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VLADIMÍR KUTIŠ∗, JURAJ PAULECH∗, GABRIEL GÁLIK∗ AND
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Abstract. The paper deals with finite beam element with piezoelectric layers and func-
tionally graded material of core. In the paper homogenization of FGM material properties
and homogenization of core and piezoelectric layers is presented. In the process of ho-
mogenization direct integration method and multilayer method is used. The concept of
transfer functions and transfer constants is used for computation of individual subma-
trices. Functionality of new FGM finite beam with piezoelectric layers is presented by
numerical experiments. Static, harmonic and full transient piezoelectric analysis of FGM
beams with piezolayers is presented.

1 MOTIVATION

Modern mechatronic systems are focusing on minimizing size, active vibration control
and low energy consumption [1]. To improve performance of mechatronic systems, new
materials and technologies are developed - one of them, which found broad application
usage is Functionally graded material (FGM). Connection of FGM with piezoelectric
materials [2] is very attractive combination of material composition, which can improve
functionality of the system.

2 PIEZOELECTRIC CONSTITUTIVE EQUATIONS

Piezoelectric constitutive equations describe the relationship between mechanical and
electrical quantities [2, 3]. This relationship is derived in tensor notation, but for practical
usage it can be rewritten into matrices notation.
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The constitutive equations can be expressed by strain tensor components εkl and vector
components of electric field intensity Ek and has a form

σij = cEijklεkl − eijkEk (1)

Di = eiklεkl + εεikEk (2)

where σij are mechanical stress tensor components, Di are components of electric displace-
ment vector, cEijkl are components of stiffness tensor under constant electric intensity, εσik
are components of permittivity tensor under constant mechanical stress and eijk are com-
ponents of piezoelectric modulus tensor.

If we use symmetric properties of individual tensor in constitutive tensor equations, we
can rewrite constitutive equations into matrix notation [4]. Then equations (1) and (2)
have a form

σp = cEpqεq − epkEk (3)

Di = eiqεq + εεikEk (4)

Di and Ek are vectors with three components, σq and εq are vectors with six components,
matrices sEpq and cEpq have dimension 6× 6, matrices diq and epk have dimension 3× 6 and
matrix εεik has dimension 3× 3.

3 FGM BEAM WITH PIEZOELECTRIC LAYERS

Straight sandwich beam with core made from functionally graded material (FGM) and
top and bottom layers made from piezoelectric material with constant material properties
is shown in Fig. 1.
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Figure 1: FGM beam with piezoelectric layers

Cross-section of FGM core has height hFGM and depth b, one piezoelectric layer has
height hp and depth b. Cross-section area of FGM core is AFGM and area moment of
inertia is IFGM . Cross-section area of one piezoelectric layer is Ap and area moment of
inertia is Ip. Length of beam element is L.
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3.1 FEM equations for piezoelectric beams with FGM core

2D beam element with piezoelectric layers and FGM core with mechanical and electrical
degrees of freedom is shown in Fig. 2.
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Figure 2: Mechanical and electric DOF in 2D beam element

FEM equations for beam element with piezoelectric layers and FGM core for transient
analysis have classical form
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Vector of nodal unknowns is defined as
[
ue

φe

]
=

[
ui vi ϕi uj vj ϕj φ1 φ2 φ3 φ4

]T
(6)

and vector of nodal loads is defined as
[
Fe

Qe

]
=

[
Fxi Fyi Mi Fxj Fyj Mj Q1 Q2 Q3 Q4

]T
(7)

where Q1, Q2, Q3 and Q4 are electric charge on electrodes 1, 2, 3 and 4, respectively.
Individual submatrices are defined by concept of transfer functions and transfer con-

stants and the input parameters for their computation are homogenized material proper-
ties in polynomial form. Derivation of individual submatrices is described in [5].

3.2 Homogenization of material properties

Material properties of beam core, which is made from functionally graded material, is
defined by:

• volume fractions of fibres vf (x, y) and by volume fractions of matrix vm(x, y)

• Young’s modulus of fibres Ef (x, y) and Young’s modulus of matrix Em(x, y)

3
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Both parameters – volume fractions and Young’s moduli, can vary in longitudinal and
transversal directions of beam, i.e. in directions x and y.
Effective Youngs modulus of FGM core can be calculated as

EFGM(x, y) = vf (x, y)Ef (x, y) + vm(x, y)Em(x, y) (8)

Homogenized material properties of FGM core must be calculated separately for axial
loading and separately for bending. Homogenized Young’s modulus for axial loading is
defined by equation

EHN
FGM(x) =

∫ −hFGM/2

hFGM/2
bEFGM(x, y)dy

AFGM

(9)

