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Abstract. In this work, the Immersed Boundary Method (IBM) is adapted and im-
plemented in the context of Smoothed Particle Hydrodynamics (SPH) method to study
moving solid bodies in an incompressible fluid flow. The proposed computational algo-
rithm is verified by solving a number of benchmark particulate flow problems. The results
are also compared with those obtained using the same SPH scheme along with a direct
solid boundary imposition technique.

1 Introduction

The rheological characteristics of particulate flows are of prime interest in many in-
dustries. These macroscopic characteristics can be described by various hydrodynamic
interactions between solids and the surrounding fluid. To investigate such interactions,
one needs to accurately determine the hydrodynamic forces exchanged between the fluid
and solid bodies.

This paper attempts to numerically simulate particulate flows using a combination of
the Weakly Compressible SPH (WCSPH) and the Immersed Boundary (IB) method. The
use of immersed boundary method helps to handle problems with solid bodies of complex
geometries as reported by Hieber and Koumoutsakos [1]. They used a combination of
the IB and the SPH method, however, brought the SPH particles back into an ordered
arrangement at the end of each time step. In the present paper, the IB method is used
along with a modified scheme of the WCSPH method.

It is known that in the IB method, the portion of the fluid domain confined within solid
boundaries, imposes a retarding effect on the motion of solid bodies [2]. This effect leads to
an under estimation of the acceleration of the solid bodies. In 2005, Uhlmann [2] proposed
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that the momentum of this confined fluid should be taken into account in order to resolve
the problem. In this work, this effect is relieved using a momentum rate summation over
SPH particles positioned inside a solid body.

In this paper, some modifications are also used in order to improve capabilities of the
standard WCSPH method. The so-called Renormalized schemes are used for the first-
order and second-order spatial derivatives. Also, the spurious pressure oscillations are
reduced using a modified continuity equation.

In the following, first the proposed weakly compressible SPH method is described. This
is followed by presenting the direct fluid-solid boundary treatment and the equation of
motion of the solid bodies. Next, the IB method and the time integration procedure
are briefly described. Finally, the performance of the proposed method is studied by
solving migration of a circular cylinder in a shear flow and falling of a circular solid body
in a closed channel. Comparisons between the results of the proposed IB-SPH method
and those obtained using the same SPH scheme with a direct solid boundary imposition
technique, are also performed.

2 The SPH Method

In this work, weakly-compressible laminar fluid flows are considered. The mass and
momentum conservation laws give

dρ

dt
= −ρ∇ ·V, (1)

ρ
dV

dt
= −∇P + µ∇2V, (2)

where ρ is density of the fluid, P is pressure and V is the velocity vector. In order to
close this system of equations, a simple equation of state is used as

P − P0 = c2(ρ− ρ0). (3)

Equations (1) and (2) are solved using the SPH method as discussed below.

2.1 Spatial Derivatives

The numerical approximation of the first derivative, ⟨∇u⟩i, can be obtained as [3, 4]

⟨∇u⟩i = Bi ·
∑

j

ωj∇Wij (uj − ui) , (4)

where Wij = W (|rij| , h) refers to the value of smoothing or kernel function of particle i
at the position of particle j and rij = ri − rj. Also,

Bi = −

[

∑

j

ωjrij∇Wij

]−1

(5)
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is a renormalization tensor. Using Taylor series expansion about ri, it can be shown that
the method described by Eq. (4) is consistent and converges linearly as δ −→ 0 for a
constant ratio h

δ
[4].

A consistent second derivative approximation scheme was recently introduced by Fatehi
and Manzari [4] as

⟨

∇2u
⟩

i
= B̂i :

∑

j

2ωjeij∇Wij

(

ui − uj

rij
− eij · ⟨∇u⟩i

)

, (6)

where the operator ”:” denotes the inner product of second-order tensors, rij = |rij|,
eij = rij/rij is a unit vector in the inter-particle direction and ⟨∇u⟩i is computed according

to (4). B̂ is a renormalization tensor which is computed using the following set of equations

B̂i :

[

∑

j

ωjrijeijeij∇Wij +

(

∑

j

ωjeijeij∇Wij

)

·Bi ·

(

∑

j

ωjrijrij∇Wij

)]

= −I. (7)

These schemes are directly applied to the momentum equation (2). The discretization of
the mass conservation equation (1) is described below.

