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Abstract. Many processes require solid material to be fed continuously into a fluidized bed. 
In order to study the related mixing process of the solid feed with the bed material, a 
laboratory scale experiment with a continuous supply system is set up and monitored with a 
high resolution camera system. Additionally, two simulation methods are used: The Euler-
Euler and an Euler-Lagrange approach based on the Discrete-Element-Method (DEM) 
coupled with CFD. Experimental investigations carried out at varying fluid velocities are 
compared with simulations. A reasonable agreement is found between the coupled DEM-
CFD-method and the experimental findings. 

 
 
1 INTRODUCTION 

Fluidized beds are widely used systems for a variety of processes involving particulate 
solids. These systems have many applications in engineering such as combustion, drying, 
granulation and coating. Many processes require a solid material to be conveyed into a 
fluidized bed, to remain a certain time within the bed and to be discharged afterwards. This 
can be done in batch operation, however for larger quantities continuous operation is more 
favorable. Since mixing is expected to be “fast” in technical systems, the actual time scales 
associated with the mixing process are usually unknown. In this context it is important to 
analyze how the imparted particular solid is mixed in the fluidized bed.  

To investigate this process in detail a laboratory scale experiment with a continuous 
particle supply system is set up in which particle motion is monitored through a high 
resolution camera system. Additionally, two different simulation methods are applied. The 
first simulation method is the Euler-Euler-approach [1, 2] where both solids and fluid are 
modeled in the framework of the Navier-Stokes equations incorporating the kinetic theory of 
granular flow. In addition as second method the coupled CFD/Discrete-Element-Method 
(DEM) is used [3, 4] where the particles are modeled on the grain scale based on Newton’s 
and Euler’s equations while the fluid is considered as a continuum described by the Navier-
Stokes equations. In the following the experimental setup and the applied simulation methods 
are briefly explained, initial results are presented and discussed. 
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2  EXPERIMENTAL SETUP 
The laboratory scale fluidized bed has a square base and is made out of polycarbonate  

(110 x 110 x 400 mm³). A sketch is given in figure 1. The system is equally fluidized from the 
bottom through a porous plate at adjustable fluid velocities. The bed initially consists of d=7 
mm spherical particles made out of polyoxymethylene (POM). The initial bed height without 
fluidization is 110 mm. Particles can be inserted into the fluidized bed through a supply 
system which is connected to the bed at a height of 34 mm above the ground plate. In the 
experiments performed, a solid mass flow of 7,67 g/s is introduced through this supply for 30 
seconds. Particles are discharged from the system in a height of 175 mm through a drain 
channel. The particles inserted into the system are of smaller size (d=5 mm) and different 
color than the particles forming the initial bed. Further details on the particles in the bed and 
in the supply system are presented in table 1. 
 

 
Figure 1 Outline of the experimental setup 

 
 

Table 1: Details on the particles 

 Particles in the bed Particles in the supply system 
Diameter  7 mm 5 mm 
Density  1182.95 kg/m³ 1182.95 kg/m³ 
Material  POM POM 
Number  4660 2970 

Color  Blue (gray) Yellow (white) 
Mass Flow Rate  --- 7,67 g/s (≈ 100 particles/s) 

 
The particle motion is monitored through a high resolution camera system Motion Blitz 

500 (Mikrotron). Differently coloured particles of varying sizes allow for a quantitative 
evaluation of mixing and composition within the fluidized bed and at the solid’s inlet and 
outlet. 
 
3    MATHEMATICAL MODELLING 

In addition to the experiments two different simulation methods are used and compared. 
Firstly, the Euler-Euler-framework is described followed by the Euler-Lagrange-method used 
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as second approach.  
 

A. EULER-EULER-MODEL 
The Euler-Euler-Method based on the work by Savage and Jeffrey [1] and Ding and 

Gidaspow [2] considers the fluid phase as well as the particle phases as a continuum. Derived 
quantities are averaged per cell. Particles with the same characteristics are pooled in different 
particle phases. The volume fractions of the particle phases together with the volume fraction 
of the fluid phase sum up as 
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where 0F  is the porosity of the fluid, pn  is the number of the particle phases and 
0,...,1 

ppnP  are the volume fractions of the respective phases 1,…,np. For any phase the 
equation of continuity applies. On the one hand the equation of continuity for the fluid phase 
is defined as  
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where F  is the density of the fluid and Fv is the velocity-vector of the fluid. And on the 
other hand the equation of continuity for the particle phases is defined as  
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for all phases 1,…, np where P  is the density of the particles,  pv  is the velocity-vector of 
the particle phase and FPi  1  for i=1,…,np is the volume fraction of each particle phase 
considered per cell. Furthermore any phase has to achieve the balance of the momentum. For 
this purpose the tensor of the shear rate FS and the stress tensor F  for the fluid phase are 
given as 
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FFFF S 2 . (5) 

