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Abstract. Convected particle domain interpolation (CPDI) is a recently developed tech-
nique for more accurately approximating material point method (MPM) integrals by
replacing the shape functions with interpolations of the shape functions to corners of
particle domains that are tracked as parallelograms in 2-D (or parallelepipeds in 3-D).
In this paper, the CPDI method is enhanced to (1) more accurately track particle do-
mains with very little computational overhead in comparison to the original CPDI, (2)
remove gaps/overlapping between particle domains, and (3) give more flexibility in choos-
ing particle domain shape in the initial configuration. This enhanced CPDI method is
then enriched to accurately solve weak discontinuities in the displacement field across a
material interface that passes through the interior of a grid cell. The new enriched CPDI2
method is demonstrated using one- and two-dimensional examples.

1 INTRODUCTION

The Material Point Method (MPM) [1, 2] and the closely related Generalized Inter-
polation Material Point (GIMP) method [3] have been successfully used in simulation of
some complicated engineering problems (see for example [4, 5, 6, 7, 8, 9]). Like many
other particle methods, both MPM and GIMP gain computational efficiency by solving
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the governing equations on a background grid that can be retained or reset at the end of
each time step, while field data are stored at moving Lagrangian particles. The conven-
tional MPM, which considers each particle as a lumped mass, is well known to suffer from
a “cell crossing instability” in large deformation problems caused by a jump discontinuity
in the gradient of low-order shape functions across cell boundaries. The GIMP method
eliminates this error by replacing point evaluation of the MPM integrals with a weighted
average of the integrand over a finite domain in the neighborhood of the particle.

The GIMP weight, or characteristic, function is typically chosen to be a “top-hat”
function that is equal to unity within a finite domain centered around the particle, and
zero elsewhere. The standard MPM formulation is exactly recovered when the choice of
characteristic function is the Dirac delta function. For large deformation problems, the
GIMP method gains accuracy if particle domains are allowed to deform with the material.
Some early efforts to evolve particle domains with deformation only allowed rectangles
(or cuboids in 3-D) to change dimension but not shape. However, a first-order accurate
description of domain convection must allow rectangles to deform to parallelograms (par-
allepipeds in 3-D) [10]. With a conventional GIMP formulation using a top-hat function,
tracking particle domains as parallelograms is prohibitively costly because of a need to
divide these parallelograms over cell boundaries to account for the changes in the shape
functions across cell boundaries. The convected particle domain interpolation (CPDI)
method [10] circumvents this problem by replacing the grid shape function with an alter-
native function that is an interpolation of the original shape function to the corners of
the particle domain. Since the CPDI alternative shape function is smoothly varying over
the particle domain, the revised MPM integrals may be evaluated analytically. In the
original CPDI method, now called CPDI1, the particle domains were approximated to be
parallelograms (or parallelepipeds in 3-D). An enhancement, called CPDI2, describes par-
ticle domains by quadrilaterals (or hexahedra in 3-D). Advantages of CPDI2 over CPDI1
include (1) more accurately tracking particle domains with very little computational over-
head in comparison to CPDI1, (2) removing gaps/overlapping between particle domains,
and (3) giving more flexibility in choosing particle domain shape in the initial configu-
ration. Like CPDI1, the CPDI2 method describes fields over particle domains based on
values of those fields mapped to the particle domain’s corners.

In the MPM techniques, spurious non-monotonic variation in stress can occur at ma-
terial interfaces passing through the interior of a grid cell. This problem is caused by
low-order shape functions being incapable of describing the jump in displacement gradi-
ents needed to allow the compliant materials to experience larger strain than stiff material
in the same cell. The CPDI2 method can rectify this shortcoming by supplementing the
nodal degrees of freedom already defined on the background grid with the corner values
of the fields at particles near a material interface. This approach provides enrichment
capable of properly describing weak discontinuities in the displacement field (i.e., strong
discontinuities in strain) across a material interface that passes through the interior of a
grid cell. For clarity, this approach will be first demonstrated in a simple 1-D context,
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where spurious stress spikes and dips caused by incorrect partitioning of deformation
within a cell are eliminated through CPDI2 enrichment, thus giving results comparable
to a traditional Lagrangian finite-element simulation that has a node at the material in-
terface. Recognizing that particle methods are adopted in situations for which traditional
Lagrangian finite elements or Eulerian finite difference methods are unsatisfactory, im-
provements in accuracy of CPDI2 over CPDI1, and even more dramatic improvements in
comparison to legacy methods of evaluating non-advecting GIMP integrals, are presented.