2.2 Modified Mass Conservation Equation

Lee et al. [5] reported that a Weakly Compressible SPH formulation may lead to spu-
rious pressure oscillations. As discussed in [6], a modification to the continuity equation
can solve this problem. Here, the mass conservation equation (1) is replaced by [7]

dρi
dt

= −ρi

[

⟨∇ ·V⟩i +∆t

(⟨

∇ ·
⟨

∇P

ρ

⟩⟩

i

−
⟨

∇ · ∇P

ρ

⟩

i

)]

, (8)

in which

⟨

∇ ·
⟨

∇P

ρ

⟩⟩

i

= Bi ·
∑

j

ωj∇Wij ·

(

⟨

∇P

ρ

⟩

j

−
⟨

∇P

ρ

⟩

i

)

, (9)

and

⟨

∇ · ∇P

ρ

⟩

i

= B̂i :
∑

j

2ωjeij∇Wij

(

Pi − Pj

ρ̄ijrij
− eij ·

⟨

∇P

ρ

⟩

i

)

, (10)

where ρ̄ij = (ρi + ρj)/2.
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a b

Figure 1: a) Initial SPH particles arrangement near a solid body for direct boundary treatment method,

and b) schematic of solid body diagram.

2.3 Direct Solid Boundary Treatment

Proper evaluation of the hydrodynamic forces is an essential part of simulating partic-
ulate flow problems. In the direct treatment of the solid boundaries, the solid boundaries
are represented by one layer of SPH particles, as shown in Fig. 1-a, which leads to a fairly
smooth and accurate pressure distribution around the solid bodies. To find the pres-
sure and density of a boundary particle, the fluid equation of motion needs to be solved.
Adjacent to a solid surface, the momentum conservation equation can be rewritten as

∇P

ρ
· n = −dV

dt
· n+

∇ · τ
ρ

· n, (11)

where n is the unit outward normal to the solid surface. For the boundary particle i, ni

can be calculated from the summation of the kernel gradients [3] as

ni =

∑

j ωj∇Wij
�

�

�

∑

j ωj∇Wij

�

�

�

. (12)

Discretizing the pressure gradient term in (11) for particle i, leads to

(

∑

j

ωj
Pj − Pi

ρ̄ij
Bi · ∇Wij

)

· ni = −dVi

dt
· ni +

⟨

∇ · τ
ρ

⟩

i

· ni. (13)

The term dVi

dt
is the acceleration of the boundary particle i which is evaluated in terms of

the predicted acceleration of the corresponding solid body at each time step. Therefore,
Pi can be found explicitly from (13), and ρi is easily updated using the fluid equation of
state.
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3 Solid Body Equation of Motion

The Newton’s law of motion is used to explicitly update the solid body velocity and
position. For a solid body b, the linear and angular momentum equations are

Mb
dVb

dt
= fb, (14)

and

Ib
dΩb

dt
= mb, (15)

where Mb and Ib are the total mass and moment of inertia of the body, respectively, and,
Ωb is the angular velocity vector. In (14) and (15), fb and mb are the hydrodynamic
force and moment exerted on the surface of the solid body and are approximated by
summations over the boundary particles, as

fb =
∑

j

(−Pjnj + nj · τj)∆Sj (16)

and
mb =

∑

j

Rj × (−Pjnj + nj · τj)∆Sj, (17)

where ∆Sj denotes a portion of the solid surface. Rj is the position vector from the center
of solid body b as shown in Fig. 1-b. These parameters are associated with the boundary
particle j.

