
II International Conference on Particle-based Methods - Fundamentals and Applications
PARTICLES 2011

E. Oñate and D.R.J. Owen (Eds)

ON THE GPU COMPUTING OF MASSIVE FORMING
PROCESS SIMULATIONS

G.-P. Ostermeyer, K. Fischer

Institute of Dynamics and Vibrations (IDS)
Technische Universität Braunschweig

Schleinitzstr. 20, 38106 Braunschweig, Germany
e-mail: gp.ostermeyer@tu-braunschweig.de, ka.fischer@tu-braunschweig.de, www.ids.tu-bs.de

Key words: Particle Systems, Forming Processes, GPU Computing, CUDA

Abstract. This contribution presents a modelling tool for massive forming processes that
is based on a particle method. The introduced model is able to represent the realistic
behaviour of different types of forming processes. As these systems usually require large
amounts of particles, the potential of GPU Computing with CUDA as a possibility for
performance enhancement of particle simulations is analyzed as well.

1 INTRODUCTION

The Finite Element Method (FEM) is the common tool to model massive forming pro-
cesses. This method is able to deliver all the necessary information (cf. figure 1) in order
to develop and optimize massive forming processes. Among these are the information
e.g. on workpiece’s structural defects, on the mould filling behaviour (whether or not a
mould could be completely filled under the given circumstances), on the microstructural
transformation that is directly correlated to the natural stain, on the material flow and
the flow lines or on the stress and temperature distribution throughout the workpieces
and tools.

Although delivering quite realistic simulation results in many cases, FEM is not able to
reproduce all the upcoming phenomena like mould filling errors or workpiece’s structural
defects. The reason for this lies in the fact, that a correct macroscopic description of
friction and wear during the forming process has not been derived yet [1]. Therefore the
idea of modelling massive forming processes with particle methods is motivated, because
particle methods do not depend on those macroscopic laws [2].

Despite the problem of mould filling errors, large deformations, flashing or the genera-
tion of wear require frequent remeshing during a FEM simulation. This results in a con-
siderable increase of computational effort and therewith worsens the overall performance.
The computational effort of particle simulations instead is in principal independent of the
type and degree of deformation like flashing or generation of wear.

1

910



G.-P. Ostermeyer, K. Fischer

Figure 1: Massive forming process simulation requirements (sources of single pictures are referred to in
each picture)

2 MESOSCOPIC PARTICLE METHOD

The particle method used in order to model massive forming processes is the meso-
scopic particle method introduced in [3, 4] where the particles have additional hidden
degrees of freedom. In general, for the given application, the system is discretized by
rigid particles. The system’s particles interact with each other via local and predefined
interaction laws. These laws have to be chosen in such a way, that a realistic macroscopic
material behaviour is represented. There are different approaches to derive them. One
possible way is the explicit implementation of a macroscopic stress strain relationship.
Another approach considers interaction potentials similar to those used in molecular dy-
namics like the Lennard-Jones potential. In either case, the discretization results in a
usually large amount of additional degrees of freedom, that are of course not visible from
the macroscopic point of view. Thus, they are also called submechanical or hidden degrees
of freedom.

In order to generate the macroscopic system performance, the information have to be
transfered form the chosen discretization scale with its hidden degrees of freedom to the
macroscale. Considering forming processes, especially the information on the macroscopic
temperature distribution -as a result of heat generation during the forming process- is of
utmost importance.

On the atomic scale, molecular dynamics use statistics in order to model the macro-
scopic heat generation and temperature distribution correctly. But in contrast to the
atomic scale, macroscopic properties like temperature can directly be assigned to the
particles. Therefore, in order to take into account the mechanical as well as the thermo-
dynamical degrees of freedom, viscous dampers are used to separate these different kinds
of energy on the mesoscopic time scale. The dispersion relation separates the high and low
frequencies of motion. As a consequence, the dissipated energy of the high-frequency mo-
tions is interpreted as heat energy and attached to the corresponding pair of particles. To

2

911



G.-P. Ostermeyer, K. Fischer

store this information, the particles have an inner variable, describing the corresponding
macroscopically observable property temperature T . The low-frequency motions instead
stay unchanged for long time intervals, compared to the mesoscopic time constant. De-
pending on the application, additional internal variables like stress or chemical changes
can be reasonable or even required.

