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Abstract. The extended subloading surface model is capable of representing not only 
monotonic but also cyclic loading behaviors accurately. The various return-mapping methods 
have been adopted to for the elastoplastic deformation analysis in FEM incorporating the 
subloading surface model. However, the past algorithms based on the expansion of the 
subloading surface is inapplicable to the cyclic loading behaviors. Then, the rigorous complete 
integration algorithm for Mises metal is adopted in this study. Additionally, it is implemented 
into the FEM software ABAQUS through the user-subroutine UMAT. The numerical 
calculations are performed for the forward and inverse loading processes by use of the proposed 
and the past implicit algorithms. A more accurate elastoplastic deformation analyses can be 
conducted by the proposed algorithm. Thus, it may be stated that the accurate numerical 
solution can be attained by adopting the proposed return-mapping algorithm for the general 
loading process. 

 
 
1 INTRODUCTION 

The subloading surface model does not incorporate the yield surface enclosing a purely-
elastic domain. Instead, it is based on the natural postulate that the plastic strain rate develops 
as the stress approaches the yield surface [1, 2]. Therein, the subloading surface is incorporated, 
which passes through always the current stress point and keeps the similarity to the yield surface 
(the normal-yield surface). Therefore, the smooth transition from the elastic to the plastic state 
leading to the description of the continuous tangential modulus represents always in the 
subloading surface model. Moreover, the subloading surface model is capable of describing not 
only monotonic but also cyclic loading behaviors accurately. 

The implicit stress integration algorithm based on the return-mapping for the subloading 
surface model in Mises metal has been studied in various approaches [3-7]. These loading 
criteria are based on the premise that the plastic strain rate is occurred by the expansion of the 
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subloading surface. Thus, these are limited to the description of monotonic loading behaviors 
and are unsuitable to the cyclic loading behaviors. In fact, the plastic strain rate is induced even 
when the subloading surface contracts in the elastic trial step if it once contracts but expands 
thereafter. 

The return-mapping algorithm for the extended subloading surface model is formulated by 
incorporating the rigorous loading criterion in this study. It is capable of describing elastoplastic 
deformation in the general loading process involving not only monotonic but also cyclic loading 
for the Mises metals. Moreover, it has been implemented in the FEM software ABAQUS 
through the user-subroutine UMAT. Numerical analyses were performed not only for the 
forward loading but also the inverse loading in the multi-axial loading. In addition, the 
numerical calculations were performed by use of the past loading criterion in order to verify the 
necessity of the incorporation of the rigorous loading criterion.  

2 EXTENDED SUBLOADING SURFACE MODEL 
The constitutive equations in the extended subloading surface model [8] are addressed. The 

infinitesimal strain theory is adopted and the infinitesimal strain ε  is additively decomposed 
into the elastic strain eε  and the plastic strain pε . The Cauchy stress σ  is given by as following 
equation using Hooke’s law with the elastic mudulus tensor E . 

pe ε ε ε  (1) 

 : :e p  σ E ε E ε ε  (2) 

The normal-yield surface for Mises metal is adopted. The subloading surface, which is similar 
to the normal-yield surface and passes though the current stress point, is given (Figure 1).  

   ˆf F Hσ  (3) 

   f RF Hσ ,   3
2

f σ σ  (4) 

The following relations hold in the variables for the normal-yield surface and subloading 
surface.  

 
Figure 1:  Normal-yield, subloading, and elastic-core surfaces. 
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ˆ ˆˆ , , , , ( )R R            σ σ α σ σ α c c α σ σ c α c c α c c  (5) 

Where α  is the kinematic hardening variable, c  is the elastic-core, and α  is the center of the 
subloading surface and the conjugate point to the kinematic hardening variable in the normal-
yield surface.  0 1R R   is the normal-yield ratio denoting the ratio of the size of the 
subloading surface to that of the normal-yield surface. The subloading surface coincides with 
the normal-yield surface when R=1. By contrast, the subloading surface become a point when 
R=0. The following equation is the evolution rule for the normal-yield ratio.  0 1e eR R   is 
the material constant expressing the normal-yield ratio in the limit of the purely-elastic domain. 

  || ||
p

R U R• • ε  for p• ε 0  (6) 

  cot
2 1

e

e

R R
U R u

R
  

   
 (7) 

