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Abstract. In this paper, dynamic simulation model which have many sphere particles and MBD 
(Multi Body Dynamics) entities, i.e. bodies, joints, forces, is built and simulated. 

Many sphere particles are solved with DEM (Discrete Element Method) and simulated with GPU 
technology.  Fast algorithm is applied to calculate hertzian contact forces between many sphere 
particles (from 100,000 to 1,000,000) and NVIDIA’s CUDA is used to accelerate the calculation. 
Explicit integration method is applied to solve the many spheres. 

MBD (Multi Body Dynamics) entities are simulated with recursive formulation. Constraints are 
reduced by recursive formulation and implicit generalized alpha method is applied to solve dynamic 
model. 

Many sphere particles and MBD (Multi Body Dynamics) entities are co-simulated within commercial 
software RecurDyn. The interaction forces between many sphere particles and rigid body mesh are 
calculated and applied to each body to simulate two parts simultaneously. 

These models are built and simulated; fork lifter with sand model, oil in oil tank model, oil 
filled engine system and water filled washing machine model. All models are simulated with 
NVIDIA’s GPU and the result is shown.
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1 INTRODUCTION 
Today, parallel GPUs have begun making computational inroads against the CPU and 

general purpose GPU can be used in simulation algorithm to amplify the performance. The 
parallel implementation of algorithm, when executed on a ubiquitous Graphics Processing 
Unit (GPU) card, yields a 30 fold speedup over a similar algorithm executed on the Central 
Processing Unit (CPU). With the introduction of NVIDIAs Compute Unified Device 
Architecture (CUDA) [1], GPUs are now able to run C code natively on the device instead of 
relying on interpreted code. 

A discrete element method (DEM) is any of family of numerical methods for 
computing the motion of a large number of particles of micrometre-scale size and above. As 
GPU can boost the calculation speed of parallel programming, DEM(Discrete Element 
Method) is becoming widely used in granular and discontinuous materials, especially in 
granular flows, powder mechanics, and rock mechanics. Some examples are granular matter 
(rock, sand, soil), powders, liquid and solutions. And typical industries using DEM are 
chemical, pharmaceutical, mining, agriculture and food handling, powder metallurgy and 
digital printing. With advances in computing power and numerical algorithms, it has become 
possible to simulate millions of particles numerically. 

While many particles are solvable with DEM and parallel programming, it is called 
Particle Dynamics in this study; the only Particle Dynamics have a limitation on system 
modeling which can cover system with constraints and motions. Whole dynamic simulation 
mostly handle constraints and motions and even can be connected with other technique like 
control, optimization. RecurDyn[2] is commercial software and simulates multi body 
dynamics and finite element together. If the particle dynamics is included in MBD, the 
synergy effect of the simulation can be enlarged. 

To connect two kinds of the simulation, MBD and Particle Dynamics, the dividing 
domain algorithm and interaction algorithm is essential. Within these algorithms, the 
cosimulation should be performed well even though two simulations are quite different. In 
this study, cosimulation of MBD and Particle Dynamics is introduced and the algorithms of 
dividing and interaction are also explained. 

This paper is organized as follows. After introduction basic theories of Particle 
Dynamics on DEM and MBD are shown in charter 2.1 and 2.2 respectively. Integration 
methods of each method are described in chapter 2.3. Cosimulation of two methods is given 
in chapter 2.4. and GPU acceleration technique is given in chapter 2.5. Chapter 3 is numerical 
experiment for Particle Dynamics validation. Chapter 4 is cosimulation of Particle Dynamics 
and MBD. Final chapter summarize the conclusion of this study. 

2  FORMULATION 

2.1  PARTICLE DYNAMICS (DEM) 

Particle-based techniques are used in many applications. DEM is a numerical method 
for computing the behavior of large number of solid-particle system. This simulation method 
consists of the idea of determining the kinematic force to each finite-sized particle. All forces 
acting on each particle are modeled and calculated at every discrete-time step.[3][4] In time 
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integration algorithm, most of the MBD solvers are using implicit algorithm but DEM adopts 
explicit time-integration. The trajectories of particles are updated by Newton’s law of motion, 
according to the following equations: 

d

dt m
= ∑Fv (1)

d

dt I
= ∑Mω (2)

where v is the particle velocity, F is the summed force acting on a particle, m means 
the mass of a particle, ω is the angular velocity, and M and I denote the moment of force and 
the moment of inertia. 