The paper is organized as follows: Section (2) introduces the basic strategy of the
material point methods. Section (3) presents the enhanced version of the original CPDI
method. The enrichment technique for this enhanced version is explained in Section (4),
followed by the numerical examples in Section (5). Finally, Section (6) draws some con-
clusion remarks.

2 REVIEW OF THE MPM TECHNIQUES

In this section, formulations of the conventional MPM, GIMP, and CPDI methods are
presented based on the “update stress last (USL)” algorithm described by Bardenhagen
[11]. In the MPM, particle mass and momentum are mapped to the grid nodes at the
first of each time step.

mi = Z PipMp (1)
P

> PipMpUp
v, = "2 — — - (2)
my;
in which m; and v, are mass and velocity at grid node 7, m,, and v, are mass and velocity
at particle p, and p;, can be viewed as the average of the i grid shape function, S;, over

the p'" particle,
1 *
ow=1 | wle 2,5 @)de )
p Oy

in which x,(x) and €, are the particle characteristic function and its support-domain of
volume V)" respectively, and 57 is the shape function or, for CPDI, the alternative shape
function. In the MPM, the characteristic function is chosen as the Dirac delta function
and a “top-hat” characteristic function is typically used in the GIMP method:

vl =

1 e,
0 otherwise

(4)

Whereas (2, has been selected to be rectangular (or cuboid in 3-D) in legacy GIMP
formulations, CPDI formulations are well suited to taking €2, to be a better approximation
to the Voronoi cell €2, associated with the particle.

In the MPM, the discretized weak form of the equations of motion,

m;a; = fint + f?m (5>
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is solved at each time step. Here,
Fi = / VS; - odf2, (6)

and

fort / S:bdS) + /F Syrr, (7)

in which VS; is the grid shape function gradient, b is the body force per unit mass, and
't is the part of the problem domain boundary where the prescribed traction 7 is applied.

The integral in Eq. (6) is broken into the sum of integrals over elements in the FEM,
whereas the MPM breaks the integral over particle domains as

fint — Z / VS, - adV. (8)

The stress over each particle domain is assumed to be approximately constant because
particle domains are often small and variation of stress over them is negligible in compar-
ison to variation of shape function gradients. In this case, the nodal internal forces can

be calculated as
fit = Z Vi - opVy, (9)

in which o, is the stress over the p™ particle domain, and

1
Vi, = W/Q Xp(x — x,) VS (x)d. (10)
p X

At each time step, grid node accelerations, grid node velocities, particle velocities, and
particle positions are calculated as follows:

fi-nt 4 f‘?Xt

;= 7 7 11
a=Tt I ()
v =l 4 a; At (12)
’U;H‘l = 'UZ + Z apipaiAt (13)
w;““l =z, + Z g&ipv?HAt (14)

The velocity gradient at particles is computed by

vt = Z Vvt (15)
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Initial particle domain Updated particle d

Figure 1: Initial and updated particle domain in the CPDI method.

Similarly, other kinematical quantities (such as the deformation gradient) are mapped to
particles so that the particle stress tensor can be updated to the end of the time step by
calling the constitutive model.

The conventional MPM considers each particle as a lumped mass, and there is no
need to track particle domains in this method. For the GIMP method, two strategies
are considered to track evolving particle domains under large deformations: uGIMP and
cpGIMP. In the uGIMP, deformation of the particle domain is neglected and particle
domains are tracked as fixed rectangles. In the cpGIMP, the particle sizes evolve based
on only diagonal components of the deformation gradient at the particle so the particle
domains remain rectangular. In the CPDI1 method, the updated particle domain at time
step n is determined using the fully updated deformation gradient as

n _ pm,0
ri =F)r]

n o__ 7,0
ry = F)r)

(16)

where (r{,79) and (r],7}) are shown in Fig. 1. The following alternative grid shape

functions are used in the CPDI method to efficiently calculate the integrals in Eq. (3)
and Eq. (10) without incurring the expense of dividing the particle domains along cell
boundaries:

Si(@) = 3 N2(@)Si(ah) on Q. (17)

Here, N? is the finite element shape function defined on the particle domain as a 4-node
element. This shape function is defined for the a'" corner of the particle domain and
P is the position of this corner. Using the alternative grid shape functions, Eq. (3) and
Eq. (10) can be written as

%::%Q$wm=%2<gmmm%wm
= L Si) + i) + i) + i) (15)
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4
1 1
Viz—/ VSH(x)dxe = — /VNga:da: Si(xb
K (@) WéXﬂp ()) (x7)
— 1 (P _ Q. (P r?y _rgy (P _ Q. (AP T?y+rgy
= g {Ee-s@n| BT | sa - se | T | )

Superiority of stability and accuracy of the CPDI1 solutions in comparison with the
conventional MPM and GIMP solutions have been shown in [10].