The standard Lennard Lennard Jones potential is not sufficient to model massive form-
ing processes. These types of systems require the reproduction of additional effects like
thermal expansion or local smelting. Therefore Ostermeyer [4] modified the standard
Lennard-Jones potential into

VLJW = 4ε

[(σ
r

)2n

−
√

1− W 2

ε2

(σ
r

)n
]

(1)

which explicitly depends on the stored heat energy W. This is quite reasonable since
the attractive part of the potential vanishes, when the phase transition temperature is
reached. r marks the distance between two neighbouring and interacting particles. ε, σ
and n are the potential’s parameters and have to be chosen according to the material
properties like Young’s modulus. The inner variable temperature T is connected to the
stored heat energy W via

W = mcV T (2)

This equation defines heat energy as the product of mass m, specific heat capacity cV and
temperature T .

In order to achieve the equations of motion of such a particle system, the Lagrangian
function L = Ekin − Epot is considered with Ekin and Epot as the kinetic and potential
energies of the given system. L depends on the generalized coordinates u and the gener-
alized velocities u̇. The dissipation function D takes into the energy dissipation and only
depends on the generalized velocities.

d

dt

(
∂

∂u̇
L

)
− ∂

∂u
L = − ∂

∂u̇
D (3)

The total energy inside the system including all the heat energy WT has to be conserved.

Ekin + Epot +WT = const =⇒ d

dt
(Ekin + Epot +WT ) = 0 (4)

Rearranging this equation yields to the following expression, describing the local heat
generation within a system considering heat dependent interaction potentials.

Ẇ = u̇
∂

∂u̇
D · 1

1− ∂L
∂W

(5)

To describe the overall local heat evalution during the forming process, the model does
not only have to consider local heat generation but also has to account for global heat
conduction (Fourier) within the workpiece and between workpiece and forging die and
in addition heat convection and thermal radiation along the surface during the cooling
process outside the die. Equation (5) has to be expanded accordingly.

3

912



G.-P. Ostermeyer, K. Fischer

3 MODELLING MASSIVE FORMING PROCESSES WITH PARTICLE
METHODS

The modeling of forming processes is very important, since the plastic deformation of a
solid body has a significant impact on the final body’s characteristics like strength, strain
or vibration resistance. These properties depend e.g. on the evolution of material flow
respectively the flow lines during the forming process. The workpiece’s characterics are
much better along the flow lines than in a lateral direction.

Before applying a particle method to simulate complex forming processes in order to
determine realistic process’ information, the particle model has to be validated. In order
to show its reliability, the simulation results of a standard forming process are generated
and compared to experimental results. The process, that is going to be analyzed in the
following, is the compression of a cylindrical workpiece. The realistic reproduction of this
compression is in fact very important, because it oftentimes marks the first forming step
within a complex and graduated forming process.

The aspects used to validate the results achieved by the particle method are the flow
lines, the temperature distribution and the natural strain that is directly coupled to the
microstructural transformation.

The flow line distribution is a result of the grains’ orientation inside the workpiece.
Recrystallization leads to a structural change, which is mechanically rearranged during
the plastic deformation. The finial orientation depends on the initial grain orientation and
on the direction of the forming process. FE simulations generate the flowlines by tracking
certain grid nodes (the initial coordinates and their displacement evolution) during the
forming process. Problems arise, when a frequent remeshing is required, because a new
mesh lacks the information on the predestined material flow. The introduced particle
method prevents such a loss of information. Each initial flow line is represented by a
chain of assigned particles. This initial assignment stays unchanged during the total
forming process. The flow line evolution is therefore observed by tracking the assigned
particles as part of the corresponding flow line.

The typical vertical and horizontal flow line distribution of such a compression test
(experiment cf. [5]) compared to the simulation results is shown in figure 2 and figure
3. The simulation results show the same typical flow line distributions in vertical and
horizontal direction as the experiments. The flow lines are parallel to the lateral edges
of the final workpiece’s shape. Figures 2 and 3 also show the main advantage of massive
formed parts: the typical uninterrupted flow line distribution that allows an excellent
behavior considering static and dynamic loading.

4

913



G.-P. Ostermeyer, K. Fischer

Figure 2: Vertical flow lines: experiment (cf. [5]) versus particle simulation result.

Figure 3: Horizontal flow lines: experiment (cf. [5]) versus particle simulation result.

The forming process considered is an inhomogeneous one. This means that the defor-
mation is not equal for each point of the workpiece. The result is a convexly compressed
workpiece (cf. figures 2 and 3). The reason for this is the amount of friction, that is
present between workpiece and upper and lower die respectively plate. This friction pre-
vents an even lateral expension at the workpiece’s end planes. During the forming process,
the major fraction of the generated deformation energy is turned into heat energy. As a
result of the inhomogenous forming distribution, the temperature distribution as well as
the strain distribution are not homogenous either.

