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Abstract

This work studies the implementation of wall modeling for large eddy simulation in a finite element context. It
provides a detailed description of how the approach used by the finite volume and finite differences communities is
adapted to the finite element context. The new implementation is as simple and easy to implement as the classical
finite element one, but it provides vastly superior results. In the typical approach used in finite elements, the mesh
does not extend all the way to the wall, and the wall stress is evaluated at the first grid point, based on the velocity at
the same point. Instead, we adopt the approach commonly used in finite differences, where the mesh covers the whole
domain and the wall stress is obtained at the wall grid point, with the velocity evaluated at the first grid point off the
wall. The method is tested in a turbulent channel flow at Reτ = 2003, a neutral atmospheric boundary layer flow, as
well as a flow over a wall-mounted hump, with significant improvement in the results compared to the standard finite
element approach. Additionally, we examine the effect of evaluating the input velocity further away from the wall, as
well as applying temporal filtering on the wall model input.

Keywords: Large eddy simulation, wall modeling, exchange location, law of the wall, finite elements

1. Introduction

In recent years, Large Eddy Simulation (LES) has emerged as a valuable tool for the simulation of turbulent flows
at high Reynolds numbers and complex geometries, typically encountered in practical engineering applications. In this
approach, the larger, dynamically important eddies are directly resolved, while the smaller ones are assumed to have
a universal character and are therefore modeled. For wall-bounded flows, the cost becomes prohibitively expensive,
since the dynamically important eddies in the near-wall region become smaller as the Reynolds number increases, and
thus extreme mesh refinement is required to resolve them. Modeling the inner part of the boundary layer instead of
resolving it alleviates this problem.

The basic principle of wall modeling is that the transport of momentum in the inner layer has to be modeled, since
the grid is too coarse to resolve the dynamically important eddies near the wall and just assuming a no-slip condition
results in an incorrect velocity profile and, subsequently, an incorrect stress. Several wall models, with different levels
of complexity, have been developed to that effect. They can be categorized into two groups, those that directly model
the wall stress and those that employ a Reynolds-averaged Navier-Stokes (RANS) approach in the inner layer. The
reader can refer to [1–5] for additional information on the wall models. In this work we focus on the implementation
of wall modeling for large eddy simulation in a finite element framework. The standard approach to wall modeling for
LES in finite elements is the same as the one typically used in RANS, as described for example in [6–9]. As opposed
to the approach commonly used in finite differences and finite volumes, the mesh does not extend all the way to the
wall (i.e., a part of the domain is omitted). Therefore, there exists a thin region of height d between the wall and the
first point of the computational mesh (see Fig. 1a). The traction is applied at point A with the velocity evaluated at
the same point.

∗Corresponding author
Email address: herbert.owen@bsc.es (Herbert Owen)

This is the peer reviewed version of the following article: Wall-modeled large-eddy simulation in a finite element framework, 
which has been published in final form at https://doi.org/10.1002/fld.4770. This article may be used for non-commercial 
purposes in accordance with Wiley Terms and Conditions for Self-Archiving



Despite its importance for simulation problems of engineering interest, little work has been conducted in regards
to wall-modeled LES (WMLES) in a finite element framework. Bazilevs and Hughes [10] proposed an alternative
method to deal with coarse meshes in the near-wall region, through the weak imposition of the boundary conditions
using Nitsche’s method [11]. The formulation was further enhanced by Bazilevs et al. in [12, 13], by incorporating
the law of the wall of Spalding [14] and also imposing the boundary condition in the wall-normal direction in a
weak sense, although the primary goal of the latter was ease of implementation. The weak imposition performed
considerably better when uniform (and, thus, coarse) grids were utilized, as is often the case in applications of practical
interest. However the results were still not very accurate. Krank and Wall [15] suggested an alternative approach to
wall modeling, via the use of a function space that consists of a standard polynomial function space and an enrichment
constructed on the basis of Spalding’s law of the wall. This modification allows for the boundary layer to be resolved in
a mean sense (somewhat resembling Detached Eddy Simulation on that respect) even with coarse meshes. Following
the classification proposed in [4], the method they propose is a RANS-LES method, in contrast to the method proposed
herein that classifies as a two-layer approach. The method was tested in various configurations using very coarse
meshes with surprisingly accurate results.

Kawai and Larsson approached the problem from a different angle (albeit in a finite difference context) in [16]. In
order to explain the mismatch between the modeled and the real skin friction that is observed when the wall stress is
modeled using the nearest neighboring LES velocity (commonly referred to as Log-Layer Mismatch or LLM), they
looked at the error due to the under-resolved LES in the first few grid points off the wall. They noted that there is no
inherent requirement to apply a wall model at the first grid point off the wall (as is it typically done in a finite volume
or finite difference context), as long as it is applied within the inner part of the boundary layer. This means that the wall
model is fed with more accurate information and thus provides a better prediction of the wall shear stress, resolving
the LLM problem. Instead of the typical finite difference approach, where the traction is applied on the wall with the
velocity evaluated at the first grid point off the wall (points B and C respectively in Fig. 1b), they propose that the
velocity is evaluated at a point further away from the wall (e.g. point D in Fig. 1b). They called this point exchange
location. We will, therefore, refer to the method as the exchange location method. The typical implementation of the
wall law in the finite difference community can be regarded as a particular case of the exchange location method.