A contact model between two particles is given by the Hertzian contact model and 
Voigt model, which consists of a spring dashpot and a slider for the friction in the tangential 
component[5]. The contact forces nF , compressive, and tF , shear, are calculated by the 
following equations: 

25.0
,

5.1
, δδ ijnnijnijn ck unF +=  (3)

[ ]ijnftijttijttijt ck tFutF µδδ ,min 25.0
,

5.1
, +=  (4)

where k and  c  designate the spring and the damping coefficients, the vectors ijn and 

ijt  are the unit vectors from the i-th particle to the j-th one in normal and tangential 
components, δ and u  are the deformation by contact and relative velocity of two particles, 
respectively.  

The force acting on a body can be obtained from the particles which contact on the 
body by summing their force. 

2.2  Multi Body Dynamics (MBD) 

Rigid body dynamics can be modeled using various formulations (Jalón and Bayo [6]). 
In this investigation, the recursive formulation is used. This section provides an introduction 
to the recursive formulation. The coordinate systems for two contiguous rigid bodies in 3D 
space are shown in Fig. 1. The two rigid bodies are connected by a joint, and an external force 
F  is acting on the rigid body j . The X-Y-Z  frame is the inertial or global reference frame and 
the x -y -z′ ′ ′  is the body reference frame with respect to the X-Y-Z  frame. The subscript i

means the inboard body of body j  in the spanning tree of a recursive formulation (Bae et al. 
2001)[7]. 
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Figure 1. Two contiguous rigid bodies 

The equations of motion for a constrained mechanical system (García de Jalón et al. 
[8]) in the joint space (Wittenburg [9]) are then obtained by using the velocity transformation 
method as follows: 

(= + − =T Τ
ΖF B M Y Φ λ Q ) 0ɺ (5)

where Φ  and λ , respectively, denote the cut joint constraint and the corresponding 
Lagrange multiplier. M  is a mass matrix and Q  is a force vector including the external forces 
in the Cartesian space. 

2.3  Implicit and Explicit Integrator 
For the multibody systems, there are various methods of implicit and explicit solution 

procedures that are used to solve the semi-discrete equations of motion along with the 
constraint. In implicit solution procedure, a solution for the system displacements that 
simultaneously satisfies the equations of motion and constraints is sought at each time step 
given the solution at the previous time step. Since the equations are nonlinear, Newton-
Raphson equilibrium iterations are performed to guarantee that an equilibrium solution is 
reached at each time step (Brenan et al. [10], Haug and Deyo [11], Hairer and Wanner [12]). 

Implicit solution procedures are unconditionally stable. However, the time step should 
be at least an order of magnitude smaller than the smallest natural period that needs to be 
resolved. An advantage of implicit solution procedures over explicit procedures is that the 
time step can be much larger than the smallest natural period of the system, which can be very 
small for very stiff systems. There is a very close relationship between the solution methods 
and the constraints modeling methods. The floating frame approach is usually used in 
conjunction with the Lagrange multiplier method for imposing the constraints. 

In explicit solution procedures (Hughes and Belytschko [13]), a solution for the 
accelerations that satisfies the equations of motion and constraints is sought at each time step. 
If a mass matrix is used, then the system’s equations of motion are uncoupled at each time 
step and they can be directly solved for the accelerations. A typical explicit algorithm starts 
by evaluating the vector of internal forces from the known positions and velocities at time 
step t . Then, internal forces are added to the external forces. The equations of motion are then 
directly used to calculate the accelerations at time step tt ∆+ . A time integration formula 
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such as the trapezoidal rule is used to integrate the acceleration into the velocities and 
positions at time step tt ∆+ . 

Explicit temporal integration techniques are only conditionally stable because the time 
step must be smaller than the equation’s characteristic time. If the same time step is used for 
the entire system, then that time step must be smaller than the smallest natural period of all 
bodies. This imposes a severe time step restriction and generally means that a very large 
number of time steps are needed to obtain the dynamic response. 