Besides the flow lines, the structure (grain size and distribution) has a vital influence
on the final workpieces mechanical properties like ductility or further shape cutting. The
final grain size of a compressed workpiece depends on the initial grain size, the type
of recrystallization (works against the hardening as a result of plastic deformation), the
temperature and the natural strain [5]. A larger strain e.g. leads to smaller grains during
the dynamic recrystallization. So, for a given initial grain size, the particle simulation
has to generate a realistic temperature and strain distribution to deliver the correct final

5

914



G.-P. Ostermeyer, K. Fischer

grain size distribution. That is the reason, why the validation of temperature distribution
and local natural or effective strain is essential.

The natural or effective strain distribution describes the amount of local deformation
considering the local neighbourhood. The strain distribution after the compression can
be experimentally determined by hardness testing. Figure 4 shows the principal strain
distribution as a result of experimental Brinell hardness testing [6]. Three different strain
areas can be detected: I with large strain, II with medium strain and III with low strain.
The area with the highest amount of strain ranges in diagonal form from the center of
the workpiece to its edges. The simulation results are in accordance with the experimetal
observations. The three areas could be clearly identified within the particle representation
(cf. figure 4).

Figure 4: Strain distribution: experimental result (cf. [6]) versus particle simulation result

The temperature measurement inside the workpiece during and directly after a forming
process is not quite possible. So, a comparison between experimental data and simula-
tion results has not been carried out. Instead, figure 5 shows the results of the particle
simulation compared to the established ones of an FEM simulation (cf. [6]). These FEM-
results show an increse in temperature inside the workpiece that is directly correlated to
the strain distribution. Those parts inside the workpiece, that experienced the largest
degrees of rearrangement (cf. figure 4) are those with the highest final temperatures after
the forming process. As a consequence, the temperature distribution shows a formation
of three areas comparable to those of the strain distribution. This correlation is also
correctly reflected by the results of the particle simulation.

Figure 5: Temperature distribution: FEM result (cf. [6]) versus particle simulation result.

6

915



G.-P. Ostermeyer, K. Fischer

4 GPU COMPUTING AND PARTICLE METHODS

The number of particles used for the modelling depends on the system’s size and the
required accuracy. The higher the demands on the simulation’s quality respectively the
chosen size of potential forming errors are, the smaller will the size of a single particle be,
which will result in an increase in the total amount of particles. As the analyzed systems
usually have very large numbers of particles, algorithm’s design and the corresponding
performance enhancement has become a major task in algorithm development. Paral-
lelization is a widely spread concept for this purpose. The source code parallelization
e.g. on multi-core CPUs or CPU clusters is already very popular among scientists and
engineers.

During the past few years, another approach allowing massive parallelization on special
graphics processing units (GPUs) has been developed by manufacturers like NVIDIA [7].
As a result of the fast growing video game industry, GPUs have been optimized to perform
large numbers of floating-point operations for each video frame. Therefore, GPUs allow
for a much higher degree of parallelization than CPUs can do. This development is also
shown by the fact, that among the top four supercomputers of the world three are already
using NVIDIA GPUs [8].

In 2007, only short time after the launch of its first general purpose GPU, NVIDIA in-
troduced a user-friendly computing architecture called CUDA (Compute Unified Device
Architecture). This architecture allows standard C programming with additional run-
time functions but without dependence on standard graphics user-interfaces like OpenGL
anymore.

Besides the performance, GPU Computing has got some other quite important ad-
vantages compared to CPU Computing. The acquisition costs per GFLOP as well as the
power consumption per GFLOP are much lower for GPUs than for CPUs. The main chal-
lenge of GPU Computing is the fact, that CPUs and GPUs require a completely different
algorithm implementation. So, a GPU implementation of a given CPU implementation
oftentimes results in an algorithm’s redesign. Furthermore, it is the user’s task to generate
a workload distribution that leads to an optimal usage of GPU’s resources.

As a matter of principle, GPU computing makes only sense for those systems that
provide a large parallel portion in the corresponding algorithm. Systems with no or only
minor parallel parts will not benefit from a GPU implementation, quite the opposite. In
these cases, a GPU implementation can even worsen the performance. Particle systems
e.g. are ideally suited for parallelization, because the same set of instructions has to
be executed for each particle. But since the algorithm’s redesign is costly, it has to be
determined, if the performance benefit justifys the time and effort.