Yang et al. [17] suggested that the LLM is not caused by the numerical error in the first point off the wall, as
proposed in [16], but rather by the unphysically strong coupling between the wall shear stress and the velocity at the
first point off the wall. They proposed an alternative solution in which the wall model receives the time-filtered LES
velocity at the first point off the wall, which proved to be successful in eliminating the LLM problem. They also
showed that the same effect can be achieved through the application of wall-parallel spatial filtering on the wall model
input, but noted the difficulty of constructing such spatial filters in unstructured meshes. In addition, they pointed out
that while the method proposed in [16] has been useful, it is impractical in complex geometry flows, imposing a large
overhead on mesh generation as well as wall model implementation.

De Wiart and Murman performed WMLES in a Discontinuous Galerkin Spectral Element framework in [18].
Using a simple equilibrium wall model and high-order elements, they were able to accurately predict the turbulent
channel flow even at Reynolds numbers up to Reτ = 5 × 105, however the model was unable to correctly predict
non-equilibrium flows such as the two-dimensional periodic hills and the NACA 4412 airfoil. In the airfoil case, they
experimented with the input location for the wall model, with minimal impact on the results. Frère et al. [19] employed
both the aforementioned strategies (from [16] and [17]) in the turbulent channel flow, using a high-order Discontinuous
Galerkin code. They observed that applying an averaging procedure on the input of the wall model had no impact on
the results. It is important to note, however, that they only applied a “partial” average (cf. Eq. 11 therein), as opposed
to the full average suggested in [17]. The traction they imposed is proportional to the instantaneous velocity while the
factor of proportionality depends on the average velocity. Instead, in the method proposed in [17] not only does the
factor of proportionality depend on the average velocity but the traction is proportional to the average velocity. Since
the method used imposes the unphysically strong coupling between the wall shear stress and the velocity of the first
point off the wall, it is not expected to introduce a significant improvement according to the findings in [17]. In terms
of the input location for the wall model, they found that placing the interface at the bottom of the second element
off the wall, massively improved the results compared to placing it at the top of the first element. However, they did
not examine locations further away from the wall. Considering the significant differences between the Discontinuous
Galerkin and standard finite element methods, we believe that their conclusions are not necessarily transferable to the
framework used in this article. For instance, in a continuous finite element approach the velocity is the same at the
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bottom of the second element off the wall and at the top of the first element.
In the present work, we adapt the finite difference approach for wall modeling to the finite element framework and

compare it with the approach typically used in the finite element community [6–9]. We also examine the exchange
location method proposed in [16], as well as the application of temporal filtering on the input of the wall model, sug-
gested in [17]. A key contribution of this work is to show that abandoning the classical finite element implementation
offers significant improvements in the results.

The remainder of the paper is organized as follows. In Section 2, the strong and weak forms of the Navier-Stokes
equations for incompressible flows are described, along with the numerical method used for the numerical examples
presented in this paper. In Section 3, we offer a detailed description of the approach typically used in finite elements,
the one commonly used in finite differences as well as the exchange location method outlined above. We specifically
look at how the wall shear stress is defined in both cases and denote the differences between them. In Section 4, we
present numerical results from the turbulent channel flow case at Reτ = 2003. Section 5 we present results from a
neutral atmospheric boundary layer (ABL) flow over flat terrain, a case where the classical finite element approach
cannot provide satisfactory results. The exchange location approach provides much better results for this case where
Reτ = 2.98e7, which is representative of typical ABL flows. A more complex geometry is examined in Section 6, as
we simulate the flow over a wall-mounted hump at Re = 936000. The separation, reattachment and recovery of the
boundary layer present in this case make it an excellent benchmark case for the proposed methodology. Finally, we
draw conclusions in Section 7.

2. Numerical treatment

The numerical simulations presented in this work have been performed using Alya, a high performance computing
multi-physics code developed at the Barcelona Supercomputing Center [20]. Alya uses a finite element formulation
to solve the incompressible Navier-Stokes equations, described below.

2.1. Incompressible Navier-Stokes problem

Let Ω be a bounded domain of R3, Γ its boundary and (0, T ] the time interval. The strong form of the incompress-
ible Navier-Stokes problem reads:

∂tu − 2ν∇ · ε(u) + u · ∇u + ∇p = f,
∇ · u = 0

in Ω × (0, T ), where ε(u) = 1
2

(
∇u + ∇T u

)
is the velocity strain rate tensor, ν is the kinematic viscosity, and f denotes

the vector of external body forces. The problem is supplied with an initial divergence free velocity u = u0 in Ω, t = 0,
and boundary conditions of the form:

u = g

on the Dirichlet boundary ΓD × (0, T ) and:

σ · n = tn

on the Neumann boundary ΓN × (0, T ), where σ = −pI + 2νε(u) is the Cauchy stress tensor and n is the outward
pointing normal. It is assumed that ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = Ø. The weak form of the problem consists in finding
[u, p] ∈ L2(0, T ;V) × L1(0, T ;Q) such that:

