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Abstract. This paper deals with the optimization of the hyperthermia treatment of skin cancer, 
with gold nanoshells loaded in the tumor. The physical problem involves a one-dimensional 
bioheat transfer problem, coupled to a radiation problem for the laser propagation within a 
multi-layered medium that includes several tissues. The corresponding bioheat transfer problem 
is governed by Pennes' equation, while the laser radiation propagation in the tissues is modelled 
with the diffusion δ-P1 approximation. The solution of the direct problem was obtained by finite 
volumes and verified with an analytic solution, as well as with the Matlab function pdepe.  The 
thermal decomposition in the tissues was modelled with an Arrhenius equation, while the 
objective function was given by a quadratic form involving the difference between the predicted 
and the desired spatial variation of the thermal damage at a specific final time. Both the 
Levenberg-Marquardt and the Particle Swarm methods were implemented and provided similar 
results for the two design variables of interest in this work: the volume fraction of nanoparticles 
within the tumor and the laser power, by considering a fixed duration of 10 minutes for the 
treatment. The results obtained in this work also show that more than one treatment session is 
required for the total eradication of the tumor. 

1 INTRODUCTION 
The hyperthermia treatment of cancer has recently regained the attention of the scientific 

community due to developments in nanotechnology. In fact, several works can be found in the 
literature related to the use of nanoparticles in tumors, in order to increase the localized 
absorption of energy by cancerous cells and to decrease the thermal damage to surrounding 
healthy cells [1-6]. Different external non-intrusive energy sources have been reported for the 
hyperthermia treatment of cancer, like lasers in the near-infrared range, radio-frequency 
antennas, etc. [3,7]. Similarly, different kinds of nanoparticles have been used, such as those 
made of iron oxides [8]. In particular, noble metal nanoparticles can be designed in terms of 
their shapes and sizes to increase the plasmon resonance in a specific wavelength range, in order 
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to improve the energy absorption [9]. 
Heat transfer in tissues, induced by hyperthermia, is a complex combination of various 

phenomena as metabolic heat generation, blood perfusion, convection, and heat conduction, 
which makes it difficult to model. However, numerical simulations are necessary to provide 
accurate results about this process, with lower cost, time and manual work than experimental 
manipulations. Mathematical models describing heat transfer were developed with some 
approximations that limit the computational time, as the bio-heat transfer equation of Pennes 
[10], the P1 approximation [11], a diffusion approximation of light transport, and the Arrhenius 
equation for thermal damage [12].  

As any cancer treatment, hyperthermia requires a priori planning, specific for each patient, 
based on the prediction of a thermal damage to the cells. Although the localized heat absorption 
is enhanced by the injection of nanoparticles, its efficiency needs to be improved by modifying 
some hyperthermia parameters to destroy cancerous cells while avoiding the damage of healthy 
cells [13]. 

The present work focuses on the optimization of the laser emissive power and the 
nanoparticles concentration for the hyperthermia treatment of a skin cancer, with the 
Levenberg-Marquardt and Particle Swarm algorithms. The subcutaneous tumor, assumed to be 
surrounded by healthy tissues and containing gold nanoshells, is irradiated by an external 
collimated laser for 10 minutes. A one-dimensional coupled radiation – bio-heat transfer 
equation is used to formulate the physical problem, and then solved with the finite volume 
method. 

2 PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 
In the problem examined here, the skin tissue is irradiated by an external collimated laser 

radiation for a duration of 10 minutes. The laser beam is perpendicular to the tissue and uniform, 
with a continuous and constant optical intensity, thereby the problem is considered one-
dimensional. The skin is modelled as a superposition of five layers, each one homogeneous 
with constant thermal and optical properties, namely: epidermis, tumor (loaded with 
nanoparticles), papillary dermis, reticular dermis and fat.  