Therefore, a single CPU (program only executed on one core) as well as a single GPU
implementation of the particle system’s update algorithm have been realised for three
different types of particle systems as well as an evaluation of the performance [9]. The
update procedure is identical for each type of particle system and follows a tree step

7

916



G.-P. Ostermeyer, K. Fischer

update-scheme. The first step includes the determination of each particle’s neighbour-
hood and is the most time-consuming part of the total algorithm. Therefore the type of
interaction detection algorithm has to be well-chosen. Afterwards, the correponding in-
teraction forces are computed and finally the current set of system’s differential equations
is generated and solved via time integration.

The analyzed particle systems vary in system’s size (number of particles) and range of
interaction forces. They therefore have quite significant differences in their computational
intensities. The variation of the interaction range leads to three different types of particle
systems:

• non-interaction particle system: no interaction among the particles; the system’s
state update is reduced to the pure time integration

• short-range interaction particle system: particle interaction only within a small
neighbourhood; neighbourhood detection, calculation of corrsponding interaction
forces and time integration required

• all-pair interaction particle system: each particle interacts with all the other parti-
cles; no neighbourhood detection required, only brute-force calculation of interaction
forces and time integration

As a consequence, the non-interaction particle system has the lowest computational
intensity. The all-pair interaction particle system has the highest computational intensity
with a computation of interaction forces of order O (n2). The reduction of interaction
range to small neighbourhoods (short-range interaction system) reduces the effort of force
calculation to O (n) but requires an additional neighbourhood detection. A variety of
neighbourhood detection algorithms (comparable to the problem of collision detection)
have been developed [10]. Their efforts vary from O (n2) to O (n log n). In contrast,
effort’s reduction leads to a rapid increase in memory requirements. Therefore, the neigh-
bourhood detection algorithm, chosen for the following investigations, is the brute-force
neighbourhood detection of order O (n2). It was chosen because it represents a lower
limit and so the minimal benefit of performance enhancement of a GPU implementation
compared to a CPU implementation for short-range interaction particle systems.

The integration method used is the standard Euler forward integration as it is the basic
method. A more time-consuming integration method will lead to similar results since it
will affect the implementations on the CPU and on the GPU in a similar way. So, the
difference will only be a constant factor. In case of interaction, the particles interact via
Lennard-Jones potentials.

The two hardware platforms used for performance evaluation are

• CPU: Intel Core i7-920, 2.70 GHz

• GPU: NVIDIA Tesla C1060 (240 streaming processors)

8

917



G.-P. Ostermeyer, K. Fischer

In order to evaluate the performance of an algorithm implemented and executed on
a single CPU core (completely sequential implementation) in contrast to a single GPU
implementation (parallelized execution), the computing time required for 100 update steps
is measured for both platforms. This time does not consider the time for visualization
of the simulation results. If not otherwise indicated, the time required for the GPU
implementation does not take into account the time used to copy the data from the CPU
to the GPU and finally back to the GPU. The performance is determined by the amount
of time, required to complete the update. The more time is spent on the update steps,
the slower and therefore worse is the performance of the analyzed implementation.

Figures 6 and 7 show the time in ms required for the GPU and the CPU implementation
for the lower and upper limits of computational intensity: the non-interaction particle
system and the all-pair interaction system. The blue curve marks the computing time of
the CPU implementation and the red curve the one of the GPU implementation.

Figure 6: Computing time vs. system’s size for the non-interaction particle system.

Figure 7: Computing time vs. system’s size for the all-pair interaction particle system.

In figure 6, the execution time increases at a constant rate with increasing number of
particles for both implementations. This trend was expected, because the non-interaction
particle system has a computational complexity of order O (n). In contrast, the all-pair
interaction particle system’s complexity of order O (n2) is directly represented by the CPU
implementation (cf. blue curve in figure 7). Figure 7 also shows an important aspect
of GPU’s performance enhancement. The GPU implementation reduces the squarish
dependency between computing time and system’s size of the sequential implementation

9

918



G.-P. Ostermeyer, K. Fischer

to a linear one. Although the total time required for the all-pair interaction approach
is much higher than the one for the non-interaction system, both systems indicate the
same behaviour: the GPU implementation outperforms the CPU implementation for
systems larger than a critical system’s size. The critical system’s size is much lower for
the computational intensive particle system than for the non-interaction system.