4 The Immersed Boundary Method

The Immersed Boundary (IB) method was introduced in 1977 [8] in order to impose a
complicated no-slip boundary condition. This method can also eliminate the limitations
associated with the moving solid boundaries in particle methods [1]. In order to implement
the IB method in the context of SPH, considering the idea introduced in [2], the force
and moment in the solid body equations of motion (14) and (15) become

fb =
∑

k

Fk +
∑

i

mi
dVi

dt
(18)

mb =
∑

k

Rk × Fk +
∑

i

miRk ×
dVi

dt
, (19)

where the subscript k refers to boundary points, i stands for the confined SPH particles
within the solid body b. The second terms in the RHS of Eqs. (18) and (19) resolve
the miscalculation of the solid body acceleration. Figure 2 shows a schematic of the
interaction forces between the boundary points and the fluid SPH particle.
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Figure 2: Schematic view of the boundary points and interaction forces between the points and fluid SPH

particles.

The interaction forces Fk which act on each boundary point are calculated using the
difference between a predicted velocity due to the rigid motion of the solid bodies and
the interpolated fluid velocity at the position of the point k. The velocity interpolation
is done using a kernel function and a summation over the fluid SPH particles j in the
neighborhood of the boundary point k, as

V∗
k =

∑

j

ckjV
∗
j . (20)

V∗ is evaluated assuming that there is no solid body in the domain and ckj = ωjWkj/
∑

j ωjWkj.

Denoting the predicted velocity of the boundary point k by Vd
k, one has

fk =
V∗

k −Vd
k

∆t
, (21)

where ∆t is the time step size. The force acting on the fluid SPH particle j due to the
presence of its neighboring boundary points k is

Fj =
∑

k

ckjFkj, (22)

with
Fkj = −mjcjkfk. (23)

Thus, the velocity of the SPH particle j should be updated as

Vj = V∗
j +∆t

Fj

mj

. (24)

Finally, Fk is calculated as

Fk = −
∑

j

cjkFkj. (25)
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It must be noted that the only difference in using the IB technique in combination with
the proposed SPH method is that equations (16) and (17), which are calculated using the
direct solid boundary treatment method, are replaced by Eqs. (18) and (19).

5 Time Integration

To solve the governing equations in time, a two-step predictor-corrector method is
used. First, velocity V∗ and density ρ∗ are predicted solving the equations of motions.
Then, the pressure field is updated using ρ∗ in (3). Next, the corrected values V∗∗ and
ρ∗∗ are calculated, solving flow equations using the predicted (∗) values. The new values
of velocity, density, and position are then computed sequentially using

Vn+1 =
1

2
(V∗∗ +V∗) , (26)

ρn+1 =
1

2
(ρ∗∗ + ρ∗) , (27)

and
rn+1 = rn +∆tVn+1. (28)

Here, ∆t = tn+1 − tn and after stability analysis one finds that ∆t must be constrained
by [9]

∆t = αmin

(

δmin

Umax

,
ρδ2min

µ

)

. (29)

Here, 0 < α < 1 is a constant, δmin is the minimum distance between two neighboring
SPH particles, Umax = c+ Vmax is the maximum characteristic velocity, c is the speed of
sound which appears in (3) and Vmax is the maximum velocity of the SPH particles. It
must be noted that, both linear and angular velocities of the moving solid bodies are also
updated, using (14) and (15) in every predictor and corrector steps and finally averaged
in the same way as the fluid SPH particles.

During a SPH simulation, defects may be produced by non-uniform distribution and
clustering of SPH particles. To alleviate this problem, Xu and his co-workers proposed a
particle shifting defined by δri [10] as

δri = βVmax∆t
∑

j

r2i
r2ij

eij, (30)

where ri =
1
Ni

∑

j rij, and Ni is the number of neighboring particles for particle i. The
constant β, should be within the range 0.001 − 0.1 to prevent numerical instability and
large errors [10]. In this work, the same modification is used in the context of Weakly
Compressible SPH (WCSPH) method.
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Figure 3: Schematic diagram of the circular cylinder in a shear flow.