2.1 Simple model 
In order to choose the solution method for the problem detailed above, a simple model will 

first be studied, comparing the results of the different methods with the analytical solution. This 
model is a one-dimensional diffusion problem with an additional constant heat source, in a 
homogeneous medium with constant thermal properties. Convective boundary conditions are 
applied on both sides, and the initial temperature is considered constant, as it is given below: 

𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑡𝑡 = 𝑘𝑘 𝜕𝜕2𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥2 + 𝑄𝑄         0 < 𝑥𝑥 < 𝑑𝑑,    𝑡𝑡 > 0

−𝑘𝑘 𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥 + ℎ0𝜕𝜕(𝑥𝑥, 𝑡𝑡) = ℎ0𝜕𝜕∞         𝑥𝑥 = 0,     𝑡𝑡 > 0

𝑘𝑘 𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕 + ℎ𝑑𝑑𝜕𝜕(𝑥𝑥, 𝑡𝑡) = ℎ𝑑𝑑𝜕𝜕𝑏𝑏         𝑥𝑥 = 𝑑𝑑,     𝑡𝑡 > 0

𝜕𝜕(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕0         0 < 𝑥𝑥 < 𝑑𝑑,     𝑡𝑡 = 0

 

(1.a) 
 

(1.b) 
 

(1.c) 
 

(1.d) 
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where ρ is the density of the tissue, cp is the specific heat, k is the thermal conductivity, Q the 
heat source, h0 and hd the heat transfer coefficients, 𝑇𝑇∞ and Tb the boundary temperatures, T0 
the initial temperature and d the domain length. 

These equations are then solved analytically, decomposing the temperature in two terms: a 
homogeneous solution Th, and a particular solution Tp: 

𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝑇𝑇ℎ(𝑥𝑥, 𝑡𝑡) + 𝑇𝑇𝑝𝑝(𝑥𝑥) (2) 

The particular solution is not time-dependent and can be written as a quadratic function of the 
position as it is given below: 

𝑇𝑇𝑝𝑝(𝑥𝑥) = − 𝑄𝑄
𝑘𝑘

𝑥𝑥2

2 + 𝐴𝐴 𝑥𝑥 + 𝐵𝐵 

𝐴𝐴 = (ℎ𝑑𝑑(𝑇𝑇𝑏𝑏 − 𝑇𝑇∞) + 𝑄𝑄 𝑑𝑑 (1 + ℎ𝑑𝑑𝑑𝑑
2𝑘𝑘 )) / (𝑘𝑘 + ℎ𝑑𝑑𝑑𝑑 + ℎ𝑑𝑑𝑘𝑘

ℎ0
)      ;      𝐵𝐵 = 𝑇𝑇∞  + 𝑘𝑘

ℎ0
𝐴𝐴 

(3.a) 

(3.b,c) 

The homogeneous solution is obtained by separation of variables according to [14]: 

𝑇𝑇ℎ(𝑥𝑥, 𝑡𝑡) = ∑ 1
𝑁𝑁(𝛽𝛽𝑚𝑚)  𝑒𝑒−𝑘𝑘 𝜌𝜌𝑐𝑐𝑝𝑝⁄ 𝛽𝛽𝑚𝑚²𝑡𝑡 𝑋𝑋(𝛽𝛽𝑚𝑚, 𝑥𝑥) ∫ (𝑇𝑇0 − 𝑇𝑇𝑝𝑝(𝑥𝑥)) 𝑋𝑋(𝛽𝛽𝑚𝑚, 𝑥𝑥)𝑑𝑑𝑥𝑥

𝑑𝑑

0

∞

𝑚𝑚=1
 

1
𝑁𝑁(𝛽𝛽𝑚𝑚) = 2 [(𝛽𝛽𝑚𝑚

2 + ℎ0
2

𝑘𝑘2) (𝑑𝑑 + ℎ𝑑𝑑
𝑘𝑘 / (𝛽𝛽𝑚𝑚

2 + ℎ𝑑𝑑
2

𝑘𝑘2)) + ℎ0
𝑘𝑘 ]

−1

 

𝑋𝑋(𝛽𝛽𝑚𝑚, 𝑥𝑥) = 𝛽𝛽𝑚𝑚 cos 𝛽𝛽𝑚𝑚𝑥𝑥 + ℎ0
𝑘𝑘 sin 𝛽𝛽𝑚𝑚𝑥𝑥 

(4.a) 

(4.b) 

(4.c) 

The 𝛽𝛽𝑚𝑚 eigenvalues are given by the roots of the equation below: 

tan 𝛽𝛽𝑚𝑚𝑑𝑑 =
𝛽𝛽𝑚𝑚(ℎ0

𝑘𝑘 + ℎ𝑑𝑑
𝑘𝑘 )

𝛽𝛽𝑚𝑚2 − ℎ0
𝑘𝑘

ℎ𝑑𝑑
𝑘𝑘

 
 

(4.d) 

In this way, it is possible to determine the solution of the simple model and select the solution 
method that will be used to solve the bioheat transfer problem.  

