        (3) 

it follows that 
( ) ( )=  = , = =

e
e ee

 


 
 

E E
ε σε ε σε σ

σ : :                                          (4) 

where E  is the fourth-order elastic modulus tensor. If E  is the constant tensor, we have the rate 
linear relations: 

= ,  e e    E Eε εσ σ: :                                                    (5) 
The elastic stiffness modulus tensor E  is given for the Hooke’s law as follows: 

1

1 ( )1 1 22
1 1 ( )( )= 12

[ ]

[ ]

ik jl il jk ij kl

ik jl il jk ij klijkl

ijkl
E=E

E E

     

     

    

  


                                      (6) 

where E  is the virtual Young’s modulus in the virtual undamaged configuration and   is the 
Poisson’s ratio which is assumed to be constant independently of the damage. Equations (2)-
(4) are expressed for Eq. (6) as follows: 

2

2

1( ) ( )= 2 1 1 2

1( ) [(1+ ) ( ) ]= 2

[ ]ij ij ij kk

ij ij ij kk

e e e eE

E

     

     


 


 


                                              (7) 

1=  = [ ]  , (1+ ) 1 1 2 )( ij kk ij ij kk
ee eij ij ij

E
E

       
                        (8) 
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Analogously, let the following quadratic free energy functions be adopted by taking into 
account of the fact that the actual elastic modulus tensor is influenced by the damage variable 

  (0 1)D D  . 

 
1 1( ,  ) ( )   ( )= =2 2

1( ) ( )= 2

( )ee e eD D D

D



 







E

E

εε ε εσ: ::

:σσ σ:
                                  (9) 

from which one has 
( ,  ) ( ,  )= ,   =

e
e

e
D D  

 
ε εε

σσ σ                                         (10) 

( )( ) , == e e DD EE εε :σσ :                                          (11) 
Further, assume the following Hooke’s type elastic modulus tensor with the damage effect, 

provided that the Poisson’s ratio is not influenced by the damage. 

1

( ) 1 ( )( ) 1 1 22
1 1( ) ( )( )= 1( ) 2

[ ]

[ ]

ik jl il jk ij kl

ik jl il jk ij klijkl

ijkl
DE=DE

DE DE

     
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
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                                   (12) 

2

2

( )1( , ) ( )= 2 1 1 2

1( ,  ) [(1+ ) ( ) ]= ( )2

[ ]ij ij ij kk

ij ij ij kk

e e e eDED

D DE
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)( 1=  = [ ],   (1+ ))(1 1 2 )( ij kk ij ij kk
ee eij ij ij

E D
DE

         
                          (14) 

The damaged virtual stress is related to the undamaged virtual stress from Eqs. (4) and 
(11) as follows:  

( )   ( ),= =D D  E EE Eσ σσ : : : :σ                                           (15) 
 

3 SUBLOADING SURFACE MODEL IN VIRTUAL UNDAMAGED 
CONFIGUTRATION 

The elastoplastic constitutive equation in the virtual undamaged configuration will be 
formulated based on the concept of subloading surface in this section (cf. [9]). 

3.1 Normal-yield and subloading surfaces 
The normal-yield surface with the isotropic and the kinematic hardening is described as 

( ) = ( )ˆf F Hσ                                                        (16) 
where  

ˆ  σ σ α                                                      (17) 
The subloading surface for the normal-yield sur-face in Eq. (16) is given as follows. 

( ) = ( )f RF Hσ                                                       (18) 
where (0 1)R R   is the normal-yield ratio designating the ratio of the size of the subloading 
surface to that of the normal-yield surface and 
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 σ σ α                                                     (19) 
where α  stands for the conjugate (similar) point to the variable α  in the normal-yield surface. 
Here, ( )ˆf σ  is chosen to be the homogeneous function of σ̂  in degree-one. 

By letting c  denote the center of similarity of the normal-yield and the subloading surfaces, 
i.e. the similarity-center, which is called elastic-core since the most elastic deformation 
behavior is induced when the stress lies on it fulfilling 0R   as will be explained later, the 
following relation holds. 