6 Results

In this section, the proposed method is verified by solving two planar low-Reynolds
benchmark problems. First, the migration of a neutrally buoyant solid body in a shear
flow is simulated, and secondly, the problem of a falling solid body under the effect of
gravity force, in a closed channel is solved. For all simulations, a Quintic Wendland kernel
function [11] is used with a cut-off distance h of 2.6 times the initial SPH particle spacing,
δ0. The sound speed c in (3) is chosen to be almost 20 times the maximum velocity in the
domain to ensure the incompressibility condition [12] and the constant α in (29) is set to
0.5.

6.1 A Neutrally Buoyant Circular Cylinder in a Shear Flow

In this problem, a neutrally buoyant rigid circular cylinder is free to move in a shear
flow as shown in Fig. 3. The height of the channel, H, is 0.01(m) and the ratio of solid
body radius to the channel height is R/H = 1/8. The velocities of the upper and the
lower walls are equal to Uw/2 = 0.01(m/s) in opposite directions. The particle Reynolds
number, Rep = UwR

2/ (νH), for which the results were reported in [13], is 0.625. The
solid body is initially at rest positioned at y = 0.75H. The left and right sides of the
channel are periodic boundaries.

Here, the length to height ratio of the channel, L/H, is set to 5, which ensures that re-
sults are independent from the chosen channel length. Also, β = 0.01 and c = 0.25(m/s).
In Fig. 4, the vertical positions of the solid body is shown in time, for both the direct
solid boundary treatment and the IB method. The results are compared with those re-
ported by Z-G Feng [13] in 2002. In this problem, the initial SPH particle spacing is
δ0 = 1/6000(m). It is observed that the result obtained using the WCSPH method is
almost the same as those shown in [13]. However, for the IB method some oscillations
occur when the solid body reaches the centerline of the channel.

6.2 Falling of a Circular Cylinder in a Closed Channel

In this problem, a circular cylinder starts to move from rest under the gravity effect,
with g = 9.81(m/s2). A schematic geometry of the problem is shown in Fig. 5. The
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Figure 4: Vertical position of the solid body in comparison with [13].

domain dimensions are H = 0.06(m) and L = 0.02(m), the radius of solid cylinder
R = 0.00125(m) and the center of the solid is initially at x = 0.01(m) and y = 0.04(m).
The solid and fluid densities are, respectively, ρs = 1250(kg/m3) and ρf = 1000(kg/m3),
and the fluid viscosity is µ = 0.01(Pa.s).

Here, β = 0.02 and c = 1.0(m/s). In Fig. 6 the calculated vertical velocities of the
falling solid body, for both the direct solid boundary treatment and the IB method,
are compared with the result reported in [14]. In this problem, the initial SPH particle
spacing is δ0 = 1/10000(m). Although the results are in good agreement, some oscillations
appear in the velocity when the solid body reaches its terminal velocity. These occur as a
result of small pressure oscillations imposed by the pressure waves produced in a weakly
compressible fluid. In this problem, the acceleration of the solid body changes from the
gravity acceleration at the beginning to zero when a terminal velocity is achieved. Thus
the performance of the solid boundary treatment methods can be assessed. While the solid
body is falling with a variable velocity, the direct boundary treatment method performs
better. On the other hand, when the solid body reaches its terminal falling velocity,
the results obtained using the IB method are in a better agreement with those reported
in [14].

7 Conclusion

Both direct solid boundary treatment and the IB method performed well in particulate
flow simulations. However, the results obtained using the direct boundary treatment
method were in a better agreement with the results available in the literature while the
solid body was moving with a variable velocity. On the other hand the IB method gave
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Figure 5: Schematic diagram of the falling circular cylinder in a closed channel.
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Figure 6: Vertical velocity of the falling particle in a closed channel in comparison with [14].
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a more accurate result at the terminal velocity.
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