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Abstract. The current study aimed to develop a meshfree Lagrangian particle method for
the Landau-Lifshitz Navier-Stokes (LLNS) equations. The LLNS equations incorporate
thermal fluctuation into macroscopic hydrodynamics by addition of white noise fluxes
whose magnitudes are set by a fluctuation-dissipation theorem. Moreover, the study
focuses on capturing correct variance and correlation computed at equilibrium flows, which
are compared with available theoretical values and found very good agreement.

1 INTRODUCTION

Physical quantities which describe a macroscopic system in equilibrium are seems to
very near to their mean value. Nevertheless, due to microscopic fluctuation, random
deviation from mean value though small, do occur. Thermal fluctuation is a source of
noise in many system. Fluctuation plays a major role in phase transitions and chemical
kinetics.

Investigation of thermal fluctuation in the motion of fluid becomes essential at micro
and nano scale, because of the various applications of micro and nano scale flow, ranging
from micro-engineering to molecular biology. Micro-machines have major impact on many
disciplines (e.g. biology, medicine, optics, aerospace, and mechanical and electrical engi-
neering) [1]. The study of fluctuation at micro and nano scale is particularly interesting
when the fluid is under extreme conditions or near a hydrodynamic instability, e.g. the
breakup of droplet in nanojet, fluid mixing in the Rayleigh-Taylor instability [8].

The validity of continuum approach has been identified with the validity of Navier-
Stokes equations. This require the Knudsen number (Kn = λ/L)1 should be very small

1λ denotes mean free path and L represents the characteristic length.
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compared with unity because the presence of thermal fluctuation becomes significant for
larger Knudsen number (Kn ≥ 0.01), which corresponds to rarefied regime, resulted in
failure of continuum hypothesis [2]. Then the flow is computed with the help of kinetic
equations. LLNS PDE which is an extended form of Navier-Stokes equation trying to
capture the thermal fluctuation as accurate as possible.

To describe the general theory of fluctuation in fluid dynamics is equivalent to setting
up the ”equation of motion” for fluctuating quantities. Landau and Lifshitz has done
this work by introducing the appropriate additional terms in the general equation of fluid
dynamics and gave an extended form of Navier-Stokes equations. The Landau-Lifshitz
Navier-Stokes equations is written by the expression

Ut +∇.F = ∇.D+∇.S, (1)

where U stands for the vector of conserved quantities, density of mass, momentum and
energy.

U =




ρ
J
E


 , (2)

F denotes the hyperbolic flux andD denotes the diffusive flux of fluid dynamics equations.
F and D are given by

F =




ρv
ρv.v+ P I
vE + Pv


 , (3)

D =




0
τ

τ.v− q


 , (4)

where v is the fluid velocity, P is the pressure and T denotes the temperature. τ =

η

(
∇v+∇vT − 2

3
I∇ · v

)
is the stress tensor. q = −κ∇T denotes the heat flux. Here

η and κ are the coefficients of viscosity and thermal conductivity, respectively. For the
given expression of τ we have assumed the bulk viscosity is zero.

The given expression for τ and q relates these quantities to the velocity and temperature
gradients respectively. But, in the presence of fluctuation there are also spontaneous local
stresses and heat fluxes in the fluid, which are not related to velocity and temperature
gradient. For these spontaneous local stresses tensor and heat fluxes, the LLNS equations
introduce additional vector in fluid dynamics equations called stochastic flux

S =




0
S

H+ v · S


 , (5)
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where the stochastic stress tensor (SST) S and stochastic heat flux (SHF) H have zero
mean and their covariances given by

Cov(Sij(r, t), Skl(r
′
, t

′
)) = 2kBηT

(

δKikδ
K
jl + δKil δ

K
jk −

2

3
δKij δ

K
kl

)

δ(r− r
′
)δ(t− t

′
), (6)

Cov(Hi(r, t),Hj(r
′
, t

′
)) = 2kBκT

2δKij δ(r− r
′
)δ(t− t

′
), (7)

Cov(Sij(r, t),Hk(r
′
, t

′
)) = 0. (8)

where kB is the Boltzmann’s constant. These stochastic properties for S and H have
been derived by a variety of approaches. Originally, these properties have been derived
for equilibrium fluctuation [5, 9, 10, 11] and later validity of LLNS equations for non-
equilibrium systems has been shown [12].