( )= R  αc α c                                                    (20) 
from which one has 

= ,    ˆ ˆR R   c σα c σ c                                                (21) 
where 

,   ˆ   σ σ cαc c                                               (22) 
 

3.2 Plastic flow rule and evolution equations of internal variables 
Adopt the associated flow rule for the subloading surface: 

 || || )=  ( > 0=p p 
  ε εn                                                (23) 

where  
 ( ) ( )

  (|| || 1)=|| ||/
f f 

  
σ σ

n nσ σ
                                (24) 

The rate of the isotropic hardening variable is described as 
, ,( ) ( ) ;  ;=  p

HnfH HH 
 εσ σ n                                    (25) 

and the rate of the kinematic hardening variable is described as follows: 
1 1|| || || ||,= =   ) )( (p p

k kk k
kk nnb bF Fc c

    ffα αn nε εα                         (26) 

where kc  and kb  are the material constants. 
The evolution rule of the normal-yield ratio is given by 

|| ||= ( ) for p pRUR
    0ε ε                                       (27) 

where ( )RU  is the monotonically-decreasing function of normal-yield ratio which is given 
explicitly as 

=( ) cot 2 1( )e
e

RRuRU R
  


                                              (28) 

where     is the Macaulay’s bracket and u  is the material parameters and ( )<1 eR  is the 
material constant denoting the value of R  below which only elastic deformation is induced 
practically. 

3.3 Evolution rule of elastic-core 
Let the following elastic-core surface be introduced, which always passes through the 

elastic-core c  and maintains a similarity to the normal-yield surface with respect to the 
kinematic-hardening variable α .  
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( ) ( ), i.e. /( ) ( )= =ˆ ˆc cf F H f F H c c                                  (29) 
c  designates the ratio of the size of the elastic-core surface to the normal-yield surface so that 

let it be called the elastic-core yield ratio. Then, let it be postulated that the elastic-core can 
never reach the normal-yield surface designating the fully-plastic stress state so that the elastic-
core does not go over the following limit elastic-core surface. 

 ( ) ( )=ˆf F Hc                                                     (30) 
where (<1)　  is the material constant designating the limit value of the variable c . 

The following evolution rule of the elastic-core is assumed [11]. 

  || ||= =ˆ ˆ ˆ( )p Hn
cn kn

fFF
R F Fc '

  


        f fc ε ασ c c c                             (31) 

where c  is the material constant and 
ˆ( )cn R

c  f σ c                                                 (32) 

The time-differentiation of Eq. (21) leads to 
(1 )= ˆRR R

    α cα c                                              (33) 
Substituting Eq. (31) into Eq. (33), one obtains 

|| ||(1 )= ˆˆˆ([ ])p FR R RR F
c  

      εαα σ cα cc                              (34) 

3.4 Plastic strain rate 
The time derivative of Eq. (18) leads to the consistency condition for the subloading 

surface: 
( ) ( )

0=
f f

FRF R
  

 
 
σ σ

σ: :ασ σ
                                       (35) 

Here, one has  
( )

( )=
f

f RF




σ : σσσ

                                              (36) 

based on the homogeneous function ( )f σ  of σ  in degree-one by the Euler’s theorem. Then, it 
follows that 

( )
1= = ,  =

( ) ( ) ( )|| || || || || ||

f
RF

RFf f f



  
  

σ
:σσ :n σ:n σ
σ σ σ
σ σ σ

                         (37) 

The substitution of Eq. (37) into Eq. (35) leads to 

0=[( ) ]F R
F R


 
 :: n σσn α                                          (38) 

The substitution of Eq. (34) into Eq. (38) leads to 
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  (1 ) || || 0=ˆ[ ( ]) pF R
RF R R

c 
 

       : : cσ εn σ n σ σ α                         (39) 

The substitutions of Eqs. (23), (25), (26), (27) and (31) into Eq. (39) leads to 

) 0(1ˆ ][ Hn cnkn
UF f R RF

'
  
      f f: : σσn n σ                          (40) 

from which the plastic multiplier 
  and the plastic strain rate pε  are given as follows: 

,  = =p p
p

M M


 
   ε

:σ :σn n
n                                               (41) 

where 

)(1ˆ[ ]p
Hn cnkn

F UfM RF R
'    f fn: σ σ                                        (42) 