(∂tu, v) + 2(νε(u), ε(v)) + (u · ∇u, v) − (p,∇ · v) = 〈f, v〉 ,
(q,∇ · u) = 0

for all [v, q] ∈ V0 × Q, where the initial condition is satisfied in a weak sense. We define V = H1(Ω), V0 = H1
0(Ω),

Q = L2(Ω)/R. As usual, L2 (Ω) is the space of square-integrable functions, H1 (Ω) is a subspace of L2 (Ω) formed by
functions whose derivatives also belong to L2 (Ω) and H1

0 (Ω) is a subspace of H1 (Ω) whose functions are zero on Γ.
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The non-linear term has been written in its convective form, which is most commonly encountered in computa-
tional practice. In the following we consider the energy, momentum and angular momentum conserving form (EMAC)
for this term, described in detail in [21]:

NLemac (u) = 2u · ε(u) + (∇ · u) u −
1
2
∇|u|2. (1)

The last term of Eq. 1 was absorbed in the pressure in [21], by redefining the pressure as p∗ = p− 1
2 |u|

2, which has
no physical meaning. Here, it is explicitly included in the formulation, avoiding the implementation of non-physical
Neumann conditions at outflow boundaries.

The Galerkin approximation is used for space discretization. To obtain the discrete problem, the continuous spaces,
V0 and Q, are approximated by the discrete linear subspacesV0h ⊂ V0 and Qh ⊂ Q. In the examples presented in this
work, bilinear hexahedral elements have been used. Nevertheless, Alya can use unstructured meshes including also
tetrahedra, prisms, and pyramids as well as quadratic shape functions. Temporal discretization is performed through
an explicit third-order Runge-Kutta scheme, where the Courant-Friedrichs-Lewy number is set to CFL = 0.85 for all
the cases presented in this work. A non-incremental fractional step method is used to stabilize the pressure. It allows
for the use of finite element pairs that do not satisfy the inf-sup condition [22], such as equal order interpolation for
the velocity and pressure used in this work. Therefore, mass conservation is not satisfied exactly. The perturbation
to the incompressibility constraint introduces an error in the conservation of kinetic energy of O

(
δt h2

)
in the case

of linear finite elements [23]. This coincides with the error obtained for finite volumes using a collocated scheme in
[24, 25]. A detailed description of the numerical method used in this work together with examples for wall-resolved
LES flows, that show its high accuracy and low dissipation can be found in [23]. The Vreman subgrid-scale model
[26] is used for turbulence closure for all the examples presented in this work.

Taking into account that the approach we have just described is not widely used within the finite element com-
munity, we would like to mention that Alya can also use the variational multiscale (VMS) formulation [27–30] as
an implicit LES model. The details of the VMS implementation available in Alya can be found in [31]. Some nu-
merical results with this method will also be presented to show that the wall modeling approach produces significant
improvements independently of the numerical treatment of the Navier-Stokes equations that is used.

3. Wall modeling

3.1. Explanation of the method

The analytical expression for the shear stress parallel to the wall at a distance y = d from the wall is:

τ(d) = (µ + µLES )
∂ux

∂y

∣∣∣∣∣∣
y=d
− ρu′xu′y

∣∣∣
y=d

(2)

where x and y correspond to the streamwise and wall-normal directions respectively, while µLES refers to the turbulent
viscosity introduced by the subgrid-scale model (if one is used). The first term of the RHS of Eq. 2 refers to the
viscous and the modeled stress, while the second term refers to the resolved stress.

In the following, three different approaches to model Eq. 2 are presented: i) the typical approach used in finite
elements, ii) the typical approach used in finite differences and iii) the exchange location method. It is worth noting at
this point that an open integration rule is used in the simulations, i.e., the calculations are performed at the boundary
gauss points and the corresponding exchange location points. However, we refer to grid points in the following, as if
a closed (nodal) integration rule was used, in order to make an easier comparison between the finite element and finite
difference approaches.

3.1.1. Classical finite element approach

The most commonly used approach for wall modeling in finite elements is to consider a mesh that does not extend
all the way to the wall, as shown in Fig. 1a (see also [6–9]). In this approach, the layer between the wall and the first
grid point (A) is not directly resolved. Instead it is modeled through a wall function. The velocity at point A and the
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Figure 1: Wall modeling approach in different spatial discretization methods

so-called “wall distance” between that point and the wall (denoted by d in Fig. 1a) are typically used to calculate the
shear stress (τ(d)), which is then imposed at point A. In addition, a no-penetration condition is imposed at that point.

This method imposes the following conditions on point A (y = d):

τ(d) = (µ + µLES )
∂ux

∂y

∣∣∣∣∣∣
y=d

(3)

uy = 0 (4)

where the no-penetration condition (Eq. 4 ) means the resolved stress is equal to zero. Comparing Eq. 2 and 3, we see
that the classical approach does not account for the effect of the resolved stress at y = d. Since the total shear stress is
well calculated due to momentum conservation, this leads to an inaccurate prediction of the velocity gradient, i.e., the
method suffers from severe Log-Layer Mismatch.

Following the classification presented in [4] for wall models, this method is essentially equivalent to a hybrid
LES/RANS model, since the LES is not formally defined as extending all the way to the wall.