In this work a meshfree numerical scheme has been developed for solving LLNS equa-
tions. For simplicity, we will deal with one-dimensional system. We will solve Lagrangian
form of LLNS. The Lagrangian form of LLNS for 1D system in terms of primitive variables
can be written as

Dρ

Dt
= −ρ

∂u

∂x
(9)

ρ
Du

Dt
= −∂P

∂x
+

∂

∂x

(

4

3
η∂xu

)

+
∂s

∂x
(10)

cvρ
DT

Dt
= −P

∂u

∂x
+

4

3
η

(

∂u

∂x

)2

+
∂

∂x

(

κ
∂T

∂x

)

+ s
∂u

∂x
+

∂h

∂x
. (11)

u is the fluid velocity in x-direction and T is the temperature. s and h represent SST
and SHF in 1D respectively. Momentum J = ρu and energy density E = cvρT + 1

2
ρu2

expressed in terms of ρ, u, T . By D/Dt we denotes the Lagrangian derivative. We take
the above system with equation of state P = ρRT , where R is gas constant.

We will demonstrate our result for a mono-atomic, hard sphere gas for which R = kB/m

and cv =
R

γ − 1
where m is molecular mass and γ(= 5

2
) is the ratio of specific heat.

Now for covariances of stochastic fluxes in 1D system, from equations (6), (7) and (8)

Cov(s(x, t), s(x
′
, t

′
)) =

1

σ2

∫

dy

∫

dy
′
∫

dz

∫

dz
′
Cov(Sxx(r, t)Sxx(r

′
, t

′
))

=
8kBηT

3σ
δ(x− x

′
)δ(t− t

′
). (12)

Similarly,

Cov(h(x, t), h(x
′
, t

′
)) =

1

σ2

∫

dy

∫

dy
′
∫

dz

∫

dz
′
Cov(Hx(r, t)Hx(r

′
, t

′
))

=
2kBκT

2

σ
δ(x− x

′
)δ(t− t

′
). (13)
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here σ represents the surface area of the system for yz - plane.
A number of numerical schemes has been developed for stochastic hydrodynamics equa-

tions. A stochastic lattice-Boltzmann model developed for simulating solid-fluid suspen-
sions by Ladd [13]. In the following application of this approach for modelling Brownian
motion of particles has been used by Sharma and Patankar [14], where they coupled the
fluctuating hydrodynamics equations with the particle equations of motion which results
in Brownian motion of particle.

Serrano and Español [15] have developed a thermodynamically consistent measoscopic
fluid particle model by casting their model into GENERIC structure which allows to
introduce thermal fluctuation. They describe a finite volume Lagrangian discretization of
the continuum equations of hydrodynamics using Voronoi tessellation.

Garcia et al.[3] has been developed a simple finite difference scheme for the linearized
LLNS equations. This scheme was successful, but has been designed for specific problems
and cannot extended in general due to certain assumption. In the context of Adaptive
Mesh and Algorithm Refinement hybrid method that couple continuum and particle algo-
rithms based on finite difference scheme has been developed. Demonstration of diffusion
equation [18], the ”train model” [19] and the stochastic Burger’s equation [20] has been
done by similar kind of scheme.

In the later work of Garcia et al. [4] CFD based scheme for stochastic PDE has
been developed. In this work they have been considered compressible flow and developed
numerical scheme for LLNS equations. Numerical schemes demonstrated equilibrium flow
and computed spatial and time correlation at equilibrium result has been compared with
theoretical value and DSMC simulation. Effect of fluctuation on shock drift has been
shown and result compare with DSMC simulation. The most successful scheme has been
considered in this work is ”Variance-preserving third order Runge-Kutta”. The method
is based on a third order, TVD Runge-Kutta temporal integrator (RK3) combine with a
centered discretization of hyperbolic and diffusive fluxes. This scheme has also incorporate
a specific interpolation for required accuracy in variance.

In this work we will present a mesh free method for LLNS equations. We will consider
Finite Pointset Method (FPM) like smoothed particle hydrodynamics (SPH) based on
least square approach [16] for numerical solution of fluctuating hydrodynamics. We will
concentrate here to capture correct variance in equilibrium flow and compare the result
with theoretical values. The concluding section will emphasize on the successful mesh
free simulation of fluctuating hydrodynamics equations for compressible flow and discuss
future work. Since, it is a mesh free method and the distribution of particles (moving grid)
can be quite arbitrary, the method is suitable for complicated geometry and multiphase
flows. The FPM is suitable to handle a wide range of dynamical fluid structure interaction.