2.2 Bioheat transfer formulation 
The mathematical formulation of the bio-heat transfer problem in this work is described by 

Pennes’ model [10]: 

𝜌𝜌(𝑥𝑥)𝑐𝑐𝑝𝑝(𝑥𝑥) 𝜕𝜕𝑇𝑇(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥 = 𝜕𝜕

𝜕𝜕𝑥𝑥 (𝑘𝑘(𝑥𝑥) 𝜕𝜕𝑇𝑇(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥 ) + 𝜌𝜌𝑏𝑏𝑐𝑐𝑝𝑝,𝑏𝑏𝜔𝜔𝑏𝑏(𝑥𝑥)(𝑇𝑇𝑏𝑏 − 𝑇𝑇(𝑥𝑥, 𝑡𝑡)) + 𝑄𝑄𝑚𝑚𝑚𝑚𝑡𝑡(𝑥𝑥) + 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙(𝑥𝑥) 

                                                                                                                              0 < x < d ,   t > 0                                                    

 
(5.a) 

where ρb is the blood density, cp,b is the blood specific heat, ωb is the blood perfusion rate, Tb is 
the blood temperature, Qmet is the metabolic heat source and Qlaser is the laser heat source, given 
by equation (2). 

The interfaces between the different layers are assumed to be in ideal thermal contact. The 
temperature of the irradiated interface is considered constant and equal to T0, while a convective 
boundary condition is applied on the interface with deeper tissues, characterized by a heat 
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transfer coefficient hd and a surrounding temperature T0. The initial temperature is considered 
uniform and equal to T0. The initial and boundary conditions are then given by: 

𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝑇𝑇0  ,   𝑥𝑥 = 0  ,   𝑡𝑡 > 0 

𝑘𝑘(𝑥𝑥) 𝜕𝜕𝑇𝑇(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥 + ℎ𝑑𝑑 𝑇𝑇(𝑥𝑥, 𝑡𝑡) = ℎ𝑑𝑑 𝑇𝑇0  ,   𝑥𝑥 = 𝑑𝑑  ,   𝑡𝑡 > 0 

𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝑇𝑇0  ,   0 < 𝑥𝑥 < 𝑑𝑑  ,   𝑡𝑡 = 0 

(5.b) 

(5.c) 

(5.d) 

2.3 Laser heat source term 
The laser heat source is computed from the tissue absorption coefficient K and the total 

fluence rate composed of a primary collimated component Ф𝑝𝑝 and a secondary diffuse 
component Ф𝑠𝑠 [5], as given by the equation below: 

𝑄𝑄𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙(𝑥𝑥) = 𝐾𝐾(𝑥𝑥)[Ф𝑝𝑝(𝑥𝑥) + Ф𝑠𝑠(𝑥𝑥)] (6) 

The Beer-Lambert’s law is used to determine the collimated component. It is given by: 
Ф𝑝𝑝(𝑥𝑥) = 𝐼𝐼𝑤𝑤,𝑖𝑖𝑒𝑒−𝛽𝛽𝑖𝑖(𝑥𝑥−𝑥𝑥𝑤𝑤,𝑖𝑖) (7.a) 

where 𝐼𝐼𝑤𝑤,𝑖𝑖 is the fluence rate at the irradiated surface of each layer i, βi is the attenuation 
coefficient and xw,i is the position of the interface between layers i and i-1. For the first layer, 
we have: 

𝐼𝐼𝑤𝑤,1 = 𝐼𝐼0 (1 − 𝑅𝑅𝑠𝑠𝑠𝑠) (7.b) 

with 𝐼𝐼0 the optical intensity of the laser beam and 𝑅𝑅𝑠𝑠𝑠𝑠 the specular reflection coefficient at the 
external surface, which is a function of the tissue refractive index 𝑛𝑛𝑡𝑡: 

𝑅𝑅𝑠𝑠𝑠𝑠 = (𝑛𝑛𝑡𝑡 − 1
𝑛𝑛𝑡𝑡 + 1)

2
 (8) 

The diffuse component of the total fluence rate is obtained by applying the diffusion δ-P1 
approximation [11] given by: 

𝑑𝑑
𝑑𝑑𝑥𝑥 (−𝐷𝐷(𝑥𝑥) 𝑑𝑑Ф𝑠𝑠(𝑥𝑥)