  01 02 1 cos cos exp
1 2 1 2

p p
e

e e
e e

R RR R u R
R R

 



                 

ε ε

 

(8) 

Where ( )•  denotes the material time derivative and  is Macauley’s bracket. 
The elastic-core surface, which passes through the elastic-core and is similar to the normal-

yield surface with respect to the kinematic hardening variable is introduced.  0 1c c    is 
the ratio of the size of the elastic-core surface to that of the normal-yield surface. The elastic-
core limit surface is introduced to regulate the elastic-core to move only inside of it because it 
is inapplicable that the elastic-core coincides normal-yield surface. 

   ˆ cf F Hc  (9) 

   ˆf F Hc  (10) 

Where ( 1)   is a material constant expressing the limit of the elastic-core surface. 
The plastic strain rate is given by the associated flow rule and the normalized outward-normal 

vector of the subloading surface n .  

p 
•• ε n ,    f f 


 
σ σ

n
σ σ

 (11) 

Where  ( )0    is the plastic multiplier. The evolution of the elastic-core, isotropic and 
kinematic hardening is given by the non-linear hardening rule. 

ˆc
c cC  


• • • 
   

 
c s n n

 
(12) 

    0 1 21 1 expF H F h h H      , 2 || ||
3

p
H ••
 ε  (13) 

 
2 1
3

a
r F H


 
• • • 

    
 
n αα a  (14) 

0F   is the initial value for isotropic hardening function, and cC  , 1h  , 2h  , a  and r   are the 
material constants. 
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3 RETURN-MAPPING ALGORITHM  

3.1 Rigorous loading criterion 
The complete implicit stress integration algorithm based on the return-mapping is adopted, 

in which the strain increment +1nε  inputs the elastic deformation in the elastic trial step [9]. 
The elastic trial stress trial

1nσ  is calculated by the elastic equation using the elastic strain e
nε  in 

step n and the strain increment, where, the subscript denotes the number of steps.  

  trial
+1 +1: e

n n n  σ E ε ε  (15) 

The following loading criterion has been adopted for the subloading surface model in the past 
[3-6]. 

       trial trial
+1 +10 or 0

Otherwise
n n n n n n e nf R F H f R F H     σ α σ α trial

+1 +1 +1
trial

+1 +1 +1

: ,

: ,

p
n n n
p
n n n

  

  

ε 0 σ σ
ε 0 σ σ

  (16) 

The past loading criterion is based on the premise that the elastic trial stress goes out for the 
plastic loading process from the subloading surface and the purely-elastic domain in the step n. 
In fact, however, the plastic strain rate is induced even when the subloading surface contracts 
in the elastic trial step if it once contracts but expands thereafter. In order to explain this fact 
concisely, the example of inverse monotonic loading process is shown in Figure 2. The elastic 
trial stress is directed toward the interior of the current subloading surface, and the subloading 
surface in elastic trial step once contracts. However, it re-expands larger than purely-elastic 
domain. Therefore, this elastic trial step is the plastic loading process which the elastic trial 
stress goes out from the subloading surface and the purely-elastic domain. It is necessary to 
occur the plastic strain rate even when subloading surface contracts in the elastic trial step if it 
once contracts but expands thereafter. However, the past loading criterion can’t consider this 
fact and is inapplicable to describe of cyclic loading behaviors.  

The numerical errors using the past loading criterion can be prevented by setting the input 
increment to be sufficiently small. However, the advantage of highly accurate and efficient 
calculation in return-mapping is not performed. Then, the rigorous loading criterion is adopted 
in this study. In the rigorous loading criterion, it formulated based on the fact in Figure 3.
(1) When the elastic trial stress increment trial trial

1 1n n n   σ σ σ   goes out from the subloading 
surface and the purely-elastic domain in the step n, the plastic strain rate is induced.  