2 Numerical Method

The 1D Navier-Stokes equations have already solved with least square SPH like FPM
for compressible flow [16]. A hybrid method also has been developed for kinetic and con-
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tinuum equations where the solution of kinetic equation has been done by DSMC and for
continuum equations meshfree method used [17].

To extend the successful idea of meshfree method for 1D Navier-Stokes equations we
will solve 1D LLNS equations with a meshfree Lagrangian method. Though, it is a
bit difficult to develop a meshfree framework for stochastic partial differential equations
(SPDE) due to already existed randomization in position of mesh particles, it has a
number of advantage likewise the meshfree method is a more natural choice to study the
dynamics of small particles at fluid interfaces, to generate a hybrid method for coupling
of Boltzmann and fluctuating hydrodynamics equations for very small geometry. Earlier
studies deal the coupling of DSMC for Boltzmann equation and finite volume method for
the LLNS [21].

In this method the particle position are itself the grid and to take this consideration
in account we will simulate an additional equation with (9 - 11). This equation will
determine the particle position and given as

Dx

Dt
= u. (14)

Here u is the fluid velocity and x denote the position of particle in 1D. To approximate
spatial derivative at every grid point is equivalent to approximate the spatial derivative
at every particle positions. For solving the Lagrangian LLNS system given by (9-11)
together with (14) by FPM, first we fill the domain by particles. These particle moves
with fluid velocity and then approximate spatial derivative in equation (9-11) at each
particle position from its neighbouring particles. This reduce the given system of partial
differential equations (PDE) to a system of ordinary differential equations (ODE) with
respect to time per particle.

We will use MacCormack scheme [4] for reduced ODE on each particle. This Mac-
Cormack scheme is a variant of Lax-Wendroff. On applying the desired MacCormack’s
discretization of LLNS will be
Step 1

x∗
i = xn

i +�tun
i , (15)

ρ∗i = ρni −�tρni

(

∂u

∂x

)n

i

, (16)

u∗
i = un

i +
�t

ρni

{

−
(

∂P

∂x

)n

i

+
4

3
ηni

(

∂2u

∂x2

)n

i

+
4

3

(

∂η

∂x

)n

i

(

∂u

∂x

)n

i

+

(

∂s

∂x

)n

i

}

, (17)

T ∗
i = T n

i +
�t

cvρni

{

−P n
i

(

∂u

∂x

)n

i

+
4

3
ηni

(

(

∂u

∂x

)2
)n

i

+ κn
i

(

∂2T

∂x2

)n

i

+

(

∂κ

∂x

)n

i

(

∂T

∂x

)n

i

+ sni

(

∂u

∂x

)n

i

+

(

∂h

∂x

)n

i

}

, (18)
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Step 2

x∗∗
i = x∗

i +�tu∗
i , (19)

ρ∗∗i = ρ∗i −�tρ∗i

(

∂u

∂x

)∗

i

, (20)

u∗∗
i = u∗

i +
�t

ρ∗i

{

−
(

∂P

∂x

)∗

i

+
4

3
η∗i

(

∂2u

∂x2

)∗

i

+
4

3

(

∂η

∂x

)∗

i

(

∂u

∂x

)∗

i

+

(

∂s

∂x

)∗

i

}

, (21)

T ∗∗
i = T ∗

i +
�t

cvρ∗i

{

−P ∗
i

(

∂u

∂x

)∗

i

+
4

3
η∗i

(

(

∂u

∂x

)2
)∗

i

+ κ∗
i

(

∂2T

∂x2

)∗

i

+

(

∂κ

∂x

)∗

i

(

∂T

∂x

)∗

i

+ s∗i

(

∂u

∂x

)∗

i

+

(

∂h

∂x

)∗

i

}

, (22)

Final Step

xn+1
i =

1

2
(xn

i + x∗∗
i ) , (23)

ρn+1
i =

1

2
(ρni + ρ∗∗i ) , (24)

un+1
i =

1

2
(un

i + u∗∗
i ) , (25)

T n+1
i =

1

2
(T n

i + T ∗∗
i ) , (26)

For each step given above P , η, κ will be computed by

P = ρRT, (27)

η =
5

16d2

√

mkB
π

T , (28)

κ =
15kBη

4m
, (29)

Here d denotes the molecular diameter. n = 0, 1, 2, . . . represents the time step and
i = 1, 2, . . . N goes for particles in domain.