𝑑𝑑𝑥𝑥 + 𝜎𝜎𝑠𝑠
′(𝑥𝑥)𝑔𝑔′(𝑥𝑥)
𝛽𝛽𝑡𝑡𝑙𝑙(𝑥𝑥) Ф𝑝𝑝(𝑥𝑥)) + 𝐾𝐾(𝑥𝑥)Ф𝑠𝑠(𝑥𝑥) = 𝜎𝜎𝑠𝑠

′(𝑥𝑥)Ф𝑝𝑝(𝑥𝑥)  ,    0 < 𝑥𝑥 < 𝑑𝑑 

−𝐷𝐷(𝑥𝑥) 𝑑𝑑Ф𝑠𝑠(𝑥𝑥)
𝑑𝑑𝑥𝑥 + 1

2𝐴𝐴1
Ф𝑠𝑠(𝑥𝑥) = − 𝜎𝜎𝑠𝑠

′(𝑥𝑥)𝑔𝑔′(𝑥𝑥)
𝛽𝛽𝑡𝑡𝑙𝑙(𝑥𝑥) Ф𝑝𝑝(𝑥𝑥)  ,      𝑥𝑥 = 0 

𝐷𝐷(𝑥𝑥) 𝑑𝑑Ф𝑠𝑠(𝑥𝑥)
𝑑𝑑𝑥𝑥 + 1

2𝐴𝐴2
Ф𝑠𝑠(𝑥𝑥) = 𝜎𝜎𝑠𝑠

′(𝑥𝑥)𝑔𝑔′(𝑥𝑥)
𝛽𝛽𝑡𝑡𝑙𝑙(𝑥𝑥) Ф𝑝𝑝(𝑥𝑥)         𝑥𝑥 = 𝑑𝑑 

(9.a) 
 

(9.b) 
 

(9.c) 

with 

𝐷𝐷 = 1
3𝛽𝛽𝑡𝑡𝑙𝑙

 ;   𝛽𝛽𝑡𝑡𝑙𝑙 = 𝐾𝐾 + 𝜎𝜎𝑠𝑠(1 − 𝑔𝑔)  ;    𝜎𝜎𝑠𝑠
′ = (1 − 𝑔𝑔2)𝜎𝜎𝑠𝑠   ;    𝑔𝑔′ = 𝑔𝑔/(1 + 𝑔𝑔) 

𝐴𝐴1 = (1 + 𝑅𝑅𝑓𝑓)/(1 − 𝑅𝑅𝑓𝑓)  ;    𝐴𝐴2 = (1 + 𝑅𝑅𝑡𝑡)/(1 − 𝑅𝑅𝑡𝑡) 

𝑅𝑅𝑡𝑡 = 𝜔𝜔𝑡𝑡𝑙𝑙/[(1 + √1 − 𝜔𝜔𝑡𝑡𝑙𝑙)(1 + 2√1 − 𝜔𝜔𝑡𝑡𝑙𝑙)] 

(10.a,b,c,d) 
 

(10.e,f) 
 

(10.g) 

where 𝑔𝑔 is the anisotropy factor, 𝜎𝜎𝑠𝑠 is the scattering coefficient, 𝑅𝑅𝑓𝑓 is the Fresnel specular 
reflection coefficient, 𝑅𝑅𝑡𝑡 is the reflection coefficient of the internal boundary and 𝜔𝜔𝑡𝑡𝑙𝑙 is the 
transport albedo. 
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2.4 Thermal damage model 
In order to optimize the hyperthermia treatment, it is first necessary to define the thermal 

decomposition of the irradiated tissue. The Arrhenius model is used to describe the thermal 
damage in this work in terms of a dimensionless damage parameter 𝛺𝛺 [12]: 

𝛺𝛺(𝑥𝑥) = ∫ 𝐴𝐴 𝑒𝑒− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅(𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑡𝑡

0
 (11.a) 

where 𝐴𝐴 is the frequency factor, 𝐸𝐸𝑎𝑎 is an energy barrier, 𝑅𝑅 is the ideal gas constant and 𝑇𝑇 is the 
temperature. The Arrhenius parameters 𝐴𝐴 and 𝐸𝐸𝑎𝑎 that characterize the process can be 
determined experimentally. Moreover, as the finite volume method will be used to solve the 
problem, the thermal damage will be written in the discrete form as it is given below, the index 
i designing the position and n the time: 

