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Abstract. The mechanism consisting of the tripod with two rotating eccentrics as internal 
movers is investigated. The tripod moves with dry friction on horizontal plane. Rotating 
massive eccentrics enable the tripod to slide and spin. In mathematical model general 
equations of motion are considered for sliding and spinning of the tripod.  

 
 
1 INTRODUCTION 

In two previous papers [1-2], a solid system with two massive eccentrics, standing on a 
rough surface as a tripod, was considered in two special cases: purely translational motion 
without rotation and purely rotational motion with one fixed support point. In this paper a 
general case is considered where the system can move in a plane without restriction on the 
type of motion.  

The main result of this work is that the equations of motion for the general case of motion 
of a tripod with two eccentrics are obtained. 

The main feature of this study is that there is an experimental stand that allows you to 
study the behaviour of the mechanical system in full-scale tests. 

The significance of the work is that the direction of research – movement due to internal 
movers and systems with three points of contact with surface – is quite interesting for many 
researchers [3-9]. 

2 MECHANISM 
The solid system with two massive eccentrics on a rough plane is presented on the Fig. 1. 

It is the mechanism that consists of mechanical and electronical parts. Mechanical parts and 
motors are taken from Makeblock. Microcontroller and motor driver are Arduino compatible. 

3 MATHEMATICAL MODEL 
For consideration of our system it is convenient to divide the system into three components 

interacted with each other – a tripod and two pendulums. View from above is presented on the 
Fig. 2. The tripod has three points of contact with horizontal surface in points , , .A B C  
Pendulum OP  has cylindrical hinge in point O  and rotates around  -axis (Fig. 2, 3). 
Pendulum SQ  has cylindrical hinge in point S  and rotates around  -axis (Fig. 2, 4). 
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Figure 1: CAD model of the mechanism and the assembled mechanism  

      
Figure 2: Tripod with two pendulums. View from above 

System of axes   is connected to the tripod and moves with it. System of axes xyz  is 
connected to the surface and does not move. Hence,   is non-inertial, xyz  is inertial. 
Cylindrical hinges O  and S  are above the surface at the heights h  and ,H  respectively. 
Lengths of pendulums OP  and SQ  are l  and ,L  respectively. Geometrical parameters of the 
tripod in horizontal plane are described by , , .a b d  

 
Figure 3: Pendulum P in cylindrical hinge O. View from  -axis 
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Figure 4: Pendulum Q in cylindrical hinge S. View from  -axis 

The movement in horizontal plane of point C  of the tripod is determined by variables , .x y  
Rotation of the tripod is determined by variable .  Rotation of pendulums OP  and SQ  is 
determined by   and  , respectively. 

Now let us consider the general case of mechanism’s movement on the rough surface when 
the pendulums rotate and the tripod moves in plane with sliding and spinning and without 
jumping above the surface.  

For the tripod we can write equation of forces in the inertial reference system: 

 ,A B C A B C O S CF F F N N N Mg R R MW          (1) 

where , ,A B CF F F  – friction forces in points , ,A B C ; , ,A B CN N N  – normal reactions in points 
, ,A B C ; Mg  – gravity force; OR  – reaction in point O , where the tripod is connected with 

the pendulum OP  through a cylindrical hinge O ; SR  – reaction in point S , where the tripod 
is connected with the pendulum SQ  through a cylindrical hinge S ; C  – center of inertia of 
the tripod (for simplicity); CW  – acceleration of point C . 

In projections on axes   equation (1) looks like: 

 .
0

A B C O S C

A B C O S C

A B C O S

F F F R R MW
F F F R R MW

N N N R R Mg

     

     

 

      
          
          

 (2) 

Now let us write for an angular momentum of the tripod relative to its center of inertia: 

     ,
tripod
C

A A B B O S O S
dK CA N F CB N F CO R CS R

dt
              (3) 

where tripod
CK J e  – angular momentum of tripod with respect to the point C ; ,O S   – 

moments of reaction to the electric motors, rotating pendulums in hinges , .O S  
For the vectors in (3) we have: 

 
   
   
   

0 , 0 ,

0 , 0 0 ,

0 0 , 0 0 .