Multi body dynamics have constraints and therefore constraints are satisfied with 
implicit integration. The governing equations of multibody dynamics, which are derived 
previous sections, is solved using the implicit generalized-alpha method (Chung and Hulbert 
[14]), which has a nonlinear stepping equation. By the way particles are have huge DOF 
compared with MBD and there are no constraint equations. The particles are solved with 
explicit integration and it is accelerated with parallel processing using GPU. 

2.4  Cosimulation of Particle Dynamics and MBD 

Simulation of many particles in multi body systems needs strategy of cosimulation. 
Many particles are solved with explicit integration and multi body systems are solved with 
implicit integratoion. Figure 2 shows a sample idea of cosimulation about MBD and particles. 
The whole modeling is composed with a spring, a box and many spheres. The spring and the 
box is solved with RecurDyn[2](MBD Solver) while many particles are solved with 
SAMADIITM[15] (Particle Solver). Two solver divides the model with boundaries and in this 
sample the box is the boundary. The boundary force is given by the Particle Solver and 
boundary position, velocity is given by the MBD Solver. 

Figure 2. Modeling of MBD and Particle Dynamics 
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2.5  Simulation Acceleration Techniques (GPU) 
The main disadvantage of particle-based simulation with a very large number of 

particles is that it requires a very heavy computing resources to obtain satisfactory results. But 
it is relatively not so difficult to parallelize particle systems. Perhaps GPU computing is the 
best way to achive ability to handle large number of particle system efficiently.  

Therefore we adopted the DEM solver using GPU system, the SAMADIITM

(Metariver Technology co., ltd.) [15]. It was developed to simulate particle-based system 
using GPU. 

GPUs are massively parallel multithreaded devices capable of executing a large 
amount of active threads. GPU has multiple streaming multiprocessors, each of which 
contains multiple scalar processor cores. A function that executes on the GPU consists of 
multiple threads executing code in a single instruction, multiple data (SIMD) fashion. That is, 
each thread in a kernel executes the same code, but on different data. The libraries CUDA 
from NVIDIA allows one to use the streaming microprocessors mounted in high-end graphics 
cards as general-purpose computing hardware. Presently, the raw computational power of 
these multiprocessors can reach one Teraflop, which is several hundred times the throughput 
of a modern scalar CPU.  

The SAMADIITM was developed with hardware acceleration by GPU as well as 
software acceleration using the cell-linked list algorithm to accelerate DEM simulation.[16] 
The simulation space is partitioned into cells and the particles are then assigned to the cells so 
that it is easier to find the neighbors of a given particle. At the beginning of a simulation, an 
array that contains a list of cell neighbors for each cell is created. This method dramatically 
reduces the number of unnecessary inter-particle distance calculations.  

3 PARTICLE DYNAMICS VALIDATION 
A validation model is total weigth of spheres in a box. 1,331 spheres are filled in a box 

as Figure 3. The weigth of the sphere is 12.62kg and therefore the total weigth of the spheres 
are 16797.22kg. And as a result of the simulation, the force imposed to the box by many 
spheres is 16765.38kg and there are only 0.19% error in wieight of the total weight of the 
spheres. 

Figure 3. Total sphere weigth in a box model 
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4 COSIMULATION NUMERICAL EXPERIMENT 
In this section simulation result of a cosimulation model is shown. The model is 

modeled in MBD software RecurDyn and the particles are cosimulated by SAMADIITM.  
Figure 4 shows a waterfall model. The left figure is modeling of the waterfall and the other 
figures are simulation results of the spheres.  

Figure 4. Waterfall modeling and simulation results

The model is simulted with one GPU TESLA2050 for many spheres. Table 1 listed the 
specification of the models; number of spheres, simulation time, stepsize, CPU time and so on. 

Table 1. Result of cosimulation models 

 Waterfall 
Number of spheres 52,000 
Radius of spheres 0.01m 

Simulation endtime 2 sec 
Stepsize of MBD 1.0e-3 

Stepsize of Particle 2.89e-6 
CPU time 5 hour 51 mim 

5 CONCLUSIONS 
In this study Particle Dynamics is introduced which have high performance using GPU 

technology. And cosimulation of MBD and Particle Dynamics is also explained with 
connecting algorithm. The Particle Dynamics is validated with total sphere weight model. For 
the cosimulation result, waterfall model is modeled and simulated. 
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