3 THE CPDI2 METHOD

The original CPDI1 method tracks particle domains as parallelograms. The CPDI2
method, presented here, evolves particle domains as quadrilaterals. Specifically, particle
domain corners are tracked instead of the particle centroid. When needed, the particle
centroid x, is determined based on the corner positions using the following equation:

Ty + T + x4 + @

where ¥, o}, «f, and ! are positions of four corners of the domain of particle p. The
immediate conclusion is that there is no gap/overlapping between particle domains in the
CPDI2 method. These particle domains are similar to a finite element mesh constructed
using 4-node elements. Based on this algorithm, the particle domains are tracked as
quadrilaterals. Similar to the CPDI1 formulation, using Eq. (17) as the alternative grid
shape functions in the CPDI2 method, Eq. (3) and Eq. (10) can be written as

4
1 1
ip Si(x)dr = — /Nga:da: Si(xk
i V/ () VZ( (@) ) (a?)

= (Su(ad) + 5i(@) + Si(ah) + Si(2) (21)

Ve, = —/ VS 1(/ VN?(z da:)S( P)

|: 621; +61y :| + Sz(wg) |: 621; +61y :|

51x62y - Blyﬁ%c {

ﬁlm _6290 - 6196
+S; D 52@/ - 5124 + S, D _523/ - 517; 99
<m3> { _ﬁQQE + ﬂlx (w4) 52:): + Bl:p ( )
in which (B14, 1) and (Baz, Bey) are respectively the components of vectors 3, = —xf +
b +af — &) and B, = —x) — xh + =, + .

A major advantage of the CPDI2 method in comparison with the conventional finite
element method is that the CPDI2 method enforces no-slip contact between bodies auto-
matically without any further computational costs.
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4 ENRICHMENT FOR THE CPDI2 METHOD

As will be shown in the numerical simulations in the next section, spurious non-
monotonic variation in stress can occur at material interfaces passing through the interior
of a grid cell in the MPM techniques. This problem is caused by low-order shape func-
tions being incapable of describing the jump in displacement gradients needed to allow the
compliant materials within the cell to deform more than stiff materials. In this section,
an enriched version of the CPDI2 method is presented to accurately model the material
interfaces passing through the interior of a grid cell.

Conceptually, the CPDI2 begins an analysis step by mapping data from particles to
the particle corners. This step is embedded in the final expression (Eq. (21)) which maps
directly from particles to grid nodes to solve the equations of motion (EOMs) on the grid.
Eq. (21) can be rewritten as

Pip = Vipz ( /Q Né’(w)dw> Si(@h) = " RLSi(ah) (23)

in which

Rl = Vi NP(x)dx (24)

P JQp

In this equation, RP can be interpreted as the mapping function between particle p and
particle corner «, and S;(a®) can be considered as the mapping function between particle
corner o and grid node 7. If the algorithm were to map only to the corner nodes, then
the resulting solution would be equivalent to an FEM solution. If the algorithm maps
from corners to grid, then the resulting solution is the CPDI material point method. The
particle domains in the CPDI2 are similar to 4-node finite element (Q4) with single point
integration (particle corners and particles are analogous to FE nodes and Gauss points
respectively).

To enrich the CPDI2 method, the nodal degrees of freedom already defined on the
background grid can be supplemented with the corner values of the fields at the parti-
cles that are known to be near a material interface. This approach provides enrichment
capable of properly describing weak discontinuities in the displacement field (i.e., strong
discontinuities in strain) across a material interface that passes through the interior of a
grid cell. Enriched CPDI2 is a hybrid of the two methods in which the MPM solution is
used away from surfaces of discontinuity while the solution near the interface is resolved
using the FEM solution that treats the corner nodes as supplemental degrees of freedom.

The distinguishing feature of enriched CPDI2 is that the grid nodes are supplemented
with the enriched corner nodes for particles adjacent to an interface. As is done in all
MPM formulations, the enriched CPDI2 algorithm loops over particles to accumulate
contributions to the grid node mass, velocity, internal forces, etc., as in Eq. (1), Eq. (2),
and Eq. (9). As is done in an ordinary CPDI2 implementation, the contribution of a
particle to a grid node is evaluated as a sum of contributions from that particle’s corners.
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Figure 2: The vertical bi-material bar problem: (a) geometry and (b) discretized model.

In the loop over corners, non-enriched corners are treated the same as in a conventional
CPDI formulation; namely,

oip = Y RiGigyp (25)
B

where

S;(x? if 8 is not an enriched corner
Gigp = { () v (26)

1 otherwise

5 NUMERICAL EXAMPLES

In this section, effectiveness of the enriched CPDI2 method is verified using numerical
examples. The following Neo-Hookean material model is used in all numerical simulations.