 
Figure 2:  Inverse loading process: the subloading surface in elastic trial step re-expand after once contraction. 

trial
+1nσ

nσ

nα

x

y z

 ˆ ( )n nf F Hσ

   n n e nf R F H σ α

   n n n nf R F H σ α
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(2) When the elastic trial stress increment trial
1nσ  goes in for an inverse loading process the 

subloading surface in the step n ( trial
1: 0n n n σ ). The plastic strain rate is induced even 

when the subloading surface contracts in the elastic trial step if it once contracts but 
expands thereafter. In this case elastic trial stress increment and outward-normal vector of 
the subloading surface in the elastic trial step ( trial trial

1 1: 0n n  n σ  ) forms an acute angle 
( 90   ). However, the plastic strain rate is not induced when the elastic trial stress trial

1nσ
is inside the purely-elastic domain ( trial

1( ) ( ) 0e
n n e nf R F H   σ α ). 

Thus, the following loading equations are introduced as the rigorous loading criterion. 
trial trial

1 1

trial trial
1 +1 1 1

trial
1 +1

trial
1

trial
1

(1) : 0 (Forward loading)

(i) ( ) ( ) 0 : ,

(i i) ( ) ( ) 0 :

(2) Otherwise ( : 0) (Inverse loading)

(i) :

n n

e p
n n e n n n n

e p
n n e n n

n n

n n

f R F H

f R F H

 

  





 

 

      


    
 



n σ

σ α ε 0 σ σ
σ α ε 0

n σ

n σ trial trial
1 +1 1 1

trial
1

trial
+1 1 1trial trial

1 1 trial
1

+1

0 : ,

(a) ( ) ( ) 0 :

,
(i i) Otherwise ( : 0)

(b) ( ) ( ) 0 :

p
n n n

e
n n e n

p
n n n

n n e
n n e n

p
n

f R F H

f R F H

 



 
 



    


   


        
  

ε 0 σ σ

σ α
ε 0 σ σ

n σ
σ α

ε 0

 (17) 

Where, the variables for the loading criterion are expressed by  
trial trial

+1 +1n n n  σ σ σ  (18) 
trial trial
+1 +1 +1ˆ ˆ, e

n n n n n n e nR R   α c c α c c  (19) 
trial trial trial trial trial
+1 +1 +1 +1 +1ˆ ˆ,n n n n n n n n n n n nR R       σ σ α σ c σ σ α σ c  (20) 

       trial trial
+1 +1trial

+1 trial trial
+1 +1

,n n n n
n n

n n n n

f f f f   
 

   

σ σ σ σ
n n

σ σ σ σ
 (21) 

 
Figure 3:  Rigorous loading criterion for exetnded subloading surface model. 

ijσ

Normal-yield surface
Subloading surface at step n

   n n n nf R F H σ α

nα

nc

0

nα

e
nα

Purely-elastic domain
   trial

+1
e

n n e nf R F H σ α

trial
+1nα

trial trial
+1 +1: 0n n n σ

nn
nσ

trial
+1nn

trial
+1nσ

trial
+1nn trial

+1nσ

Subloading surface at elastic trial step
   trial trial trial

+1 +1 +1n n n nf R F H σ α

trial trial
+1 +1: 0n n n σ

trial trial
+1 +1: 0n n n σ
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The subloading surface function in the elastic trial step is expressed by the elastic trial stress 
and the normal-yield ratio at the elastic trial stress trial

+1nR . Additionally, the normal-yield ratio in 
the elastic trial step is expressed by

trial trial
+1 +1

3 ( )
2 n n nR F H σ  (22) 

   

 

22 22trial trial trial
+1 +1 +1

trial
+1

22

2ˆ ˆ ˆ: : ( )
3

2 ˆ( )
3

n n n n n n n

n

n n

F H
R

F H

         


σ c σ c c σ

c
 (23) 

3.2 Plastic corrector process  
In the return-mapping algorithm, the elastic trial stress is adopted as updated stress when it 

is judged as an elastic loading process by the loading criterion. By contrast, when the elastic 
trial stress is judged as a plastic loading process, the plastic corrector process is applied to 
calculate the stress and state variables after the plastic deformation. The equilibrium equations 
to correct stress and state variables by an iterative convergence calculation are expressed by 

 

1 trial
+1 +1 +1 +1

+1 +1 +1

+1 +1 +1

+1 +1

+1 +1 +1

:

2
3
( )

e
n n n n

n n n n

c n n n n

H n n n

S n n n

Y H H

Y f R F H











   

   

   

   

 

Y E σ ε n
Y α α a
Y c c s

σ

 
(24) 

Where, the unknown vector X  and the residual vector ( )Y X  are introduced. 

