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Supplementary Methods 

Informed consent 

Informed consent was obtained from all patients according to the International Cancer 

Genome Consortium guidelines.1 The study was approved by the Hospital Clínic of 

Barcelona Ethics Committee.  

Sample preparation and sequencing 

Tumor cells from peripheral blood (PB) were purified from fresh or cryopreserved mono- 

nuclear cells using a cocktail of magnetically labeled antibodies as previously described 

(AutoMACS; Miltenyi Biotec).2 Normal DNA was extracted from the non-tumoral 

fraction. DNA from lymph node (LN) tumoral cells was obtained from OCT embedded 

samples. All DNA extractions were performed using Qiagen kits and DNA quality was 

checked by SYBR-green staining on agarose gels and quantified using a Nanodrop ND-

100 spectrophotometer. Paired-end whole-genome/exome sequencing (WGS/WES) 

was performed as previously described,2 and sequenced in a Illumina HiSeq2000 (2x76 

or 2x101 bp) or Illumina HiSeq X Ten (2x150 bp). The mean coverage obtained was 33x 

(range 30-41x) for WGS and 58x (range 25-150x) for WES. 

Bioinformatic and statistical analyses 

For WGS and WES, raw reads were mapped to the human reference genome (GRCh37) 

using the BWA-mem algorithm (v0.7.15),3 and BAM files were generated, sorted, 

indexed and optical or PCR duplicates flagged using biobambam2 (v2.0.65) 

(https://gitlab.com/german.tischler/biobambam2). Quality control metrics were 



extracted using Picard (v2.10.2) (https://broadinstitute.github.io/picard/). Somatic 

single nucleotide variants (SNVs) called by at least two algorithms (Sidrón,2 CaVEMan 

(cgpCaVEManWrapper, v1.12.0),4 Mutect2 (GATK v4.0.2.0),5 and/or MuSE (v1.0 rc)6) 

were considered.7 Short insertions/deletions (indels) were called by SMUFIN,8 Pindel 

(cgpPindel, v2.2.3),9 Platypus (v0.8.1),10 and Mutect2, and retained for downstream 

analyses if identified by at least two algorithms. SNVs and indels only called in one tissue 

sample were automatically added in the second sample if at least one read with the 

mutation was found in the BAM file using Rsamtools (v1.30.0).11,12 Copy number 

alterations (CNA) were called combining ASCAT (ascatNgs, v4.1.0)13 and Battenberg 

(cgpBattenberg, v3.2.2)14 or using FACETS (v0.5.14)15 on WGS and WES data, 

respectively. To confirm the aberrations identified from WGS/WES data, CNA were also 

investigated using Genome-wide Human SNP Array 6.0 (Thermo Fisher Scientific) as 

previously described.16 Structural variants (SV) were extracted from WGS data using 

SMuFin and BRASS (v6.0.5),17 and were visually inspected on IGV.18 Tumor purity used 

for downstream analysis was estimated using Battenberg (for samples with WGS) and 

FACETS (for WES). Tumor purity was verified (and adjusted if needed) in samples with 

low CNA burden based on distribution of the variant allele frequency of the clonal 

mutations. Tumor purities are listed in Supplementary Table 1. 

The subclonal architecture of the tumors analyzed by WGS was reconstructed using a 

Bayesian approach. First, an Markov chain Monte Carlo sampler for a Dirichlet process 

mixture model was used to infer putative subclones (assignment of mutations to 

subclones, and estimation of the subclone frequencies in each sample), from the SNVs 

read count data, copy number states (from Battenberg) and tumor purities, as recently 



described.19 The phylogenetic relationships between subclones were identified 

following the “pigeonhole principle” excluding clusters with less than 100 mutations. 

The length of each tree branch in the reconstructed tree is proportional to the number 

of mutations assigned to the corresponding subclone.19  

To assess the clonality of the indels as well as of the SNVs and indels identified by WES, 

the CCF of each mutation was calculated integrating read counts, CNA and tumor purity 

as described in Dentro et al.20 The resulting CCF of each mutation was directly compared 

between each tissue to assess for spatial differences in the topographic abundance of 

specific mutations. 

  



Supplementary Tables 

Tables are placed in the Supplementary Tables Excel file. 

Supplementary Table 1. Predicted tumor purities 

Supplementary Table 2. Mutations identified by WGS 

Supplementary Table 3. Copy number alterations 

Supplementary Table 4. Structural variants identified by WGS 

Supplementary Table 5. Mutations identified by WES 

  



Supplementary Figures 

Figure S1. WGS-based genome plots. Genome plots integrating (from the outer to the 

inner most layer) SNVs, indels, CNA and SV for each sample analyzed by WGS. CNA are 

depicted using intensity-based colors according to their CCF. A detailed representation 

of the CNA and SV found in chromosome 11 of patient CLL063 is shown in the bottom-

left side of the figure. All CNA and SV were shared between the PB (left) and LN (right) 

in both cases.  CN, copy number. 

Figure S2. Comparison of the CNA profile of 12 PB (outer layer) and LN (inner layer) 

synchronous samples analyzed by WES. One case with no CNA in any of the two samples 

analyzed is not depicted in this figure. All CNA were shared at similar CCF between PB 

and LN. CNN-LOH, copy number neutral-loss of heterozygosity.  

Figure S3. Density of the CCF of the tissue-specific mutations identified by WES. 

Density plot showing the distribution of the CCF of the tissue-specific mutations 

identified in the 13 cases analyzed by WES. 

Figure S4. Comparison of the CCF of mutations identified by WES. Dot plots comparing 

the CCF of the mutations between PB (x-axis) and LN (y-axis) in the 13 cases analyzed by 

WES. 
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