Analogical the required tensor of the shear rate PS and the stress tensor p  for the particle 
phases are defined as   
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The equation of momentum for the fluid phase which interacts with np phases of particles, 
reads  
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where g
  is the acceleration of gravity, p  is the pressure gradient and   is the drag 

coefficient representing the inter-phase momentum exchange, which is described below. The 
drag coefficient distinguishes between 8.0F  and 8.0F  according to Gidaspow and 
Ding [2]: 
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for any phases i=1,…,np where dp is the considered particle diameter, F  is the 
characteristically dynamic viscosity of the fluid and  
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The equation of momentum for the particle phase j and its interaction with the fluid phase 
and )1( pn  particle phases (np>0) is defined as  
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in which j  is the volume fraction, jv  is the velocity-vector, j  is the stress tensor, jp  is 
the pressure gradient, j  is the drag coefficient of the particle phase j . Using the kinetic 
theory of granular flow the pressure and the viscosity of the particle phases are calculated. 
Further details can be found in [2, 7]. 

 

B. Euler-Lagrange-Model 
In the Euler-Lagrange-Model the particle motion is described by a three-dimensional soft-

sphere Discrete-Element-Method (DEM). The mechanical behavior of the particles is 
calculated by integration of the Newton and Euler equations of motion. Thus, the positions 
and the translational and rotational velocities can be calculated for any particle in the bed.  
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The force iF


, which affects a particle i, is given by 
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are the contact forces resulting from the interaction with other particles or walls. Rotational 
motion of a particle i is given by 
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where ijM
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 are the external moments acting on the particle, i
  is the angular velocity and iJ  

is the moment of inertia. The interaction between the particles is calculated using a soft-
sphere-method, which is based on linear spring-damper models [8, 9].  

The fluid phase is modeled by a Computational Fluid Dynamics (CFD) tool. The coupled 
continuity and momentum equations are solved defined as 

0)()( 





FFF
FF v

t


 , (15) 

int)()()( fgpvv
t

v
FFFFFFFFF

FFF












. 
(16) 

The vector intf
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 describes the change of the momentum which results from the interaction 
between the fluid and the particles. 

However, instead of solving equations (15) and (16) directly e.g. [3, 4], (15) and (16) can 
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On the left side of the equal signs the classical single phase continuity and momentum 
equations can be identified. The solution of (17) and (18) allows for a faster convergence and 
therefore faster simulations especially if the momentum source terms intf


 are further 

linearized by the fluid velocity [10]. 

 

4    RESULTS AND DISCUSSION 
For this paper results from two different simulation methods are compared to experimental 

findings for two different superficial velocities which are larger than the minimal fluidization 
velocity of the initial bed of v=2 m/s. It is expected that the particles introduced through the 
supply system mix faster with the particles in the bed if the superficial velocity is chosen 
larger.  

In figure 2 results for the Euler-Euler-Method after 15 s are shown. When comparing the 
two cases with superficial velocities of 2.3 m/s and 2.8 m/s it is hardly possible to recognize 
differences in the spatial distribution of the volume fraction introduced by the feed stream. 
The distribution within the bed is very similar. 

  

a)                   b) 
Figure 2 Results of the Euler-Euler-Method (after 15 s) - Distribution of the volume fraction of the particle 

phase provided through the supply system at superficial velocities of 2.3 m/s (a) and 2.8 m/s (b). 
 

As could be concluded from figure 2, an assessment of the mixing behavior of different 
particle phases at varying fluid velocities, using the Euler-Euler-Method offers no detailed 
insight especially for the relatively large particle considered here.  

In the following figures results from the experiments (figure 3) and from the coupled CFD-
DEM-simulations (figure 4) are shown. In both figures it can be observed that at larger fluid 
velocities (leading to increased particle motion) the mixing is positively affected. In contrast, 
at the smaller superficial velocity of 2.3 m/s only few particles from the supply system can be 
seen on the periphery of the bed.  