3.5 Stain rate vs. stress rate relations 
The strain rate is given by substituting Eqs. (5) and (41) 2  into Eq. (1) as follows:  

1 1    = = ( )p pM M
 


   E Eε

:n n nσ:σ :n σ                                     (43) 

from which the magnitude of plastic strain rate described in terms of the strain rate, denoted 
by 


 instead of 


, in the flow rule of Eq. (23) is given as follows: 

,=   ==p
p pM M 

  
 

E E
E E
ε εεn n: :: :n n

n n: :n : :n
                            (44) 

The stress rate is given by the strain rate as follows: 

= = )(p pM M

   
 

E E EE EE
E E

nnεε n εnn n
n: : : :σ : : :n: : : :

                        (45) 

The loading criterion is given as follows [9]: 

 for  > 0

 for 0

p

p

 

 





   E

0 E

0 

ε n ε

ε ε

::

n ::

                                               (46) 

 

3.6 Improvement of inverse-reloading responses 
The material parameter u  is extended in order to improve the description of the inverse-

reloading behavior as follows: 
= exp( )c cuu Cu                                                    (47) 

where u  and cu  is the material constant and 

 ( )ˆ  c CC    n : n                                                 (48) 

with 
( ) ( )

(|| || =1)ˆ ˆ
ˆ ˆ|| ||/c c

f f 


 
n n

c c
c c

                                       (49)  
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4 EVOLUTION OF DAMAGE VARIABLE 

The continuum damage variable D  is interpreted as an indirect measure of density of 
microvoids and microcracks [12] and its evolution rule was given as follows [13]: 

)(( )= 1
D

p pd d pa HYD D
  


 


                                                   (50) 

where   and a  are the material constants, and D
p  is the threshold value of the accumulation 

of the deviatoric plastic strain rate, i.e. || ||ppd dt 
  ε . Y  is the virtual undamaged strain 

energy function given by 
1 1 1
2 2 2

e e eY   E Eε : :ε σ:ε σ: :σ                                  (51) 

5 BILATERAL DAMAGE EFFECT 

The elastic modulus tensor and its inverse in the virtual undamaged configuration in Eq. (6) 
are expressed in the matrix form as  

        1        0       0      0
       1          0       0      0
            1     0       0      0

=
                      1 2    0      0(1+ )(1 2 )

Sym.                       1 2   0
     

E

  
 


 











E

                                  1 2

 
 
 
 
 
 
 
 

 

                            (52) 

and 
    1    0    0    0

       1     0    0    0
             1     0    0   01=
     Sym.   1+    0    0
                      1+    0
                            1+

E

 









  
  
 
 
 
 
 
 

E                                      (53)  

    Here, let the damaged Young’s modulus in Eq. (12) be given by 
( ) (1 )E D D E                                                        (54) 

leading to 
(1 )D  EE ,  1

1 D
  


EE                                        (55) 

for which the damaged current stress is related to the undamaged virtual stress by substituting 
Eq. (54) into Eq. (15) as follows: 

=(1 )D σσ ,  1=1 D
σ σ                                           (56) 

The virtual undamaged strain energy function Y is given by substituting Eqs. (55) and (56) 
into Eq. (51) as 

1
2

e eY  Eε : :ε  
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2
1 1 1 1

2( ) 2( ) 2( ) 2( )1 1 1 1
e e e

D D D D
    

   
E E Eε : :ε σ:ε σ: : σ σ: : σ                    (57) 

5 UNILATERAL DAMAGE EFFECT 

Let the principal actual damaged axial stress  ( =1, 2, 3)p p  be given by the principal 
elastic axial strain p

e  in the uniaxial loading state as follows: 

1

)(
  under 0 ( )

)(

p

p

p p

pp

e

qe

E D
q p

E D

 


 

  


                                       (58) 

Let the damaged Young’s modulus ( )pE D  in Eq. (58) be given as follows: 
(1 )p pE EH D                                                                       (59) 

        (1 ) for 0
(1 )  for 0 

p

p

ED
h ED




     

 

( ) [ ( )]1p ppH H H h                                            (60) 
( )H s  is the Heaviside’s step function, i.e. ( ) 1H s   for 0s   and ( ) 0H s   for 0s   ( s : 

arbitrary scalar), and  (0 1)h h    is the material constant. Equation (59) is shown in Fig. 1. 

