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Abstract. The determination of the shear stress at which a sediment grain of a given
size and density starts to move has been treated with theoretical, experimental and nu-
merical procedures by many authors. The seminal contribution of Shields [7] addresses a
relationship for the non-dimensional critical shear stress in terms of the friction Reynolds
number for a single particle in a flat bed.

This work focusses on the incipient transport of particles for bedforms. The proposed
numerical approach to the problem integrates the Discrete Element Method (DEM) [9]
with a continuous finite element approximation. The DEM simulates the motion of the
landform, defined as an aggregate of rigid discs that interact by contact and friction. The
continuous finite element approach predicts the boundary shear stress field coming from
the fluid flow over the bed (for basic formulation, see [4] and reference therein). Both
methods are coupled through the flow-particle force transmission using drag coefficients.
While for single particles (or very simple sets of particles) incipient motion (and conse-
quently, the threshold stress) is clearly defined, for complex forms the use of the concept
of incipient transport becomes necessary, and critical shear stress is established in terms
of a threshold sediment flux over the bed surface.

We present a series of numerical experiments for single particles, showing good agree-
ment with Shields curve for the whole range of Reynolds number. In this communication
we show some of these results, in compare with the basic Shields curves for flat bed and
single grains.

1

615



R. Bravo, P. Ortiz and J.L. Pérez–Aparicio

1 Introduction

The mechanics of sediment transport is the keystone of many fields. Many authors have
carried out experimental studies to analyze, measure and predict the sediment transport
under many conditions since there is not a general analytical formulation or a numerical
approach that analyzes the sediment transport accurately. This paper establishes a new
numerical approach in the analysis of the motion treshold of granular particles, simulating
the initiation of sediment transport in the interface between fluid and sediment through
the numerical coupling of the Discrete Element Method (DEM) for particles and the Finite
Element Method for fluid.

Shields was the first reference to define a curve that defines the initiation of motion
relating and the Reynold’s number. This curve was based in dimensional considerations
and experimental data, therefore it was not able to define the motion of the individual
particles. The new approach considers the real behaviour of granular materials simulat-
ing the entraiment kinematics and particle interactions through contact. The Discrete
Element Method is a powerful tool to model the geometry and interactions since its for-
mulation is based in the balance momentum equation plus the additional restrictions with
contact. The flow interaction is inserted in model using the lift and drag forces from [3].
The proposed work obtains the initiation of motion for situations in which shield’s curve
is not able to provide reliable data.

2 Analytical theory

The available analytical theories [3], [8] are based in the analysis of the motion of a
single particle over a sediment bed. This situation is depicted in Fig. 1 where the motion
of the underneath particles is restricted, therefore it represents the worst situation. If the
scheme from Fig. 1 is repeated periodically, then it represents a sediment bed Fig. 2.
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Figure 1: Single particle over a sedimentary bed

The balance of forces of Fig. 1 allows to obtain the combination of drag Fd and lift Fl

forces for any friction angle φ and compacity angle θ that initiates the motion of a single
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Figure 2: Sedimentary bed, obtained as a periodic repetition of the scheme depicted in Fig. 1

particle. Solving these equations it is possible to obtain the normal N , tangential forces
T and the relation between Fd and Fl for the initiation of motion.

Fl + Fd tan θ = W ; T = Fd sin θ + (Fl − W ) cos θ;
N = Fd tan θ(1 − sin θ) + (W − Fl) sin θ

(1)

This equilibrium equation allows to obtain the relation between u⋆ and the Reynolds
number R⋆ that forces the for two situations

2.1 Small Reynolds Numbers

In this section we briefly describe the derivation of the drag for drag Fd and lift forces Fl

as function of shear frictional velocity u⋆ and therefore a relationship between shear stress
τ = u⋆2ρf and reynolds number Re⋆ for a single particle of diameter d. These expressions
inserted in Eqs. 1 provide the condition for the initiation of motion as function of u⋆.
For low Reynolds number R⋆ < 30, the velocity distribution around the particle is linear.
Therefore the mean flow velocity is defined as:

Vf = u⋆ 2

2ν
d; while Fd and Fl are given by: Fd = 3

2
πτd2; Fl = 1

2
u⋆d
ν

τd2 (2)

where ν is the viscosity, ρs and ρf are the densities of the solid and fluid respectively.
Combining Eqs. 1 and 2 provides a relation between u⋆ and the reynolds number:

τ

(ρs − ρf )gd
=

π/6

3π tan θ + 1
2

u⋆d
ν

(3)

2.2 Large Reynolds Numbers

For large Reynolds number R⋆ ≥ 30 the velocity distribution around the particle is
logarithmic and is given by the following expression:

u
u⋆ = 2.5 log z

z0

∂u
∂z

= 2.5u⋆ 1
z (4)

Using these last two results the expressions for the drag Fd and lift Fl forces are:
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Fd = 1
8
Cdπ

Vf

u⋆

2
τd2; Fl =

Vf

u⋆

(

∂u

∂z

d

u⋆

)0.5 (

u⋆d

ν

)0.5

τd2;

Cd = 24ν
d

[

1 + 0.15
(

Vf d

ν

)0.687
] (5)

In similar way as in the previous subsection, it is possible to define an adimensional
relation that provides u⋆ as function of R⋆.