To evaluate the benefit of a GPU implementation in contrast to the CPU implemen-
tation, the speed-up is a frequently used quantification value. The speed-up is a factor,
that states, how many times faster a GPU implementation is compared to a CPU imple-
mentation. It is therefore defined as:

speed-up =
performance(GPU)

performance(CPU)
=

computing time(CPU)

computing time(GPU)
(6)

The speed-up depends in general on the problem’s computational intensity, the degree of
parallelizability, the problem’s size and the implementation which requires the optimal
usage of GPU’s resources. The amount of information that has to be stored on the GPU
for the required computations strongly limits the performance. If large particle systems
exceed the GPU’s memory capacities, the particle system has to be manually partitioned
by the user and loaded to the GPU and processed sequentially portion by portion. This
procedure is necessary since GPUs do not support virtual memory as CPUs do.

Figure 8 shows the resulting speed-ups for the three analyzed types of particle sys-
tems. These speed-up results do not represent the highest possible speed-ups comparing
single CPU and single GPU implementations, since the implementations have not been
optimized to the dead end yet. Instead, the figure should indicate the potential of GPU
computing compared to CPU computing. Figure 8 makes clear, that an enormous perfor-
mance enhancement can be achieved for all types of particle systems, when implementing
the algorithm on a single GPU instead of a single CPU.

Figure 8: Speed-up

It should be noted, that the speed-up also depends on the chosen accuracy. While
double and single precision performances do not lead to considerable differences in CPU’s
performance, there are large differences in GPU’s performance. The reason for this is the
fact, that the older CUDA capable GPUs have only been optimized for single precision.

10

919



G.-P. Ostermeyer, K. Fischer

So the support for double precision operations and performance was neglected, which led
to a large performance loss for double precision applications (up to 80 % [11]). The new
Fermi GPU generation takes care of these insufficiencies and increased not only single
but also double precision performance. A double precision GPU implementation is still
about 50% slower than a single precision one, but on Fermi GPUs it is able to outperform
double precision CPU implementations [12], which was not possible with older GPUs.

5 CONCLUSIONS

- It has been shown, that the modelling of massive forming processes with particle
systems delivers a realistic material behaviour considering the evaluated criteria of
flow line distribution, strain and temperature distribution. The particle simulation’s
results turned out to be in good agreement to the experimental ones and to those
of standardized FEM simulations. So, the introduced particle model seems to be
qualified to be used for further analysis of more complex forming processes.

- GPU Computing was introduced as a tool for performance enhancement of systems
with a large parallel portion. Particle systems meet this demand and are therefore
predestined for parallel computing. The analysis of three different types of particle
systems showed, that the performance of particle systems’ simulations implemented
on a CPU can be improved by parallelizing the neighbourhood detection as well as
the state update on a GPU.

REFERENCES

[1] Herbertz, R. Kritische Bewertung der Stofffluss-Simulation, der Verschleißvorher-
sage und der Werkzeugbelastung in der Massivumformung aus Sicht der Reibung
in der Grenzschicht Werkstück/Werkzeug. Studie im Auftrag des Industrieverbands
Massivumformung e.V., (2009).

[2] Ostermeyer, G.-P. Entwicklungsansätze und -potentiale für neue Reibgesetze in der
(Warm-) Massivumformung”. Tagung ”Reibung in der Massivumformung”., Hagen,
(02.12.2009).

[3] Ostermeyer, G.-P. Many particle systems. German Polish Workshop, IPPT PAN,
Warszawa, (1995).

[4] Ostermeyer, G.-P. The mesoscopic particle approach. Tribology International (2007)
40:953–959.

[5] Doege, E. and Dittmann, J. Vorhersage der Mikrostruktur und mechanischen Eigen-
schaften geschmiedeter Bauteile durch FEM-Simulation. Mat.-wiss. u. Werkstofftech.
(2002) 33:683–690.

11

920



G.-P. Ostermeyer, K. Fischer

[6] Lange, K. et al. Umformtechnik Band 2: Massivumformung. Springer-Verlag, second
edition,(1988).

[7] Kirk, D. B. and Hwu, W. W. Programming Massively Parallel Processors: A Hands-
on Approach. Morgan Kaufmann Publishers, Vol. I., (2010).

[8] TOP500 List - November 2010 (1-100), http://www.top500.org/list/2010/11/100,
(November 2010).

[9] Fischer, K. and Ostermeyer, G.-P.Massively Parallel Particle Simulation on Graphics
Processing Units with CUDA. GAMM 2011, Graz, (2011).

[10] Ericson, C. Real-time collision detection. Morgan Kaufmann series in interactive 3D
technology. Elsevier Morgan Kaufmann, Amsterdam, reprint, (2008).

[11] NVIDIA. NVIDIAs Next Generation CUDA Compute Architecture: Fermi: NVIDIA
Whitepaper. (2009).

[12] NVIDIA. NVIDIA CUDA C Programming Guide, (July 2010).

12

921