The approximation for SST and SHF for each particle at any instant is computed as

sni =

√

8kB
3�tVc

(ηni T
n
i ) �n

i , (30)

hni =

√

2kB
�tVc

(κn
i (T

n
i )

2) �n
i , (31)
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where Vc denotes the volume between two particle of spatial discretization and � are
independent, identically distributed (iid), Gaussian random value with zero mean and
unit variance.

The stochastic fluxes required some extra care in two-step scheme. The s and h are
independent, identically distributed (iid) Gaussian random variable with mean zero and
variance σ2 for l = n, ∗. Let denotes s and h in combined by s . Substituting this in
MacCormack scheme we find variance in the stochastic flux s on simulation particle as

V ar

((
1

2
sn +

1

2
s∗

)2
)

=

(
1

2

)2

V ar (sn) +

(
1

2

)2

V ar (s∗)

=
1

2
V ar (s )

=
σ2

2
. (32)

We have neglected the multiplicity of noise by taking V ar (sn) = V ar (s∗).
The above equation means that because of the temporal averaging variance in the

flux reduced to half of its original magnitude. So, to include this observation the correct
stochastic flux for a two step scheme will be s̃ =

√
2s instead of s .

Now we have to solve the equations (15 - 29) and for this the remaining task is to
approximate the spatial derivatives on right hand side of the prescribed equations.

2.1 Meshfree approximation of spatial derivatives

In many practical applications the mesh plays a very important role in simulation and
many solvers loose their accuracy if the mesh is poorly constructed. In some complicated
geometry the mesh generation becomes a difficult task. A meshfree method does not
require a regular grid and gives a very good approximation of spatial derivative even for
randomly distributed grid point so overcome to mesh generation difficulties. Initially we
will fill the domain with particles in a regular grid method but when they move with fluid
velocity then their distribution become quite arbitrary after short time.

We will describe the least square approximation of spatial derivatives in 1D. As men-
tioned earlier, in this method grid points are particle positions. Therefore, we have to
approximate the derivative at every particle position. Let f(t, x) be a scalar function at
x and fi(t) its value at xi ∈ [0, L] for i = 1, 2, 3, . . . , N for any instant t. Approxima-
tion of spatial derivatives of f(x) at x will be in terms of the values of f(x) on a set of
neighbouring points. For limiting number of neighbouring points of x we will consider a
weight function w = w(xi − x;h) with small compact support, where h determines the
size of support. The choice of weight function can be quite arbitrary but we will consider

7
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a Gaussian weight function in the following form

w (xi − x;h) =





exp

(
−α

‖xi − x‖2

h2

)
, if

‖xi − x‖
h

≤ 1

0, else.
(33)

with α a positive constant, we have taken the value of α is 6.25, h defines the neigh-
bourhood radius for x. Let P (x, h) = {xi : i = 1, 2, . . . , nx} be the set of nx neighbouring
points of x in an interval of radius h. For consistency reason some obvious restriction
required for h as there should be enough number of neighbouring particle for least square
approximation. In general for 1D, h = 3dx, where dx is the initial spacing of particles.

Derivatives of function can be computed easily and accurately by using Taylor’s series
expansion and the least square approximation. We will write Taylor’s series expansion
of f(t, x) around x with unknown coefficients and then compute these coefficients by
minimizing a weighted error over the neighbouring points.

Suppose we want to approximate the derivatives of a function f(t, x) from its nx neigh-
bouring points sorted with respect to its distance from x. Consider Taylor’s expansion of
f(t, xi) around x

f (t, xi) = f (t, x) + (f (t, x))x (xi − x)

+
1

2
(f (t, x))xx (xi − x)2 + ei (34)

where ei is the error in Taylor’s expansion at the point xi. The unknowns fx, fxx are
required derivatives computed by minimizing the error ei for i = 1, 2, 3, . . . , nx. The above
system can be written as

�e = M�a−�b (35)

where,

M =




x1 − x
1

2
(x1 − x)2

x2 − x
1

2
(x2 − x)2

...
...

xnx − x
1

2
(xnx − x)2




, (36)

a = [fx, fxx]
T , b = [f1 − f, f2 − f, . . . , fnx − f ]T and e = [e1, e2, e3, . . . , enx ]

T .
For nx > 2 this system will be over-determined for two unknowns fx and fxx.
The unknowns �a are obtained from a weighted least square method by minimizing the

quadratic form

J =
nx∑
i=1

wie
2
i =

(
M�a−�b

)T

W
(
M�a−�b

)
(37)
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where

W =




w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wnx




Finally, the minimization of J gives

�a =
(
MTWM

)−1 (
MTW

)
�b (38)

required derivatives of function f(t, x) as a liner combination of discrete neighbour values
fi.