Homogenized Young’s modulus for bending is defined by equation

EHM
FGM(x) =

∫ −hFGM/2

hFGM/2
by2EFGM(x, y)dy

IFGM

(10)

Both homogenzied Young’s moduli are only function of longitudinal direction x.
The last step in the process of homogenization of material properties of beam is ho-

mogenization of FGM core and piezoelectric layers. Young’s moduli for axial loading and
bending of whole beam can be calculated using these two equations

EHN(x) =
AFGM

A
EHN

FGM(x) +
2Ap

A
Ep (11)

EHM(x) =
IFGM

I
EHM

FGM(x) +
2Ip
I

Ep (12)

where A and I is cross-sectional area and area moment of inertial of whole beam cross-
section.

4 NUMERICAL EXAMPLE

The effectiveness of new piezoelectric beam element is shown on simple example, where
piezoelectric beam is fixed at left end (point i) and right end is free (point j) – see Fig.
3.

Geometry parameters of beam are as follows:

• the length of beam: L = 100 mm

• height of FGM core: hFGM = 10 mm

• height of piezolayer: hp = 1 mm

• depth of cross-section: b = 10 mm

4

103
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Figure 3: Simple cantilever made of FGM with piezoelectric layers

Beam core is made from FGM material – see chapter 4.1. Upper and bottom layers of
the beam are made of piezoelectric material PZT5A. PZT5A is orthotropic material and
has following material properties (direction of poling has index 3 – axis y in Fig. 3):

• mechanical properties:

– Young’s moduli: E1 = 61 GPa, E2 = 61 GPa, E3 = 53, 2 GPa

– Poisson numbers: µ12 = 0.35, µ13 = 0.38, µ23 = 0.38

– shear moduli: G12 = 22.6 GPa, G13 = 21.1 GPa, G23 = 21.1 GPa

– density: 7750 kg/m3

• piezoelectric properties: d31 = −171 × 10−12 C/N, d33 = 374 × 10−12 C/N, d15 =
584× 10−12 C/N, d24 = 584× 10−12 C/N

• relative permittivity: εσ11 = 1728.8, εσ22 = 1728.8, εσ33 = 1694.9

4.1 Computing of homogenized properties

Properties of FGM core are defined by volume fractions of fibre and matrix and by
variation of their Young’s moduli. Variation of volume fraction of fibre vf (x, y) and varia-
tion of volume fraction of matrix vm(x, y) were chosen as planar variation (in coordinates
x a y) – see Fig. 4, mathematically they are represented by following functions

vf (x, y) = 1.33333× 108x3y2 − 1333.33x3 − 2.× 107x2y2 + 200.x2 + 40000.y2 [-] (13)

vm(x, y) = 1− vf (x, y) [-] (14)

Variation of Young’s moduli of fibre and matrix was chosen as linear function longitu-
dinal coordinate x and can be expressed as

Ef (x) = 400− 1000x [GPa] (15)

Em(x) = 255− 950x [GPa] (16)

5
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Figure 4: Variation of volume fraction of fibre vf (x, y) and matrix vm(x, y)
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Figure 5: Left – defined variation of Ef (x) and Em(x), Right – computed variation of effective Young’s
modulus EFGM (x, y)

The variation of Ef (x) and Em(x) is shown in Fig. 5 Left. Variation of effective Young’s
modulus EFGM(x, y) is defined by equation (8) and for our example has form

EFGM(x, y) =− 6.66666× 109x4y2 + 66666.7x4 + 2.03333× 1010x3y2−
− 203333.x3 − 2.9× 109x2y2 + 29000.x2 − 2.× 106xy2−
− 950.x+ 5.8× 106y2 + 255. [GPa]

(17)

This variation of effective Young’s modulus is shown in Fig. 5 Right. Homogenized
Young’s moduli for axial and bending loading of FGM core can be calculated by equations
(9) and (10) – EHN

FGM(x) and EHM
FGM(x). homogenized Young’s moduli of whole beam can

6
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be calculated by (11) and (12) and they have form

EHN(x) = 11111.1x4 − 33888.9x3 + 4833.33x2 − 966.667x+ 303.333 [GPa] (18)

EHM(x) = −33333.3x4 + 101667.x3 − 14500.x2 − 980.x+ 342. [GPa] (19)

Homogenized Young’s moduli for axial and bending loading are shown in Fig. 6.
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Figure 6: Left – homogenized Young’s moduli for axial and bending loading of FGM core, Right –
homogenized Young’s moduli for axial and bending loading of whole beam.