3.1.2. Classical finite difference approach

An alternative method proposed here involves following the approach commonly used for wall modeling in finite
differences [1–5]. In this approach, the grid extends all the way to the solid wall (Fig. 1b) and we are, in fact, imposing
the wall shear stress at y = 0, in terms of the velocity evaluated at y = d, where d now denotes the distance between
the first grid point (B), which now coincides with the wall, and the first grid point off the wall (C). Due to the fact
that this velocity has a non-zero vertical component, the problem outlined in the previous paragraph in regards to the
resolved stress being zero at a distance y = d from the wall is solved. It is worth noting that, since in this case we are
actually resolving the near-wall part of the domain, we are indirectly imposing the following shear stress at point B:

τ(d) = (µ + µLES )
∂ux

∂y

∣∣∣∣∣∣
y=d
− ρu′xu′y

∣∣∣
y=d
≈ τ(y = 0) +

∂p
∂x

d (5)

where the last approximation stems from integrating the Navier-Stokes equations in the near-wall elements.
As opposed to the classical finite element approach, this method is equivalent to a wall-stress model (again fol-

lowing the classification of [4]), where a wall model is solved over a layer of thickness d.

3.1.3. Exchange location

The finite difference approach provides an additional opportunity (as explained in [16]). A very typical problem
of wall modeling is that, even with a perfect wall model, the results would still be inaccurate, since the LES is under-
resolved in the near-wall part of the domain (e.g. at the first grid point off the wall) and thus provides inaccurate
information to the wall model. There is, however, no requirement for the velocity to be evaluated at the first grid point
off the wall. As mentioned earlier, the only requirement is that the velocity is evaluated at a point located within in
the inner part of the boundary layer, where the wall functions are typically valid. The use of the exchange location
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method allows us to place the exchange interface (i.e. the point where the LES feeds information to the wall model)
further away from the wall (such as point D in Fig. 1b), where the LES is more accurately resolved and, therefore,
can provide a more accurate prediction for the wall shear stress.

An issue arising with this method is that, in very complex geometries, it could happen that certain exchange
location points are placed outside of the computational domain. To that end, we have developed an adaptive procedure
that locates the missing points and gradually reduces the distance from the corresponding wall, until the point is located
inside the computational domain. This procedure was not necessary in the cases examined in this article, however the
method has been successfully used in both the realistic car model DrivAer [32] and the NASA Common Research
Model (CRM) [33] . Moreover, no additional meshing effort is required in our experience.

3.2. Parallel implementation

Normally, in a parallel simulation, it is not possible to know in advance which parallel processes the exchange
interface will be located in. It is also to be expected that partitions requiring information for the wall model will not
host the needed exchange location points and thus communications will be necessary. To this end, a pre-process stage
to construct a communication scheme is proposed in Algorithm 1. Given that all the partitions perform the same tasks,
the description is done in terms of one of them.

Algorithm 1 Definition of the communication scheme for the exchange location method.

• Define the bounding box of my physical domain.
• Exchange bounding boxes with all other partitions.
• Define a bounding box containing my exchange location points and check for intersections with the bounding
boxes of other parallel partitions. If there is an intersection, mark the partition as a neighbor.
• Send the coordinates of my needed points to my neighbors and receive coordinates from them.
• For each neighbor, check if their needed points are contained in my elements. Mark the contained points as
‘hosted nodes’.
• Exchange the hosted nodes’ list with my neighbor partitions.
• Build the communications scheme according to the ‘hosted nodes’ lists.

A graphical description of this procedure is shown in Fig. 2, where the bounding box of the exchange location
points of partition 1 is shown together with the bounding box of partitions 2 and 3. In this example, partition 1 will
receive information from partitions 2 and 3. It is important to note that this procedure is not necessary for the classical
finite difference approach (i.e., when the exchange location is placed at the first grid point off the wall), which is a
significant advantage in terms of the simplicity of implementing the method in a finite element code.

3.3. Wall modeling tools

Two different wall functions are utilized in the tests performed in this work, one for smooth walls and the other
one for rough walls. Reichardt’s extended law of the wall [34]:

u+ =
1
κ

ln
(
1 + κy+) + 7.8 ·

(
1 − e−

y+

11 −
y+

11
· e−0.33y+

)
(6)

is used in the turbulent channel and wall-mounted hump cases, where u+ and y+ denote the dimensionless velocity and
wall distance respectively, and κ = 0.41 is the von Kárman constant. Ideally, a single wall model would be utilized in
all the cases presented, in order to avoid adding an extra degree of freedom in the assessment of the method. However,
due to the roughness of the wall in the atmospheric boundary layer case, we use the logarithmic law for rough walls
and neutral stability:

ux(y) =
u∗
κ

ln
(

y + y0

y0

)
(7)
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Figure 2: Neighboring subdomains containing the exchange location points

commonly used in environmental simulations. Here ux(y) denotes the mean wind speed at height y, u∗ is the friction
velocity, and y0 denotes the surface roughness.