3 Numerical Results

3.1 Equilibrium

This section gives results of described method for equilibrium scenario. The physical
domain has been chosen such that the fluctuation in system becomes significant. System’s
parameter for numerical simulation given in Table 1.

Table 1: System parameter in CGS units for simulation of dilute gas.

Molecular diameter (Argon) 3.66× 10−8 Molecular mass (Argon) 6.63× 10−23

Reference mass density 1.78× 10−3 Reference temperature 273.0
Sound speed 30781 Reference velocity 0.5× 30781 or 0
System length 1.25× 10−4 Reference mean free path 6.26× 10−6

System volume 1.96× 10−16 Time step 1.0× 10−13

The initial spacing of particle will be dx = L/N , where N is the initially distributed
particles in domain. Initially 40 number of particles has been considered in domain. This
number will not fixed during simulation and there will be an updating in number of
particles.

The stability condition is found to be consistent with that suggested in [4].

(| u | +cs)
�t

�x
≤ 1 (39)

max

(
4

3

η̄

ρ̄
,
κ̄

ρ̄cv

�t

�x2

)
≤ 1

2
. (40)

where cs is the sound speed; the bar indicates the reference value of quantities around
which system fluctuate. For the given reference state in Table 1 and initial spacing of
particle, the time step has been chosen �t = 10−13s.
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3.2 Variance at Equilibrium

The first benchmark for given schemes is capturing correct variance of conserved vari-
ables for a system at equilibrium. For test problems, we consider a periodic domain with
zero net flow and constant non-zero net flow. We take constant average density and tem-
perature in both cases as given in Table 1. The variance computed from 107 samples.
Due to moving grid we will calculate statistics in global sense as given below

mean (ρ) = E(ρ) =
1∑Ns

n=1 M(n)




Ns∑
n=1

M(n)∑
i=1

ρni


 , (41)

V ar (ρ) = E(ρ2)− (E(ρ))2

=
1∑Ns

n=1 M(n)




Ns∑
n=1

M(n)∑
i=1

(ρni )
2




−


 1∑Ns

n=1 M(n)




Ns∑
n=1

M(n)∑
i=1

ρni







2

, (42)

Here, Ns is the total number of samples and M(n) is the number for particle at time
(nSkip + n)�t (nSkip is the number of initial time step for stabilizing the system). In
the same way statistics for momentum and energy can be computed.

Tables 2 and 3 compare the theoretical variances have been computed in ([6], [3]) with
measured variances in meshfree stochastic scheme.

Table 2: Variance in conserved quantities at equilibrium for zero net flow.

Variance of Exact value Meshfree MacCormack error
Density (ρ) 2.35× 10−8 2.11× 10−8 −10.2%

Momentum (J) 13.34 13.33 −0.07%
Energy (E) 2.84× 1010 2.68× 1010 −5.6%
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Table 3: Variance in conserved quantities at equilibrium for constant non-zero net flow.

Variance of Exact value Meshfree MacCormack error
Density (ρ) 2.35× 10−8 2.12× 10−8 −9.7%

Momentum (J) 18.91 19.01 +0.05%
Energy (E) 3.67× 1010 3.85× 1010 +4.9%

4 Conclusion

Stochastic Partial differential equation were discussed for modelling fluctuation in com-
pressible flow of gas dynamics. For numerical simulation of the SPDEs a meshfree dis-
cretization approach has been introduced. The results of the simulation shows that the
Lagrangian particle scheme gives a good agreement with theoretical value of variances
for conserved variables, which guarantee that the scheme is able to accurately represent
fluctuation in equilibrium flow.

It has already been mentioned in earlier literature that the ability of continuum model
to accurately capture the fluctuation is very much sensitive to the construction of numeri-
cal scheme. Therefore, to construct a meshfree frame work for LLNS model becomes much
more complicated because of a quite arbitrary distribution of particle. Minor changes in
implementation leads to significant changes in accuracy and behaviour. Future work can
be extended to some other non-equilibrium scenario and higher dimension for which the
stochastic stress fluxes are more complex .
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