 +1 +1 +1 +1 +1
T

n n n n nH  σ α cX
 

(25) 

   Tc H SY Y  Y Y YY X 0
 

(26) 

Additionally, the initial values of the unknown vector variables and the normal-yield ratio are 
expressed by the following equations. 

(0) trial (0) (0) (0) (0)
+1 +1 +1 +1 +1 +1, , , , 0e e

n n n n n n n n nH H      ε ε α α c c  (27) 
(0)
+1 n

(0)
+1

:

:
n e n

n e n e

R R R R

R R R R

 

 
 (28) 

Where, the superscripts indicate the number of iterations in the convergence calculation.  
Equation (26) is expressed by the primary approximation of the Taylor expansion. The 

unknown vectors are updated from iteration k to k+1 of the convergence calculation using the 
Jacobi matrix. Each element of the Jacobi matrix is introduced by a direct partial differential 
operation, but description of that is omitted in this article. 

     ( +1) ( ) ( ) dk k k   Y X Y X J X X 0  (29) 

   -1( +1) ( ) ( ) ( ) ( ) ( )k k k k k k      X X dX X J X Y X  (30) 
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 ( ) -61.0×10k Y X  (31) 

The convergence calculation of the plastic corrector process continues until it satisfies the 
criterion expressed by Equation (31). Although they include vectors with various units, the 
stress dimensional vector controlling the iterative calculation converges sufficiently when the 
convergence criterion is satisfied.  

Moreover, the consistent tangent modulus tensor is adopted to efficiently satisfy the global 
equilibrium condition in the static FEM analysis. In this study, it was introduced using a 
numerical procedure using the perturbation strain [10]. The perturbation strain was setted  

-810×10    in this study.  

3.3 Initial value for normal-yield ratio in plastic corrector process 
The plastic strain rate is induced even when the subloading surface contracts in the elastic 

trial step if it once contracts but expands larger than purely-elastic domain thereafter (Equation 
(17) (2) (ii) (b)). There are various stress directions in this case. However, in fact, among them 
are the loading processes in which the subloading surface in the elastic trial step re-expands 
after temporary contraction without passing the purely-elastic domain (Figure 4). In this case, 
Equation (28) may induce numerical error and can’t adequately express the general loading 
process. Then, the initial value for the normal-yield ratio in the plastic corrector process has to 
be applied it at the transition point where the subloading surface switches from contraction to 
re-expansion. The calculation method for the normal-yield ratio at the transition point was 
introduced. 

The subloading surface state in the transition point where the subloading surface switches 
from contraction to re-expansion is shown in Figure 5. The stress 0

+1nσ  and normal-yield ratio 
0
+1nR  at the transition point must satisfy 

   0 0
+1 +1n n nf R F Hσ  (32) 

Moreover, the elastic trial stress tangents to the subloading surface at the transition point. 
Therefore, the elastic trial stress and the outward-normal vector 0

+1nn  of the subloading surface 
are intersected at right angles at the transition point. The stress at the transition point is given 
by the following equation based on the relationship between the stress at current step and the 
elastic trial stress.  

 
Figure 4:  Inverse loading process which the elastic trial stress contracts and re-expands 

without passing the purely-elastic domain. 

0
+1nα

nα

0
+1nσ

nσ

trial
+1nσ

nc

x

y z

 ˆ ( )n nf F Hσ

   n n n nf R F H σ α

   e
n n e nf R F H σ α

   0 0
+1 +1n n nf R F H σ α
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0 trial
+1 +1: 0n n n σ  (33) 

0 trial
+1 +1 (0 1)n n nc c    σ σ σ  (34) 

Where, c is a scalar variable satisfied by Equation (32), (33) and 0 1c  . Additionally, the 
variables of the subloading surface at the transition point are expressed by  

0 0 0 trial 0
+1 +1 +1 +1 +1ˆn n n n n n nc R     σ σ α σ σ c , 0 0

+1 +1ˆn n n nR α c c  (35) 

   0 0
+1 +10

+1 0 0
+1 +1

n n
n

n n

f f 


 

σ σ
n

σ σ
 (36) 

The normal-yield ratio and scalar variable c at the transition point are expressed by 

 trial 0 0
+1 +1 +1ˆn n n n n n

3 c R R F H
2

     σ σ c  (37) 

 trial 0 trial
+1 +1 +1ˆ : 0n n n n nc R      σ σ c σ  (38) 

The scalar variable c  is obtained by solving the Equation (37) and (38).  