In addition, an exponential running average similar to the one proposed by Meneveau et al [35] is used to account
for the time-average nature of the wall functions utilized. For any quantity φ, the local time average φ at any time tn is
defined as:

φ
n

= εφn + (1 − ε)φ
n−1

The weighting parameter ε is defined as:

ε =
δt
T

where δt is the computational time-step and T is the characteristic averaging time-scale, chosen to be comparable to
the convective time scale of the problem. In this method, the time-averaging is applied to the velocity that is used as
the input for the wall model, in a similar fashion to [17]. We have confirmed in our numerical experiments that the
process is insensitive to the precise value of T , as pointed out by Yang et al. in [17], provided that it is large enough
(not shown here).

4. Turbulent channel flow

4.1. Problem definition

To assess the performance of our method, we investigate a turbulent channel flow at Reτ = 2003 with a setup
similar to the one used in [13], where Reτ is the friction Reynolds number based on the friction velocity and channel
half width. We compare the two variations of the exchange location with the classical FE approach, using the DNS
results of [36] as reference data.

The size of the computational domain considered herein is 6πδ × 2δ × 2πδ in the streamwise, wall-normal and
spanwise directions respectively, where δ is the channel half-width. The geometry of the domain is presented in Fig.
3. The streamwise and spanwise directions are assumed to be homogeneous, and thus periodic boundary conditions
are applied, while a no penetration condition is imposed on the wall boundaries.
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Figure 3: Computational domain for the turbulent channel case

Meshes of 643 (G1), 128x96x96 (G2) and 256x128x128 (G3) linear elements that are uniform in all directions are
employed. That results in y+ ≈ 63, y+ ≈ 42 and y+ ≈ 31 respectively at the first node. The reference DNS used a
6144 × 633 × 4608 mesh on a domain with size 8π × 2 × 3π in the streamwise, wall-normal and spanwise directions
respectively. The flow is driven by a constant pressure gradient in the streamwise direction.

The simulation is run for an appropriately long time to guarantee that a statistically stationary regime is reached.
Once that quasi-steady state has been achieved, statistics are collected, and the results are averaged in time for approx-
imately 24 flow-through units (we define a flow-through unit as t = Lx/U where U denotes the velocity at the center
of the channel and Lx is the size of the domain in the streamwise direction). They are subsequently averaged in space
(in the streamwise and spanwise direction) and non-dimensionalized using the computed friction velocity (the same
applies to all the cases presented in this work). Reichardt’s extended law of the wall (Eq. 6) is used for modeling the
wall layer. The averaging period T is equal to two flow-through units.

4.2. Numerical results

Three alternatives for applying the wall law are compared. In the first one, which will be labeled “classical”
approach in the following, we employ the standard FE approach to wall modeling, as described in Section 3. The wall
distance is set equal to the height of the elements (d = hel). The remaining two make use of the exchange location
method described in this paper (cf. Section 3) at two different locations: one on the first grid point off the wall and
the other at a distance of y = 0.125δ. The second location is intentionally chosen to be at the limit of the wall law’s
validity, to evaluate the approach proposed in [16]. We note here that it is not necessary for the exchange location to
coincide with the grid points. Additionally, we evaluate the effect of using temporal averaging on the input velocity
of the wall law (as described in Section 3.3), by performing the two exchange location simulations with and without
averaging.

Results for the mean streamwise velocity are presented in Fig. 4a, for grid G1. It becomes immediately obvious
that the classical FE approach cannot accurately predict the flow, resulting in a vast overprediction of the mean
streamwise velocity. Specifically, the velocity at the first grid point is in agreement with the DNS data (as expected,
since that is the point where the wall law is applied), however the velocity gradient is inaccurately predicted in the
first few near-wall elements resulting in a significant error in the mean streamwise velocity as we approach the core
of the channel. This overprediction is a result of omitting the resolved part of the stress as explained in Section 3.1.1,
leading to a severe Log-Layer Mismatch. The results from the classical FE approach are similar to the ones in [13].
When the exchange location is used, however, the prediction for the mean flow is significantly more accurate. Placing
the exchange location further away from the wall offers a slight improvement in the results. However, both exchange
location simulations fail to accurately capture the shape of the DNS results. Additionally, it is interesting to note that
the use of temporal filtering has minimal impact on the results.

The differences between methods are smaller when looking at the fluctuations, but still noticeable (Fig. 4b - 4d).
All simulations overpredict the fluctuations in the streamwise direction in the near-wall region while underpredicting
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(a) Mean streamwise velocity (b) Rms streamwise velocity fluctuation

(c) Rms wall-normal velocity fluctuation (d) Rms spanwise velocity fluctuation

Figure 4: Mean streamwise velocity and rms velocity fluctuations, for grid G1

the wall-normal and spanwise fluctuations. The predictions are much more accurate as we approach the core of the
channel. This behavior is expected since the wall law only accounts for the mean velocity profile and the coarse mesh
employed does not allow for the near-wall part of the fluctuations to be accurately resolved. Another possible cause is
the use of linear elements since they typically falter in accurately predicting the fluctuations near the wall (cf. [28]).
That said, the exchange location method still offers an improvement in results, especially near the wall. We also have
to note the fact that v′ = 0 at y , 0 for the classical implementation of the wall law in the finite element context, which
is an inherent problem of the method.