 
Fig. 1. Actual damaged Young’s modulus and actual damaged stress in uniaxial loading  

for unilateral damage phenomenon. 
 

Extending the inverse elastic modulus tensor to the unilateral damage by adopting the 
damaged Young’s modulus in Eq. (59) on the premise that the elastic strain is not influenced 
by the lateral stresses, let the inverse elastic modulus tensor be given by the matrix form in the 
coordinate system with the base { }Pe  in the principal stress directions as follows:

p

pE

p
e

p

0

( )1 ED
1

1

1

(1 )Eh D

(a) Relation of principal actual Young’s modulus
vs. principal actual damaged stress.

(a) Relation of principal actual damage stress
vs. principal elastic strain

0

1

E
E

( )1 ED

(1 )Eh D
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1

2

3

       0    0    0
           0    0    0
                  0    0   01=
     Sym.      1+    0    0
                         1+    0
                               1+

E

  
 









  
  
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 
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 
 
  

E
                                                (61) 

2 2 2

2 2

2

23 3 2

113

12

             0     0      0

                         0     0      0

                                         0     0      0

                              =
Sym.

 

E

    

  

 



  

  



E                0      0
1

                                                             0
1

                                                                  
1










 
 
 
 
 
 
 

 
 
  
 
  

                              (62) 

where  
1( )

(1 1)P
P P P

E E
D E EH D H D 

   
 

                                   (63) 

32
,   PQ Q RPPQ PQR

PQ Q RP

E E      
   

                                (64) 

1 2 3123
2 3( ) 2                                                           (65) 

    The actual damaged stress is given by the virtual undamaged stress as  
1= = =e  : :E : E : E σ σσ ε                                                       (66) 

where 
2

2

   23 2 3 23 2 3 23 2 3

31 3 1 31 3 1 31 3 1

12 1 2 12 1

  

( )    ( )    ( )        0  0    0

( )      ( )   ( )       0  0     0
1 ( )      (=

             

               

      




            

            

      E : E
2

2 12 3 1    

 

)      ( )    0 0    0
                   0                                          0                                        0                     0   0
                   0  

     


      

                                        0                                        0                    0      0
                   0                                          0                          


    

 ( )

              0                 0    0   

T



 
 
 
 
  
 
 
 
  

 

   (67) 
The relation σ  to σ  is expressed by the components in the fixed coordinate system as follows: 

= P Qj R Sb PQRSij abi aQ Q Q Q                                                          (68) 
where 

A iAiQ  e e                                                                       (69) 
noting 

( ) ( )= PQRS P Q R Sij ai b jab     ee e e e e e e:  

Inversely, the virtual undamaged stress is given by the actual damaged stress as follows: 
1= = =e E : E : : :Eσ ε σ σI                                                   (70) 

where  
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31 2

1 32

1

2
  

2

         

   

(1 ) ((             0   0     0
(1+ )(1 2 ) (1+ )(1 2 ) (1+ )(1 2 )

( ((1 )              0         0     0
(1+ )(1 2 ) (1+ )(1 2 ) (1+ )(1 2 )

= (

    
     

    
     




    
  

    
  

 E : EI
32 2       

( (1 )            0         0     0
(1+ )(1 2 ) (1+ )(1 2 ) (1+ )(1 2 )
          0                         0                             0                 1         0        0
         

  
     

  
  

 0                         0                             0                 0         1        0
          0                         0                             0                 0         0        1



 ( )T


 
 
 
 
 
   
 
 
 
 
 
  

I

         (71) 

noting I  is the non-symmetric tensor but the tensor : tI is the symmetric tensor for an 
arbitrary symmetric second-order tensor t . 