T T

T T

T T
O O S S

CA d a CB d a

CO d h CS H

   

  

 

 
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After calculating vector products in (3) we get: 

 
 

 
   

0
0 .

A B O S O

O A B O S S

A B O B A

a N N hR HR

d R N N hR HR
Jd F F R a F F

 

  

    





                           

 (4) 

For the pendulum P  in cylindrical hinge O  we can write equation of forces in the non-
inertial reference system: 

 
_

_ 1_ 2 _ ,
pend P

ext P in P in Preldp
R R R

dt
    (5) 

where _pend P
relp  – momentum of pendulum P  in non-inertial frame; _ext PR – the sum of the 

external forces acting on the pendulum P , 1_ 2 _,in P in PR R – forces of inertia. 
For the relative momentum of pendulum P  with the mass Pm  and the length l  we have: 

 _

0
cos ,
sin

pend P rel rel
rel P P P OP Pp m V m OP m l

l
  

 

 
      
  

  

where   – angle between the OP  and the vertical  . 
For external forces in (5): 

_ ,
O

ext P
O P O

O P

R
R R m g R

R m g







 
     
  

  

where OR  here for pendulum P  is opposite to the OR  in the equations for tripod. 

For inertia force 1_in PR  we have: 

   
2

1_ 2

sin
sin ,
0

C
in P

P C P C

W d l
R m W e CP e e CP m W l d



   

  
     

  
            
  

   

and for inertia force 2_in PR : 

 2 _

2 cos
2 0 .

0

in P rel
P P P

l
R m e V m

 


 
 

      
 
 

   

So finally for the relative momentum of pendulum P  after calculating derivatives: 

 
 

 

2

2 2

2

sin 2 cos0
cos sin sin .

sin cos

O P C

P O P C

O P

R m W d l l

m l l R m W l d
l l R m g

 

 



    

      
   

       
           
    

 
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From here we can express reaction in hinge O : 

 
 

 
 

2

2 2

2

sin 2 cos

cos sin sin .

sin cos

P C
O

O P C

O
P

m W d l lR
R m W l l l d
R m l l g




 



    

      

   

                       

  (6) 

For the pendulum Q  in cylindrical hinge S  we can write equation of forces in the non-
inertial reference system: 

 
_

_ 1_ 2 _ ,
pend Q

ext Q in Q in Qreldp
R R R

dt
    (7) 

where _pend Q
relp  – momentum of pendulum Q  in non-inertial frame; _ext QR – the sum of the 

external forces acting on the pendulum Q , 1_ 2 _,in Q in QR R – forces of inertia. 
For the relative momentum of pendulum Q  with the mass Qm  and the length L  we have: 

 _

cos
0 ,
sin

pend Q rel rel
rel Q Q Q SQ Q

L
p m V m SQ m

L

 


 

 
      
  

  

where   – angle between the SQ  and the vertical  . 
For external forces in (7): 

_ ,
S

ext Q
S Q S

S Q

R
R R m g R

R m g







 
     
  

  

where SR  here for pendulum Q  is opposite to the SR  in the equations for tripod. 

For inertia force 1_in QR  we have: 

   
2

1_

sin
sin

0

C
in Q

Q C Q C

W L
R m W e CQ e e CQ m W L



   

 
    

 
           
  

   

and for inertia force 2_in QR : 

 2 _

0
2 2 cos .

0

in Q rel
Q Q QR m e V m l  

 
       
  

   

So finally for the relative momentum of pendulum Q  after calculating derivatives: 

 
 

 

2
2

2

sincos sin
0 sin 2 cos .

sin cos

S Q C

Q S Q C

S S

R m W LL L
m R m W L L

L L R m g

 

 



    
   

   

                    
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From here we can express reaction in hinge S : 

 
 

 
 

2 2

2

cos sin sin

sin 2 cos .

sin cos

Q C
S

S Q C

S
Q

m L L W LR
R m W L L
R m L L g




 



     

   

   

                     

  (8) 

Let’s return to the equation (4). From the first and the second line in (4) we have the 
system for normal reactions in points ,A B : 

 
 

 

1

1

B A O S O

B A O S O S

N N hR HR
a

N N R hR HR
d

 

  





    

     


  

Solving this system we obtain: 

 
   

   