 

Volume fraction 
of the particle 
phase provided 
from the supply 
system 
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a) b) 
Figure 3 Results of coupled CFD-/DEM-simulation (after 15 s) – Representative particle distribution in the 

bed at a superficial-velocity of 2.3 m/s (a) and 2.8 m/s (b) 
 

In order to analyze the mixing behavior quantitatively, the variance 2
ms  is used:  

 





m

i
im PX

m
s

1

2 )²(1 , (19) 

where m is the number of spot tests, X is the actual concentration and P is the ideal 
concentration. Because of the dynamics of the system, the ideal concentration changes with 
time and is dependent on the feed mass flow. 
     

  
a) b) 

Figure 4 Experimental results (after 15 s) - Representative particle distribution in the bed at a superficial-
velocity of 2.3 m/s (a) and 2.8 m/s (b) 

 
The variances calculated from the simulations and the experiments confirm the previous 

results (figure 5). After 15s the variance at the superficial velocity of 2.3 m/s is clearly larger 
than at a superficial velocity of 2.8 m/s in experiment and simulations. At a larger fluid 
velocity the particles experience more fluctuations therefore mixing can occur more easily 
and the variance can thereby decrease. In figures 5d and 5f the variance is presented for the 
experiment and the Euler-Lagrange-Method at a velocity of 2.8 m/s. Both graphs indicate 
certain fluctuations in the variance in contrast to the lower velocity of 2.3 m/s. In the Euler-
Euler-Method these fluctuation cannot be observed. The fluctuations of the variance are an 
effect of the particle motion on the micro scale and therefore cannot be observed in the Euler-
Euler-method. Differences exist between the overall levels of the variance in the coupled 
CFD-/DEM-Method and in the experiment. Further effort has to be put into ensuring that 
conditions in the experiment and simulations are equal.     
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Figure 5  Variance – a)-b)  Euler-Euler-Method 2.3 m/s – 2.8 m/s, c)-d)  Experiment 2.3 m/s – 2.8 m/s, e)-f)  Euler-

Lagrange-Method 2.3 m/s – 2.8 m/s 
 
5  CONCLUSIONS 
The mixing behavior of a particle feed into a fluidized bed was investigated at different 
superficial velocities. For this purpose a laboratory scale experiment was set up. Additionally, 
two different simulation methods were utilized. On the one hand the Euler-Euler-Method, 
which describes all phases as continuum, was used and on the other hand an Euler-Lagrange-
Method, which describes the particles in a discrete way combined with a continuum 
description for the fluid phase, was applied.  
The results show that in the Euler-Euler-Method the superficial velocity has only a minor 
influence on the mixing behavior. In contrast, the experiment and the Euler-Lagrange-Method 
reveal that in case of an increased fluid velocity mixing is amplified. It can be concluded that 
the Euler-Euler-method is of limited applicability to mixing processes of particles of the size 
studied here. For the future the alignment between the experiment and the simulations has to 
be further improved to allow for a quantitative comparison.  
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Figure 5  Variance – a)-b)  Euler-Euler-Method 2.3 m/s – 2.8 m/s, c)-d)  Experiment 2.3 m/s – 2.8 m/s, e)-f)  Euler-

Lagrange-Method 2.3 m/s – 2.8 m/s 
 
5  CONCLUSIONS 
The mixing behavior of a particle feed into a fluidized bed was investigated at different 
superficial velocities. For this purpose a laboratory scale experiment was set up. Additionally, 
two different simulation methods were utilized. On the one hand the Euler-Euler-Method, 
which describes all phases as continuum, was used and on the other hand an Euler-Lagrange-
Method, which describes the particles in a discrete way combined with a continuum 
description for the fluid phase, was applied.  
The results show that in the Euler-Euler-Method the superficial velocity has only a minor 
influence on the mixing behavior. In contrast, the experiment and the Euler-Lagrange-Method 
reveal that in case of an increased fluid velocity mixing is amplified. It can be concluded that 
the Euler-Euler-method is of limited applicability to mixing processes of particles of the size 
studied here. For the future the alignment between the experiment and the simulations has to 
be further improved to allow for a quantitative comparison.  
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