AnJ . g
= I+ —=(FF —1 27
T ) (21)

in which I is the identity tensor, p and A\ are the shear modulus and Lamé constant
respectively, F' is the deformation gradient, and J is the determinant of F'.

o

5.1 Vibration of a bi-material bar under self weight

Vibration of a vertical bar under its own weight is considered in this example. The
upper end of the bar is fixed, the right and left boundaries have roller boundary conditions,
and the lower end is traction free as shown in Fig. 2a. The bar is composed of two parts
with different elastic moduli: F; = 2F5 = 1 x 107Pa. Poisson’s ratios and initial densities
are v} = vy = 0.3 and p! = pJ = 1050kg/m3, respectively. Time steps are chosen as
At = 0.00005s. Gravity, g = —10m/s?, is applied suddenly as a step function at t = Os.
The initial problem domain is discretized by using 18 particles (2 per cell) as depicted in
Fig. 2b. The material interface falls in the center of a grid cell.

Time histories of the displacement of particle A obtained from the GIMP, CPDII,
CPDI2, and enriched CPDI2 methods are presented in Fig. 3.
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Figure 3: Time histories of the displacement of particle A in the bi-material bar under self weight
simulations.
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Figure 4: Time histories of the stresses of particles B and C in the bi-material bar under self weight
simulations.

Without enrichment, a conventional MPM or CPDI solution to this problem exhibits
a spuriously large stress in the stiff material and spuriously low stress in the compliant
material. Fig. 4, which shows time histories of the stresses of particles B and C demon-
strates that the enriched CPDI2 method improves the results by producing stresses at
points B and C that are nearly equal to each other, as they should be. The stress profiles
in Fig. 5 further illustrate the spurious non-monotonic variations in stress profiles near
the material interfaces passing through the interior of a grid cell that are eliminated with
enrichment.

5.2 Bi-material ring under centrifugal force

A bi-material ring under centrifugal force is simulated in this example. The ring is
composed of two compliant and stiff rings as shown in Fig. 6. The following values are
chosen for numerical simulations: modulus of elasticity F; = 2F, = 1 x 10?Pa, Poisson’s
ratios v; = vy = 0.3, initial densities p{ = p§ = 1000kg/m?, inner radius r; = 3m, outer
radius 7, = 3.2m, and time step At = 0.000001s. Due to symmetry, only one-quarter of
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Figure 5: Stress profiles at ¢ = 0.14s in the bi-material bar under self weight simulations.

Figure 6: Initial configuration of four different resolutions used in modeling one-quarter of the ring.

the ring is modeled. The problem domain is discretized by using 1544 particles as shown
in Fig. 6. The ring suddenly starts to rotate with a frequency of w = 1rad/s at t = 0. To
capture the centrifugal force, the following body forces (per unit mass) are applied to the
numerical model:

b, = w?r (28)
by = 0 (29)

in which b is the body forces in the cylindrical coordinates, p is the density, and r and 6
are cylindrical coordinates.

Fig. 7 depicts time histories of the displacement of particle A (located as shown in
Fig. 6), showing that CPDI2, enriched CPDI2, and FEM all give similar results for dis-
placement.
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Figure 7: Time histories of the displacement of particle A in the bi-material ring under centrifugal force
simulations.
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Figure 8: Time histories of the radial components of the stresses of particles B and C, respectively, in
the bi-material ring under centrifugal force simulations.

Fig. 8 shows time histories of the radial components of the stresses of particles B and
C. As shown in this figure, the CPDI2 method over predicts and under predicts stresses of
particles B and C respectively. The enriched CPDI2 method leads to the similar stresses
to the reference solution (i.e. the finite element solution).

6 CONCLUSIONS

An enhanced version of the convected particle domain interpolation (CPDI) method,
named CPDI2; has been developed to further improve upon the accuracy of the original
CPDI method by removing gaps/overlapping between particle domains without signifi-
cantly impacting numerical efficiency. By modeling particle domains as quadrilaterals,
the CPDI2 method not only offers greater flexibility in choosing particle domains shape
in the initial configuration, but it also provides a natural computational framework for
enrichment of fields though supplementing nodal degrees of freedom on the grid with
the corner values of the fields at the particles near material interfaces. Accordingly, the

683



Alireza Sadeghirad, Rebecca M. Brannon and James Guilkey

CPDI2 method has been demonstrated to be an efficient and accurate particle method
in solving problems with weak discontinuities. As documented separately, the method
also provides a natural means of enforcing boundary conditions. Future work will address
strong discontinities, such as fractures.
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