Fig. 5 presents the influence of grid refinement on the mean streamwise velocity, when the exchange location
method with temporal averaging is used. It is clear that refining the grid offers a significant improvement in the
results, with the prediction for grid G3 (top) being very close to the DNS results, especially when the exchange
location is placed at y = 0.125δ. Simulations using the classical FE method were also performed for grids G2 and G3,
with similar trends to those of grid G1 (not shown here). The effect of placing the exchange location at the 4th grid
point was also examined, however the results were identical to those with the exchange location at y = 0.125δ.

We would like to emphasize the superior performance of the exchange location compared to the classical FE ap-
proach. Even when the exchange location is considered at the first grid point off the wall (which is essentially the
standard finite difference approach adapted to finite elements), the improvement in results over the classical FE ap-
proach is astounding. It is interesting to note that despite the equivalence between finite elements and finite differences
when structured grids and a closed integrating rule are used (cf. [37]), the approach when it comes to wall modeling
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Figure 5: Mean streamwise velocity for grids G1 (bottom), G2 (middle) and G3 (top), each shifted upward by 8 units for clarity

is radically different. In this work, we demonstrate that the finite difference approach is significantly more accurate.
We believe this to be an important result, especially given the simplicity of the method and its implementation in a
finite element code.

Apart from the results presented here, where the formulation stabilizes only the pressure and an explicit subrid-
scale model is used for turbulence closure, the method was also tested with a variational multiscale (VMS) formulation
using algebraic subscales (cf. [27–30]), where no turbulent model is used (i.e., no eddy viscosity is present). As shown
in Figure 6, similar conclusions can be drawn, with the difference between the classical FE method and the exchange
location method being even higher.

5. Atmospheric boundary layer

5.1. Problem definition

A large scale environmental flow, namely the neutral atmospheric boundary layer flow over a flat terrain is con-
sidered in this section. The very high Reynolds number of environmental flows (here, Reτ = 2.98e7) makes the use of
wall modeling imperative and the coarse resolutions used provide an excellent test for the assessment of wall model-
ing approaches. The size of the computational domain examined herein is Ly = H = 1000 m in the vertical direction
and Lx = Lz = 2πLy in the tangential directions. The computational grid consists of 53 uniform elements in each
direction. Periodic boundary conditions are imposed in the tangential directions. A stress-free condition is imposed at
the upper boundary, while a no-penetration condition is imposed at the bottom and top boundaries. The logarithmic
law (Eq. 7) is used to model the wall layer at the bottom boundary. The values chosen for the friction velocity and
roughness length are u∗ = 0.45 m s-1 and y0 = 0.1 m respectively. Statistics are collected once the quasi-steady state
has been achieved, and the results are averaged in time for approximately 50 flow-through units (here we define a
flow-through unit as t = Utop/Lx, where Utop is the velocity at the top of the domain and Lx is the size of the domain
in the streamwise direction), and subsequently in space (in the streamwise and spanwise direction). The averaging
period T is set equal to one flow-through unit.

5.2. Numerical results
Fig. 7 presents the results for the mean streamwise velocity compared with the theoretical values from the log-law.

As observed, both the exchange location simulations offer more accurate predictions than the one using the classical
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(a) Mean streamwise velocity (b) Rms streamwise velocity fluctuation

(c) Rms wall-normal velocity fluctuation (d) Rms spanwise velocity fluctuation

Figure 6: Mean streamwise velocity and rms velocity fluctuations, for grid G1 using a VMS formulation

FE method. Especially the results from the exchange location at the third point are very similar to the theoretical
values, albeit with a slight underprediction at the part between the wall and the exchange location.

Another quantity of interest in the study of environmental flows is the non-dimensional vertical gradient of the
mean streamwise velocity, defined as Φ = (κy/u∗)(dU/dy). It can be seen in Fig. 8 that all simulations deviate from
the theoretical value of 1 in the near-wall region. Nevertheless, the results are noticeably better for the simulations
using the exchange location method, with the error being significantly higher in the near-wall region when using the
classical FE method.

6. Wall-mounted hump

6.1. Problem definition

In this section, we consider the flow over a wall-mounted hump. The features of this flow, where separation,
reattachment and recovery of the boundary layer occur, are of special interest, as they appear in several industrial
applications. The configuration of the flow is based on the one presented by Park in [38], and the results are compared
with the experimental data of Greenblatt et al. [39]. The size of the computational domain is 4.64c, 0.909c and 0.3c in
the streamwise (x), normal (y) and spanwise (z) directions respectively, where c is the chord length of the hump. The
inlet and outlet planes lie at x/c = −2.14 and x/c = 2.5 respectively with the leading edge of the hump at x/c = 0.
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Figure 7: Mean streamwise velocity Figure 8: Non-dimensional gradient of the mean streamwise velocity,
Φ =

(
κy
u∗

) (
dU
dy

)

Figure 9: Computational mesh from grid G1 in the vicinity of the hump

The top wall is contoured with a small constriction (see Fig. 9) between x = −0.5 and x = 1.5 to account for the
presence of the side-plates in the experiments, following the guidelines of the NASA CFDVAL2004 workshop.

The Reynolds number of the flow is Re = 936000, based on the hump chord length c and the free stream velocity
U∞ at the inlet. A slip boundary condition is imposed at the top boundary, while periodicity is used in the spanwise
direction. A no-penetration condition is imposed at the bottom boundary, with the wall stress being fed into the
simulation through the wall model (Reichardt’s extended wall law is used, Eq. 6). The averaging period is set to
T = 10c/U∞.