τ

(ρs − ρf )gd
=

π/6

Vf

u⋆

(

∂u
∂z

u⋆

)0.5
(

u⋆d
ν

)0.5
+ π

8
Cd

(

Vf

u⋆

)2
(6)

3 DDA GENERIC FORMULATION

3.1 Introduction

From the pioneering work of [6] on the Discrete Element Method (DEM), [5] extended
this method to another one called Discrete Deformation Analysis (DDA) for the analy-
sis and modeling of the mechanical response of rock assemblies. The reason for DDA’s
reliability is that it reflects the mechanics of the phenomenon associated with the move-
ment of the particles; beyond the exact representation of basic material and geometrical
properties, it simulates mechanical interactions explicitly.

3.2 Governing equations

This subsection describes the problem and the corresponding governing equations in-
cluding the contact equation in DDA based on Hamiltonian mechanics.

3.2.1 Hamiltonian description of motion

Hamiltonian mechanics permit to obtain the equations of motion for every point of
multiple particles that interact by contact. The particles are still considered a continuum.
Each point x, y in each particle i is characterized by its position Qi(x, y, t) and its linear
momentum P i(x, y, t). The Hamiltonian function H

[

Q(x, y, t), P (x, y, t)
]

defines the to-
tal energy of the set of particles, that is assumed to be separable in kinetic K(P (x, y, t))
and potential Π(Q(x, y, t)) energies:

H
[

Q(x, y, t), P (x, y, t)
]

=

nbd
∑

i=1

[

K
(

P i(x, y, t)
)

+ Π
(

Qi(x, y, t)
)]

K
(

P i(x, y, t)
)

=
1

2

∫

Ωi

P i(x, y, t)2

ρs
dΩ; Π

(

Qi(x, y, t)
)

=

∫

Ωi

Qi(x, y, t)T f
(

Qi(x, y, t)
)

dΩ

(7)
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where nbd is the total number of particles and Ωi the particle domain. The kinetic and
potential energies are real scalar functions and ρs is the particle density, assumed constant.
In this work, the potential energy Π is related with forces external and due to contact,
generically represented in Eq. 7 by f

(

Qi(x, y, t)
)

, [6]. The motion of particle i is then
governed by the Hamiltonian canonical equations [2]:

Q̇
i
(x, y, t) =

∂H [Q(x, y, t), P (x, y, t)
]

∂P i =

∫

Ωi

P i(x, y, t)

ρs

dΩ

Ṗ
i
(x, y, t) = −∂H [Q(x, y, t), P (x, y, t)

]

∂Qi = −∇Π
(

Qi(x, y, t)
)

(8)

and where the supra dot indicates derivative with respect to time.

3.2.2 Discretization

Often it is not possible to find an analytical solution of the previous equations; we
have to obtain an approximated solution through the discretization of variables Q, P

from Eqs. 8. For every point x, y of particle i, these variables are interpolated from values
defined at several points called nodes.

Qi(x, y, t) = N(x, y) qi(t) ; P i(x, y, t) = N(x, y) pi(t) (9)

where N is the shape function associated to the node, usually defined at the center of
gravity xi, yi. These shape function matrix contain the interpolating polynomials, see an
example in subsection 5. Usually in DDA a single node is defined at the gravity center
and consequently the variables at this node are the unknowns of the problem. These
nodal displacements qi and linear momenta pi for all particles nodes at a given time are
grouped in the vectors q(t), p(t).

For each particle i, the discretization Eqs. 9 combined with Eqs. 8 produce the system
of equations:

q̇i = M−1
i pi ; ṗi = −NT ∇Π

(

Nqi
)

= f i′
c + f i′

ext (10)

where M−1
i is the inverse of a diagonal mass matrix, with entries M i =

∫

Ωi NT ρs N dΩ

and ṗi ≡ f i′
c +f i′

ext is the discrete counterpart for Newton’s second law (contact forces f i′
c

plus the discrete external f i′
ext). Finally, Eqs. 10 are integrated in time using the energy

consistent formulation of [1].
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4 DESCRIPTION OF CONTACT

Consider two rigid particles i, k the domains of which are defined by Ωi, Ωk and with
boundaries Γi = ∂Ωi, Γk = ∂Ωk (Fig. 3). These particles interact through contact and it
is possible to obtain the magnitude that defines the separation between particles by the
gap function:

gik
N (X) ↔ gki

N (Y (X)) =
[

qi(X) − qk(Y (X))
]

Rki (11)

The variables qi(X) and qk(Y (X)) are the positions of the closest-points X, Y and Rki,
see Fig. 3, is the normal unit vector. The gap function has to satisfy the constraint gik

N ≥ 0
or impenetrability condition.