𝛺𝛺𝑖𝑖
𝑛𝑛+1 = 𝛺𝛺𝑖𝑖

𝑛𝑛 + 𝐴𝐴 𝑒𝑒
− 𝐸𝐸𝑎𝑎

𝑅𝑅𝑅𝑅𝑖𝑖
𝑛𝑛+1 ∆𝑑𝑑 (11.b) 

The goals of the optimization are to maximize the destruction of the tumor and minimize the 
damage of the surrounding healthy cells. A target damage parameter 𝛺𝛺∗ is thus defined with a 
linear evolution in time, to reach a final thermal damage of 𝛺𝛺∗ = 1 in the tumor, which 
corresponds to the necrosis of the tissue, and 0 in the other layers. The objective function is 
then written as in the equation below, considering the optimization of two parameters of the 
hyperthermia treatment: the optical intensity of the laser 𝐼𝐼0 and the concentration of 
nanoparticles 𝑓𝑓𝑣𝑣. 

min 𝑆𝑆∗(𝐼𝐼0, 𝑓𝑓𝑣𝑣) = ∫ ∫ [𝛺𝛺(𝑥𝑥, 𝑑𝑑, 𝐼𝐼0, 𝑓𝑓𝑣𝑣) − 𝛺𝛺∗(𝑥𝑥, 𝑑𝑑)]2𝑑𝑑𝑥𝑥 𝑑𝑑𝑑𝑑
𝑑𝑑

0

𝑡𝑡𝑓𝑓

0
 (12.a) 

The discrete form of this objective function for use with the finite volume method and 
optimization algorithms is written as: 

min 𝑆𝑆∗(𝐼𝐼0, 𝑓𝑓𝑣𝑣) = ∑[
𝐼𝐼𝐼𝐼

𝑘𝑘=1
𝛺𝛺𝑘𝑘(𝐼𝐼0, 𝑓𝑓𝑣𝑣) − 𝛺𝛺𝑘𝑘

∗  ]²   ,     𝛺𝛺𝑘𝑘 = 𝛺𝛺𝑖𝑖
𝑛𝑛  (12.b) 

where IN is the number of finite volumes multiplied by the number of time steps 
  

3 RESULTS AND DISCUSSIONS 

3.1 Code Verification 
The simple model presented by equations (1.a-d) is solved for a unidimensional medium 

with a thickness of 100mm and the thermal and optical properties of human fat [15]. The initial 
temperature is considered equal to 37°C, while the left boundary is characterized by a 
surrounding medium temperature 𝑇𝑇∞=22.5°C and a convective heat transfer coefficient 
ℎ0=10W/m²K. For the right boundary, the convective heat transfer coefficient is ℎ𝑑𝑑=50W/m²K 
and the temperature of the surrounding medium exchanging heat with the surface is equal to 
40°C. This medium is submitted to an external constant radiation which results in a volumetric 
heat source rate of 100W/m3. 
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In order to compute the analytical solution of this problem, the Newton-Raphson method is 
used for finding the 𝛽𝛽𝑚𝑚 eigenvalues. 

Figure 1 presents the analytically computed temperature distribution after 1000s, as well as 
the temperatures obtained with the pdepe function of MATLAB, and the ones determined with 
the finite volume method by an explicit discretization of the equations. 

 

Figure 1. Temperature distribution for the simple model at t=1000s 

The results obtained with the finite volume method perfectly agree with the analytical 
solution at the graph scale. However, the pdepe function, a MATLAB solver for partial 
differential equations, computes a temperature distribution quite different from the analytical 
one, especially near the convective boundaries. 

As the Pennes’ bioheat transfer equation is more complex than the model used for the 
verification, the finite volume method, which is more accurate than the pdepe function, will be 
used to simulate the temperature and thermal damage for the hyperthermia treatment.  

3.2 Temperature and thermal damage modelling for the skin cancer 
The geometry of the skin considered in this work is divided in five layers with a total 

thickenss of 3.6mm, as represented by Figure 2. The initial temperature is considered equal to 
37°C, which is also the blood temperature, Tb. The temperature of the irradiated boundary is 
constant and equal to T0, while the right boundary presents a convective heat transfer coefficient 
ℎ𝑑𝑑=50W/m²K [2]. 
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Figure 2: Unidimensional skin representation 

The blood density and specific heat are respectively equal to 1060 kg/m3 and 3770 J/kgK, 
while the thermal and optical properties of the other tissues are listed in Table 1 [15-17]. 