Two different grids are utilized in the simulations. The coarse grid (G1) consists of approximately 3.1 million
linear elements, with 743x71x61 nodes in the streamwise, normal and spanwise directions respectively. In the fine
grid (G2) significant refinement was performed in the tangential directions. In the wall-normal direction, the first grid
point was kept at the same distance from the wall (thus y+ remained the same), so that it remains outside of the buffer
layer, however the node density was increased, resulting in a reduction of the growth rate (from 1.06 for the coarse
mesh, to 1.03). This resulted in approximately 8 million linear elements, with 901x111x81 nodes in the streamwise,
normal and spanwise directions respectively. Fig. 9 presents the mesh in the vicinity of the hump for grid G1, and the
dimensionless grid spacings at the wall can be seen for both grids in Fig. 10.

Turbulent inflow data are synthesized through the use of the digital filtering technique described by Kempf et al.
in [40]. Due to the limited experimental data at the inflow plane, the missing Reynolds stresses were specified to
match those used by Park in [38] (left panels of Fig. 11). To ensure that realistic turbulence evolves before the flow
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(a) Coarse grid (G1) (b) Fine grid (G2)

Figure 10: Grid spacings in wall units for the two grids.

reaches the hump, the mean velocity and Reynolds stresses from the present simulations are compared to those from
the WMLES of Avdis et al. [41], at a downstream location (x/c = −0.81), shown in the right panels of Fig. 11, for
grid G2. A slight overprediction can be observed for the streamwise Reynolds stress, which is consistent with the
results presented in the turbulent channel flow in Section 4. However, the general agreement is acceptable.

Statistics are collected over approximately 20 c/U∞ units of time, after the quasi-static state has been reached.
The results are subsequently averaged in the spanwise direction.

6.2. Numerical results

Three different exchange locations are examined for this case. Aside from the exchange location at the first and
third grid point off the wall, we also examine placing the exchange location at a higher point of the inner layer, without
reference to the LES grid, as suggested in [4] and [16]. To that end, we choose y = 0.125δin, where δin is the boundary
layer thickness at the inflow plane.

The predictions for the skin friction and pressure coefficients with grid G2 are presented in Fig. 12a and Fig. 12b
respectively. The results indicate that the exchange location method predicts the behavior of the flow more accurately
than the classical FE method. The improvement in the prediction of the skin friction coefficient is remarkable, es-
pecially in the case of the exchange location at y = 0.125δin, where the prediction for the skin friction prior to the
separation is essentially identical to that of the experiments. A discrepancy is observed within the recirculation region.
However, that is to be expected since a simple equilibrium model has been used. The separation and reattachment
points are more accurately predicted when the exchange location method is used (cf. Table 1) for both grids. A signif-
icant improvement in the position of the reattachment point is obtained when the mesh is refined. Once more, the best
results are obtained in the case of the exchange location at y = 0.125δin. In terms of the pressure coefficient, all the
simulations offer similar predictions. A slight underprediction is observed on the attached part of the hump when the
exchange location is placed at y = 0.125δin, however the shape of the “plateau” observed in the experiments around
x/c ≈ 0.7 − 0.9 is more accurately predicted.

The mean streamwise velocity profiles, obtained with the fine grid (G2), are presented in Fig. 13a at different
streamwise positions. All methods capture the mean streamwise velocity profiles acceptably, even though a simple
equilibrium wall model has been used. The results from the classical FE method show the highest deviation from the
experiment inside the recirculation region. Due to the underprediction of the wall shear stress prior to the separation
(Fig. 12a), the boundary layer carries too high momentum, resulting in early reattachment and, thus, an overprediction
of the velocity profiles downstream of the reattachment point.

Fig. 13b-13d present the Reynolds stress profiles at the same streamwise positions. We observe that all simulations
struggle to accurately predict the Reynolds stresses within the recirculation zone, with the predictions improving
downstream of the reattachment point. The discrepancies with respect to the experimental results are similar to those
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Figure 11: Mean streamwise velocity (black lines) and Reynolds stress at the inflow (x/c = −2.14) and a downstream location (x/c = −0.81),
for grid G2. Blue lines: u′u′, green lines: v′v′, red lines: w′w′, yellow lines: u′v′, circles: experiment (Greenblatt et al. [39]), squares: WMLES
(Avdis et al. [41]).