1 1 1 ,
2
1 1 1 .
2

A O S O S O S O

B O S O O S O S

N R hR HR hR HR
d a

N hR HR R hR HR
a d

    

    

 

 

        
 
        
 

  (9) 

These normal reactions we can substitute in the third line of (2) where: 
 .C O S A BN Mg R R N N        (10) 

Let us write equation for angular momentum of the pendulum P  in non-inertial reference 
frame O : 

 
_

_ 1_ 2 _ ,
pend P

O rel ext P in P in P
O O O

dK
M M M

dt
     (11) 

where _ 2pend P
O rel PK m l e   – relative angular momentum of the pendulum; _ext P

OM  – moment 
of external forces; 1_ 2 _,in P in P

O OM M  – moments of inertia forces. All these moments are taken 
with respect to the point O . 

For the derivative in left we have: 

 
_

2 .
pend P

O rel
P

dK
m l e

dt      

 For _ext P
OM  we have: 

  _ sin ,ext P
O P O P OM OP m g m gl e          

where O  – moment of the electric motor rotating pendulum P  – here it is opposite to the O
in equation for tripod (3). 

For 1_in P
OM  we have: 
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 
 
 

2

1_ 1_ 2

2

cos sin

cos sin .

sin sin

C

in P in P
O P C

C

W l d

M OP R m l W d l

W d l







   

   

   

   
 
     
 
    

   

For 2_in P
OM  we have: 

 2 _ 2 _ 2 2

0
2 cos .

2 sin cos

in P in P
O PM OP R m l  

  

 
     
  

   

Substituting these expressions into equation (11), we obtain: 

 
 

 
 

2
2

2

2

sin cos sin

0 cos sin 2 cos .
0 sin sin 2 cos

P O P C
P

P C

P C

m gl m l W l dm l
m l W d l l

m l W d l l







     
     

     

                        

  (12) 

Let us write equation for angular momentum of the pendulum Q  in non-inertial reference 
frame S : 

 
_

_ 1_ 2 _ ,
pend Q

S rel ext Q in Q in Q
S S S

dK
M M M

dt
     (13) 

where _ 2pend Q
S rel QK m L e   – relative angular momentum of the pendulum; _ext Q

SM  – moment 
of external forces; 1_ 2 _,in Q in Q

S SM M  – moments of inertia forces. All these moments are taken 
with respect to the point S . 

For the derivative in left we have: 

 
_

2 .
pend Q
S rel

Q

dK
m L e

dt      

 For _ext Q
SM  we have: 

  _ sin ,ext Q
S Q S Q SM SQ m g m gL e          

where S  – moment of the electric motor rotating pendulum Q  – here it is opposite to the S
in equation for the tripod (3). 

For 1_in Q
SM  we have: 

 
 
 
 

1_ 1_ 2

cos sin

cos sin .

sin sin

C

in Q in Q
S Q C

C

W L

M SQ R m L W L

W L







  

  

  

  
 
    
 
   

   

For 2_in Q
SM  we have: 
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2

2 _ 2 _ 2

2 cos
0 .

2 sin cos

in Q in Q
S QM SQ R m L

 

  

 
     
  

   

Substituting these expressions into equation (13), we obtain: 

 
 

 
 

2 2

cos sin 2 cos0
sin cos sin .

0 sin sin 2 cos

Q C

Q Q S Q C

Q C

m L W L L

m L m gL m L W L

m L W L L







    

     

    

                      

  (14) 

The dynamics of the electric motors can be described by the equations: 

 
1 2

1 2

O
O O O O O

S
S S S O S

d
b U b

dt
d

b U b
dt


  


  

   

   


  (15) 

where ,O S  – torque of electric motors in hinges ,O S ; 1 2 1 2, , , , , ,O O O S S Sb b b b   – electric 
motors constants; ,O SU U – voltage applied to the motors; and also: 

 1 2 1 2, , , , , , , , , 0.O O O S S S O Sb b b b U U        

4 CONCLUSIONS 
- General equations of motion are obtained for the mechanism consisting of the tripod 

and two pendulums as internal movers. 
- General case of motion of the tripod is considered on a rough horizontal plane – the 

tripod moves not only translationally and not only rotationally but with sliding and 
spinning at the same time. 
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