Table 1: Tissue properties [15-17] 

 Epidermis  Tumor  
Papilary 
dermis  

Reticular 
Dermis Fat 

ρ (kg/m³) 
cp (J / kg K) 
k (W / m K) 
Qmet (W/m²) 
ωb (s-1) 
K (m-1) 
σs (m-1) 

1200 
3589 
0.235 

0 
0 

800 
17500 

1030 
3582 
0.558 
3680 

0.0063 
50 

6000 

1200 
3300 
0.445 
368.1 

0.0002 
15 

17500 

1200 
3300 
0.445 
368.1 
0.0013 

15 
17500 

1000 
3674 
0.185 
368.4 
0.0001 

2.6 
12000 

The first and second layers, which correspond to the epidermis and the tumor, respectively, 
are supposed to contain gold nanoshells, thus increasing their absorption of the laser radiation. 
The absorption and scattering coefficients of these tissues are then obtained with the following 
equations [2]: 

𝐾𝐾′ = 𝐾𝐾 + 0.75𝑓𝑓𝑣𝑣
𝑄𝑄𝑎𝑎
𝑎𝑎   

𝜎𝜎𝑠𝑠
′ = 𝜎𝜎𝑠𝑠 + 0.75𝑓𝑓𝑣𝑣

𝑄𝑄𝑠𝑠
𝑎𝑎   

(13.a) 

(13.b) 

where Qa =7.828 and Qr =1.144 are efficiency factors, a is the radius of the nanoparticles 
assumed equal to 20 nm and fv is the volumetric fraction of nanoparticles, assumed here as 
 2x10-6 [2]. 

The skin, which presents a refractive index nt = 1.4 and an anisotropy factor g = 0.9, is 
irradiated from the left by a laser with a constant optical intensity of 20 kW/m² [2]. The diffuse 
component of the fluence rate is determined using the method of successive over-relaxation for 
solving the δ-P1 approximation, assuming the coefficient A1 equal to zero. 
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The finite volume method with explicit scheme is then implemented and used to obtain the 
results presented in the figure 2, showing the effects of the nanoparticles injection on the 
temperature distribution (figure 2a) and fluence rate and volumetric heat source (figure 2b). 

 
(a) (b) 

Figure 2: Effects of the nanoparticles injection at 10s on (a) the skin temperature and (b) the total fluence rate 
and the laser volumetric heat source 

As can be seen in Figure 2a, the temperature distribution presents a peak at 41.7°C after 10s 
in the tumor region, between 0.3 and 0.4 mm, with the tissue embedded with gold nanoshells. 
For the tissue without nanoparticles, the maximum temperature is reached in the papillary 
dermis, which increases the risk of damaging healthy cells rather than cancerous cells. Figure 
2b highlights the radiation absorption in the skin containing nanoparticles, where a strong 
attenuation of the total fluence rate is observed, as well as a higher volumetric heat source in 
the tumor. 

For the thermal damage modelling, Arrhenius parameters are taken from the experimental 
results of [18] for the belly skin, where the activation energy Ea is considered equal to 3.935x105 
J/mol and the frequency factor A has the value of 1.151x1061 s-1. Equation (11.b) is then applied 
to compute the thermal damage parameter from the temperature obtained with the finite volume 
method, assuming the initial thermal damage equal to zero. 

Figure 3a shows the values of the thermal damage parameter in the different layers. We 
notice that the thermal damage follows the evolution of the temperature presented by figure 2a, 
with a peak at the end of the tumor region and a strong attenuation in the dermis and fat. It can 
be observed in figure 3b that the thermal damage increases over time, which corresponds to the 
Arrhenius model. However, the maximum value is only 4.4x10-4 after 10s, while the thermal 
damage parameter must reach the value of 1 to obtain the necrosis of the tumor. That is why it 
is necessary to apply the hyperthermia treatment on a longer duration and modify its 
characteristics within an optimization procedure, as described next.  
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      (a)             (b) 

Figure 3: Evolution of the thermal damage parameter in the skin (a) as a function of the position (t=10s) (b) as a 
function of time (x=0.375mm, tumor) 

 

3.3 Optimization of the thermal damage 
For the optimization of the hyperthermia treatment, the final time is fixed and equal to 10 

minutes, while two parameters are modified to find the minimum of the objective function: the 
laser optical intensity I0 and the nanoparticles volumetric fraction fv. The optical and thermal 
properties of the different layers of the skin, the Arrhenius constants and the laser and 
nanoparticles characteristics remain the same as for the example in the previous section. 