        2trial trial 2 trial 0 0 0 0
+1 +1 +1 +1 +1 +1 +1

2ˆ ˆ ˆ: 2 : : 0
3n n n n n n n n n n n n n nc R c R R R F H                 σ σ σ σ c σ c σ c  (39) 

        2 20 0 0 0 0
+1 +1 +1 +1 +1

2ˆ ˆ:
3sc n sa sc n sa ss n n n n n n n n

ss

S R S S R S S R R R F H
c

S

             
σ c σ c

 
(40) 

trial trial trial trial
+1 +1 +1 +1ˆ: , : , :ss n n sa n n sc n nS S S          σ σ σ c σ σ  (41) 

Moreover, the normal-yield ratio at the transition point is expressed by substituting the scalar 
variable  c  to Equation (38).  

        2 20 0 0 0
+1 +1 +1 +1

3ˆ ˆ: 0
2sc n sa ss n n n n n n n nS R S S R R R F H           

σ c σ c  (42) 

     2 22 2

0
n+1 2

3
2sc sa ss ca sc sa ss ca sa ss aa n sc ss cc

sc ss cc

S S S S S S S S S S S F H S S S
R

S S S

          


 
(43) 

 
Figure 5:  Rigorous calculation method for initial value of normal-yield ratio in the plastic corrector process. 
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ˆ ˆ ˆ: , : , :ca n n aa n n cc n nS S S       σ c c c σ σ  (44) 

4 NUMRRICAL VERIFICATION  
The proposed formulations were implemented in the FEM software ABAQUS through the 

user subroutine UMAT. The numerical analyses applied elastoplastic deformation using single-
element model with the primary hexahedral element. Additionally, we verified the accuracy of 
the implicit stress integration algorithm based on the rigorous and past loading criteria. The 
material constants for the numerical analyses are shown in Table. 1. Concisely, the isotropic 
and kinematic hardening are not discussed in this study.  

Table 1: Material constatants 

Elastic property Translation of elastic-core Evolution of normal-yield ratio  Yield stress 
E [GPa]   Cc [MPa]   Re u0 uc F0 [MPa] 

160 0.30 10000 0.60 0.3 80 2.0 500 

4.1 Verification with single-element model 
First, the uniaxial forward and inverse loading process was performed. The forward loading 

process was a deformation of up to 2% of the nominal strain in the X-axis direction, and the 
inverse loading process was a deformation of up to 0% in the nominal strain. Numerical analysis 
increment was performed by four steps per process.   

Stress aσ  at the end of the forward loading process, elastic trial stress bσ  and the subloading 
surface state in the elastic trial step of the beginning of the inverse loading process are shown 
in Figure 6 (a). The stress-strain curves and elastic trial stress in the beginning of the inverse 
loading process are shown in Figure 6 (b, c). There were no difference in the stress-strain curves 
obtained by the rigorous and past loading criteria because the forward loading process was only 
expasion process of the subloading surface.  

 
      (a) Subloading surface state                  (b) Past loading criterion            (c) Rigorous loading criterion 

Figure 6:  Uniaxial forward and inverse loading process, which the subloading surface  
in elastic trial step of beginning of inverse loading re-expand after once contraction. 
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In the beginning step of the inverse loading process, the subloading surface re-expanded 
larger than the purely-elastic domain after it once contracted less than that domain as was 
similar to Figure 2. In this case, the elastic trial stress trial

bσ  was judged as an elastic loading 
process by the past loading criterion, and the numerical value was calculated larger than exact 
value (Figure 6 (b)). On the contrary, the rigorous loading criterion judged as a plastic loading 
process. Thus, the plastic corrector step was applied and the elastic trial stress trial

bσ   was 
corrected to the subloading surface containing the plastic deformation (Figure 6 (c)).    