Equation (70) is described in the component form as follows: 
= P Qj R Sb PQRSij abi aQ Q Q Q I                                                         (72) 

because of  
( ) ( )= PQRS P Q R Sij ai b jab     ee e e e e e e:I  

    Noting  
1 1  2 (1 )(p

p
p

pp

H
EE ED EH DE





    


                                         (73) 

one has 
1

2
1

2
2
2

3
2
3

0      0     0     0

         0     0     0     0    0

=
              0     0     0    0  

                       0     0    0Sym.
                                      0   

H
E

H
E

H
E








  

E ,

 0
                                            0

ED


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                 (74) 

It follows from Eq. (52)  and (74) that 
= D

 E E: I                                                          (75) 
where  

1
2
1

2
2
2

3
2
3

0      0     0     0

         0     0     0     0

1
(1+ )(1 2 )               0     0    0  

                 0     0    0Sym.
                                0    0
          

H
E

H
E

H
E








 

  






I

                            0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                   (76) 
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     It is required to calculate the virtual undamaged stress rate from the actual damaged stress 
rate at the boundary where the stress and its rate are given, while the virtual undamaged stress 
is calculated from the actual stress by Eq. (70). The virtual undamaged stress rate is given from 
the actual stress rate by Eqs. (70) and (75) as follows: 

11 1( ( ) )= = = = e D
      EE E E E E Eσ σ σ σ σ σ: : : : :: : : :ε I I                        (77) 

or in the component description as follows: 

PQRS ababQj Qj PQRSP Ra Sb P Ra Sbij i iQ Q Q Q Q Q Q QD  
  I I                                (78) 

noting 
)[( ) (P Q R Si a bPQRS abij      e e ee e e e :I  

]( ) ( )P Q R S aab b jPQRSD     e e ee e e e :I  

) ][( ) (P Q R Si aab b j abPQRS Qj PQRSP Ra SbiQ Q Q QD 
   e e e ee e e e : II   

However, note that the rate of the damage variable is involved in Eq. (77). Equation will be 
represented fully in terms of the actual stress and its rate in the following. 
    Equation (77) is rewritten by substituting Eq. (50) of the damage variable with Eq. (41) of 
the plastic strain rate as follows: 

)(=
1( ) D

p

p pd da HY
D M

 



  


σ σ σ:σn: :I I                                     (79) 

from which one has 
)(=

1( ) Dp
p p

p pd da HYM DM M
 



 
 


σ σ:σ :σn n: : : :n nI I                             (80) 

leading to 

=
)(

1( ) D
p

p
p pd daM HYM D

 


 






σ

σ

: :n:σn

: :n

I

I

                                 (81) 

The damage variable is rewritten by substituting Eq. (81) as follows: 

= 1
)(
( )

D

p
p pd d

aD DM YH


 




 


σ

σ

: :n
: :n

I

I

                                          (82) 

Substituting Eq. (82), the rate of the virtual undamaged stress is described by the actual 
damaged stress and its rate as follows: 

=
1

)(
( )

D

p
p pd d

aDM YH


 


  

 


σσ σ σ
σ

: :n: :
: :n

I
I I

I

                          (83) 

where 
( )

( )

P Qj R Sb PQRS

P Qj R Sb PQRS

ij abi a

ij abi a

Q Q Q Q

Q Q Q Q




 

 





σ

σ

:

:

I

I

I

I
                                (84) 
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    Consider the deformation in the uniaxial loading process ( 2 3 0   ) in which the principal 
directions are fixed. It follows from Eq. (70) with Eq. (71) that  

1 2
11

(1 )
(1+ )(1 2 )

  
 

 



                                                  (85) 

from which we have 

1
1 12

(1+ )(1 2 )
(1 )

  
 



 

                                                  (86) 

Further, it follows from Eq. (77) with Eqs. (71) and (76) that 

1 2 1
1 11 2

1

3 4 5 62

(1 ) 1=
(1+ )(1 2 ) (1+ )(1 2 )

0= = = = =

HD
E
    

   

    



    

     



                              (87) 

where  
1

1

1
1

2
1

2
1

(1 )
(1+ )(1 2 )

=
(1 )1

) (1+ )(1 2 )(
( )

D

p
p pd d

aD
DM YH

n

n

 
 

  
  




 


  


                                (88) 
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