The thermal damage computed with equation (11.b) is compared with the ideal one through 
the objective function. The ideal thermal damage parameter is considered to follow a linear 
evolution in time starting from 0 to reach 1 in the tumor and stay at 0 in the healthy cells. A 
shape parameter has been added to this ideal thermal damage function to smooth the distribution 
in the boundaries of the tumor so that it is more similar to the real one. 

Two different optimization algorithms are applied to the problem, namely: the Levenberg-
Marquardt method, a nonlinear least squares minimizer, and the Particle Swarm Optimization 
(PSO) algorithm, a population based stochastic optimization technique, implemented with a 
population size of 50. The table below presents the results of the algorithms obtained using an 
Intel Pentium 3665U @ 1.70 GHz, in a 64-bit system, with 4 Gb of RAM. Two objective 
functions are studied: one includes the thermal damage for all time steps during the treatment, 
while the other consider only the thermal damage at the final time, that is, 10 minutes, which 
correspond to the maximum value of the thermal damage since it increases in time. 
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Table 2: Results of the optimization algorithms 

Algorithm Objective 
Function 

Computational 
Time 

Stopping 
Criteria fv I0 (W/m²) 

Levenberg-Marquardt 
All time 28533 s Step size 10-30 8.08x10-5 66116 

Final time 3838 s Step size 10-50 8.48x10-5 66328 

Particle Swarm 
All time 98782 s 50 iterations 8.23x10-5 66572 

Final time 128199 s 100 iterations 8.48x10-5 66328 

As can be seen in Table 2, the two algorithms give identical results for the optimization of 
the objective function at final time, with a higher computational time for the implemented PSO 
method. The stopping criteria for the all-time evaluation of the objective function are considered 
lower than for the final time evaluation, due to a higher computational time: the step size 
tolerance is 10-30 instead of 10-50 for the Levenberg-Marquardt algorithm, and the maximal 
number of iterations is 50 instead of 100 for the PSO. For this reason and the possible deviations 
of the real and ideal thermal damages in time, the resulting parameters are slightly different 
from the ones of the final thermal damage optimizations. By any way, the optimized values fv 
of I0 and are consistent for all cases considered. 

Figure 4 presents the temperature and thermal damage distributions computed with fv = 
8.48x10-5 and I0 = 66328 W/m², the parameters resulting from the final thermal damage 
optimization. 

 
      (a)             (b) 

Figure 4: Distribution after 10min of the optimized hyperthermia treatment on the skin of: (a) temperature 
(b) thermal damage 

The temperature presents a peak of 46.8°C in the tumor region, around 0.2mm, where the 
thermal damage parameter reaches a maximum value of 0.4, next to the left boundary of the 
tumor. 
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However, the optimized thermal damage is still lower than the ideal one after 10 minutes of 
exposure and the cancerous tissue is not fully destroyed with one single session of the 
hyperthermia treatment. A second session is therefore needed to increase the thermal damage 
in the tumor, while maintaining reasonable temperatures. For this second session, the skin was 
assumed to cool down and return to T0 between the two applications. The hyperthermia 
treatment is then applied with the same optimal conditions for 10 minutes, with the initial 
thermal damage of the second session considered equal to the final thermal damage of the first 
session. As can be seen in Figure 5, a second session of the hyperthermia treatment with the 
same optimal parameters of the first session doubles the thermal damage of the skin, with a 
peak at 0.8, which still remains in the tumor region. 

 

 
Figure 5: Thermal damage distribution in the skin after a second application of the 10min hyperthermia 

treatment 

 

4 CONCLUSIONS 
From this simulation, it can be concluded that the Levenberg-Marquardt and PSO algorithms 

can be used for the optimization of the hyperthermia treatment. It was also shown that, with a 
fixed exposure duration of 10 minutes, at least a second session of the hyperthermia treatment  
is necessary to inflict a thermal damage to the tumor that approaches the tissue necrosis. On the 
other hand, the optimization of parameters like the beam size, the time of exposure or a non-
constant laser emissive power may also be relevant to provide a more suitable treatment.  
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