Next, the bi-axial forward and inverse loading process was performed to verify the accuracy 
of the general-loading process. The forward loading process provided a deformation of up to 
2% of the nominal strain in the X-axis direction. In inverse loading process, the displacement 
boundary conditions in the X-axis direction were removed and the stress produced in the 
forward loading process gradually decreased to 0 MPa. Additionally, the deformation that was 
induced in the Y-axis direction was restored to 0% of the nominal strain. Thus, the stress in the 
X-axis direction and the strain in the Y-axis direction were controlled linearly. Numerical 
analysis increment was performed by three steps per process. 

Stress cσ   at the end of forward loading process  elastic trial stress dσ   and the subloading 
surface state in the elastic trial step of the beginning of the inverse loading process are shown 
in Figure 7 (a). The subloading surface in the elastic trial step of the begginning of the inverse 
loading process re-expands after temporary contraction without passsing to the purely-elastic 
domain, as can also seen Figure 4.  

The stress curves in the X- and Y-axis direction of two loading criteria are shown in Figure 
7 (b, c). The subloading surface in the elastic trial step of the beginning of the inverse loading 
process re-expanded larger than the purely-elastic domain after once contracted. In this case, 
the elastic trial stress trial

dσ  was judged by the past loading criterion as the elastic loading process 
and numerical value was calculated as larger than the exact value (Figure 7 (b)). On the contrary, 
the rigorous loading criterion judged it as the plastic loading process. Moreover, the normal-
yield ratio of the transition point where the subloading surface switched from contraction to re-
expansion was applied to the initial value for the normal-yield ratio in the plastic corrector 
process. Therefore, the precise numerical analyses were performed using the rigorous loading 
criterion regardless of the stress directions.  

 
(a) Subloading surface state               (b) Past loading criterion                   (c) Rigorous loading criterion 

Figure 7:  Bi-axial forward and inverse loading process, which the subloading surface  
in elastic trial step of beginning of inverse loading re-expand after once contraction. 
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4.2 Verification with error map 
The error map was introduced to verify the accuracy of the past and rigorous loading criteria 

for various strain increments and directions. The elastoplastic deformation was applied up to  
1% of the nominal strain in the X-axis direction, to produce the error map. Additionally, the 
stress num  was calculated using a series of strain increments corresponding to the elastic trial 
stress increments trialσ . 

trial
T N    σ T N  (45) 

Where, N  and T  are the normal and the tangential vector. In this study, to avoid division by 
zero, error equation is defined as the ratio of the exact value to the initial value for normal-yield 
surface. 

0

num exact num exact( ) : ( )Error 100 [%]
2F

    
   (46) 

Where, exact  is the exact values calculated by the sufficiently small strain increment.  
The error maps are shown in Figure 8. When the subloading surface was a forward loading 

state from 1% of the nominal strain, there was no difference in the judgement of loading process 
between the past and rigorous loading criteria. However, in inverse loading process, the 
numerical accuracy was different depending on the loading criteria. Because the past loading 
criterion can’t consider the transition from contraction to expansion of the subloading surface, 

 
(a) Past loading criterion 

 
(b) Rigorous loading criterion 

Figure 8:   Error maps: numerical values in figures are error values (%). 
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the updated stress may be calculated as larger than the exact value. Conversely, the rigorous 
loading criterion can consider the process wherein the subloading surface re-expands after 
contraction. Therefore, the rigorous loading criterion can carry out more accurate numerical 
analyses compared to the past loading criterion. 

5 CONCLUSIONS 
- The rigorous loading criterion and the initial value calculation method for the normal-

yield ratio for return-mapping were adopted to the complete implicit stress integration 
algorithm for the extended subloading surface model. Additionally, it has been 
formulated and implemented in ABAQUS through the user-subroutine UMAT. 

- The rigorous loading criterion can represent that the plastic strain rate is induced when 
the subloading surface contracts in the elastic trial step if it once contracts but expands 
thereafter. The normal-yield ratio where the subloading surface switched from 
contraction to re-expansion is adopted to the initnial value for the plastic corector 
process in the general loading process. Therefore, the return-maping with the rigorous 
loading criterion and the initial value calculation algorithm for normal-yield ratio 
express accurate cyclic loading behavior in various directions. 
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