4.2 Static analysis

Fig. 3 shows simple cantilever made of FGM with piezoelectric layers, which is loaded
by transversal force F = 100 N at free end – point j. Electrodes on top and bottom
piezoelectric layers are short circuited. The goal of analysis is to investigate static re-
sponds of structure on prescribed loading and compare the results with different number
of elements.

Because the analysis is static and piezoelectric layers are short circuited (φe = 0), final
FEM equations for deformation and electric charge have form

Kuuu = F Kφuu = Q

The static analysis of system was performed by FGM beam element with piezoelectric
layers. The analysis was performed by 1, 2, 4 and 10 elements – see Fig. 7 Left.

Deformed shape of beam is shown in Fig. 7 Right. Displacement in y direction of
free end is −114.4 µm. Electric charge on top electrodes for FEM models with different
number of elements are summarized in Table 1.

As we can see from obtained results, new FGM beam element with piezoelectric layers
is very accurate and effective in static analysis, because variation of material properties
of FGM core of beam is directly incorporated into stiffness matrix.
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Figure 7: Left – discretized beam with node and element numbers, Right – deformation of beam in [m]

Number of elements 1 2 4 10
Qelem 1 [C] 1.0263× 10−6 7.2525× 10−7 4.0460× 10−7 1.7154× 10−7

Qelem 2 [C] 3.0110× 10−7 3.2065× 10−7 1.5861× 10−7

Qelem 3 [C] 2.1883× 10−7 1.4560× 10−7

Qelem 4 [C] 8.2276× 10−8 1.3204× 10−7

Qelem 5 [C] 1.1746× 10−7

Qelem 6 [C] 1.0137× 10−7

Qelem 7 [C] 8.3309× 10−8

Qelem 8 [C] 6.2864× 10−8

Qelem 9 [C] 3.9732× 10−8

Qelem 10 [C] 1.3829× 10−8

QSUM [C] 1.0263× 10−6 1.0263× 10−6 1.0263× 10−6 1.0263× 10−6

Table 1: Electric charge on individual electrodes

4.3 Harmonic analysis

Investigated FGM beam with piezoelectric layers was loaded by harmonic force F at the
free end (point j – see Fig. 3) with amplitude 100 N with different angular frequency ω.
In performed harmonic analysis two different electric boundary conditions are considered:

• short circuit (φe = 0)

• open circuit (Qe = 0)

electrode FEM equations for short circuit has form:

Muuü+Cuuu̇+Kuuu = F Kφuu = Q

FEM equations for open circuit has form:

Kφuu+Kφφφ = 0 Muuü+Cuuu̇+Kuuu+Kuφφ = F

8
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Harmonic analysis is performed with two different damping conditions:

• without damping

• with Rayleigh damping – the mass proportional Rayleigh damping coefficient is
2× 10−5 and the stiffness proportional Rayleigh damping coefficient is 2× 10−5

Amplitude of y displacement of free end as function of angular frequency ω for all inves-
tigated damping and electric conditions are shown in Fig. 8. As we can see from Fig. 8,
amplitude-frequency characteristic for open circuit is shift to right – eigenfrequencies of
the beam with open circuit are higher.
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Figure 8: Amplitude-frequency characteristics: Left – without damping, Right – with damping

4.4 Transient analysis

Also transient analysis of investigated FGM beam with piezoelectric layers was per-
formed. Electrodes on top and bottom piezoelectric layers are short circuited. The goal of
analysis is to investigate free vibration of structure with considering Rayleigh damping –
see Harmonic analysis. FEM equations for displacements and electric charge for transient
analysis and for short circuit have form

Muuü+Cuuu̇+Kuuu = F Kφuu = Q

Initial conditions:

• initial displacement of nodes – initial deformation of system is defined by static
analysis – see chapeter 4.2

• initial velocity of nodes – all nodes have zero initial velocity

The transient analysis of system was performed by Newmark integration scheme. Total
simulation time was 0.01 s and number of equidistant substeps was 100. 1D model of
system was discretized by 10 elements – see Fig. 7 Left. Displacement of selected nodes
in direction y as function of time are shown in Fig. 9 Left. Time variations of electric
charge in top electrode on selected elements are shown in Fig. 9 Right.
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Figure 9: Left – y displacement time variation of selected nodes in [m], Right – charge time variation
of top electrodes on selected elements in [C]

5 CONCLUSIONS

The paper presents beam finite element with piezoelectric layers, where core of the
beam can be made of FGM materials. Such combination of materials is very attractive
for mechatronic applications, because material composition of FGM core can be optimized
for design stress state and deformation can be controlled by voltages on electrodes.
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