(a) Skin friction coefficient (b) Pressure coefficient

Figure 12: Influence of the point where the velocity is evaluated on the skin friction (a) and pressure (b) coefficients across the streamwise
direction (grid G2). Green dotted line: classical FE method, blue dashed line: exchange location at first grid point, red dash-dotted line: exchange
location at third grid point, yellow solid line: exchange location at y = 0.125δin, circles: experiment (Greenblatt et al [39]).
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(a) Mean streamwise velocity profiles shifted by ∆ = 1.5

(b) Streamwise Reynolds stress profiles shifted by ∆ = 0.15

(c) Wall-normal Reynolds stress profiles shifted by ∆ = 0.075

(d) Shear Reynolds stress profiles shifted by ∆ = 0.075

Figure 13: Influence of the point where the velocity is evaluated on the mean streamwise velocity and Reynolds stresses (grid G2), at different
streamwise positions: x/c = 0.65, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3. Green dotted line: classical FE method, blue dashed line: exchange location at first
grid point, red dash-dotted line: exchange location at third grid point, yellow solid line: exchange location at y = 0.125δin, circles: experiment
(Greenblatt et al. [39]).
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Simulation xsep/c G1 xreatt/c G1 (xreatt)error G1 xsep/c G2 xreatt/c G2 (xreatt)error G2
Classical FE 0.665 0.97 11.8% 0.665 0.985 10.5%

EL at 1st point 0.665 0.99 10.0% 0.665 1.05 4.5%
EL at 3rd point 0.665 1.03 6.3% 0.665 1.07 2.7%

EL at h = 0.125δin 0.67 1.05 4.5% 0.67 1.09 0.9%
Experiment ∼ 0.665 ∼ 1.1 -

Table 1: Separation (xsep) and reattachment (xreatt) locations for the different configurations

(a) Skin friction coefficient (b) Pressure coefficient

Figure 14: Influence of grid resolution on the skin friction (a) and pressure (b) coefficients across the streamwise direction (velocity evaluated at
y = 0.125δin). Red dash-dotted line: coarse grid (G1), blue dashed line: fine grid (G2), circles: experiment (Greenblatt et al [39]).
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observed in [38]. There exists, however a marked improvement when placing the exchange location further away from
the wall.

The influence of the grid resolution on the results is presented in Fig. 14-15, for the simulations where the velocity
is evaluated at y = 0.125δin. Although the differences in the skin friction and pressure coefficient are hardly noticeable
at first glance (Fig. 14), it can be seen that refining the mesh improves the prediction of the reattachment location
(Table 1). Minimal differences are also observed for the mean streamwise velocity (Fig. 15a); however there is a
significant improvement in the prediction of the Reynolds stresses close to the center of the recirculation region (Fig.
15b-15d) as the mesh is refined.

7. Conclusions

The implementation of wall modeling used by the finite difference and finite volume communities is adapted to
finite elements. The new implementation is as simple and easy to implement as the classical finite element implemen-
tation but it provides vastly superior results. Instead of omitting a part of the domain and relying on the wall model to
account for it, as is commonly done in finite elements, the whole domain is resolved and the wall stress at the wall is
calculated using the velocity at the first grid point off the wall (or gauss point in the finite element context). The fact
that this velocity is fully three-dimensional (as opposed to the classical finite element approach where the velocity
used is imposed to be zero in the wall-normal direction) leads to significantly improved predictions. Specifically, the
presence of the resolved part of the stress −ρu′xu′z (cf. Eq. 2) leads to a significantly more accurate prediction for the
velocity gradient, compared to the classical finite element method. The method is tested against the classical approach,
in three different benchmark cases: a) the turbulent channel flow at Reτ = 2003, b) the atmospheric boundary layer
flow, and c) the wall-mounted hump flow. In all cases, the improvement in the results is significant when using the
new method, in particular for the mean streamwise velocity as well as the skin friction. It is interesting to note that
the proposed method performs remarkably well, despite the fact that the meshes utilized were coarse, and a simple
wall law was used as a wall model. This is especially true in the hump case, a non-equilibrium flow with features like
separation and reattachment of the boundary layer that are typically difficult to capture.

Additionally, two possible remedies for the LLM have been tested. Taking the input velocity for the wall law
further away from the wall and using the time averaged values of the velocity. For the atmospheric boundary layer
flow, due to the very high Reynolds number, time averaging is needed not only to reduce the LLM but also to avoid
divergence of the simulation due to the strong fluctuations. In the channel case, we have tested the effect of time
averaging the input velocity of the wall model, as well as the effect of the point where this velocity is evaluated. In
this work, we do not find a significant improvement by using time-averaged velocities as an input to the wall law.
The advantage of using the exchange location approach over the classical finite difference approach is also subtle for
this case. It is clear that both approaches are significantly better that the classical finite element approach based on
the results obtained in this work and those available in the literature. In the atmospheric boundary layer and wall-
mounted hump cases, time-averaged values have been used and only the influence of the point where we evaluate the
input velocity for the wall model is examined. For these two cases it is clear that the classical finite element approach
provides much poorer results than the finite difference approach for wall modeling. The exchange location provides
the best results for both cases. In the hump case, we observe that taking the velocity further away from the wall
provides noticeable improvements for the friction coefficient and the location of reattachment point.
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(a) Mean streamwise velocity profiles shifted by ∆ = 1.5

(b) Streamwise Reynolds stress profiles shifted by ∆ = 0.15

(c) Wall-normal Reynolds stress profiles shifted by ∆ = 0.075

(d) Shear Reynolds stress profiles shifted by ∆ = 0.075

Figure 15: Influence of grid resolution on the mean streamwise velocity and Reynolds stresses (velocity evaluated at y = 0.125δin), at different
streamwise positions: x/c = 0.65, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3. Red dash-dotted line: coarse grid (G1), blue dashed line: fine grid (G2), circles:
experiment (Greenblatt et al [39]).
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