X
Rki

|
{z

}g ik
N (X) k©

i©

Γk
u

Γk
c

Y

Γi
c

Γi
u

T ki

Γk
σ

Γi
σ

Figure 3: Contact between two particles i, k: closest point projection mapping

The interaction of two rigid rounded particles at point X ≡ Y (X) is defined by the
contact force f ik

c :

f ik
c = f ik

cN Rik + f ik
cT T ik (12)

where f ik
cN , f ik

cT are the components of the contact force and Rik, T ik the unit vectors in
the normal and tangential directions respectively, all of them at contact point X. The
contact forces are formulated as f ik

cN = KNgik
N , f ik

cT = KT gik
T for the Stick case and as

f ik
cN = KNgik

N , f ik
cT = µf ik

cN for the Slip case. Physically, the penalty parameters KN ,
KT are equivalent to high stiffness elastic springs between the contact points, therefore
avoiding the possibility of penetration (Fig. 4).

5 Numerical coupling

We are going to focus on the coupling of Fd and Fl in DEM considering like point forces
applied in the center of gravity of each mass. Without loss of generality we consider a
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Figure 4: Contact model and penalty parameters

point force Fx, Fy applied in (x, y) and subjected to (Qx, Qy). Therefore the potential
energy is:

Πi = −(QxFx + QyFy) = −
(

Qx

Qy

)t (
Fx

Fy

)

= −qt
i

(

N t
i

(

Fx

Fy

))

(13)

Minimizing Πi respect to qt
i :

∂Πi

∂qt
i

=
∂

∂qt
i

qt
i

(

Ni(x, y)t

(

Fx

Fy

))

= N t
i

(

Fx

Fy

)

→ fext (14)

Therefore, substituting the x, y components of the discrete point drag and lift forces in
Fx, Fy given by the NStokes formulation in every time step and applying in gravitu center
of each body, we obtain the expression for these forces in DEM.

6 Description of the coupled numerical model

6.1 Description of NStokes

Accurate prediction of sediment transport depends on a proper computation of stresses
in the boundary layer. The computed stress field is obtained from the flow by means of a
continuous finite element model for the incompressible Navier-Stokes equations (for details
see Refs. [10] and [4]). Once stress field is calculated, values on the boundary layer are
used to compute drag and lift forces by transforming shear stresses to drag and lift forces
using Eqs. 2.

7 Numerical results

7.1 Shields diagram for flat surface

Analytical formulation for the initiation of sediment motion is usually based on the fol-

lowing dimensionless relation :
τ

(ρs − ρf)gd
= F

(

u⋆d

ν

)

. The famous Shields diagram [7]

7
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was obtained fitting the previous relation to the experimental data and is depicted in
Fig. 7.1.3. The numerical approach simulates accurately the micromechanics that ana-
lytical formulations cannot take into account, like the rolling or sliding between particles
for several geometries and frictional materials. In order to prove the efficiency of the
numerical approach, this will be applied to simulate the analytical formulation from [3]
and the experimental data from Shields.

7.1.1 Numerical setup

The experimental setup is depected in Fig. 1, where the rigid lateral boundaries avoid
the motion of spheres 1 and 2 while sphere 3 may slide or roll over them. This configura-
tion is computationally attractive since it simulates a periodic boundary, see Fig. 2 that
prevents the displacement of spheres 1 and 2. These particles do not roll due to the high
imposed friction coefficient.

In this situation, only particle 3 interacts with fluid since it is considered that the
motion is parallel to the surface. It is expected that the numerical approach fits well the
analytical ones due to both have the same set up. In this simple case, sphere 3 is only
affected by the fluid force using drag and lift forces Fd and Fl defined by coefficients Cd

and Cl.

7.1.2 Solution procedure.

As seen in Shields diagram [7] and analytical formulations [3], several variables depend
both the x and y axes, therefore we have to use an iterative procedure to obtain the
solution that represents the initiation of motion. This is summarized in these steps:

• Input data: initial d, final d, increment of ∆d, ∆u⋆, , ν, tol.

• For every size d:

– Start wit a given u⋆ = ∆u⋆

– Compute Re⋆, the decide if laminar or turbulent situation is reached. Usually
laminar for Re⋆ < 5.

– Compute drag and lift forces fd, fl and apply to sphere.

– Verify initiation of motion with DDA.

∗ If total displacement < tol. No motion, then u⋆ = u⋆ + ∆u⋆ and go to the
second item.

∗ Otherwise. Compute τ ⋆. d = d + ∆d

After applying this procedure, the diagram depicted in Fig. 7.1.3 is obtained. It is
important to remark that for 5 < Re⋆ < 30 there is a transition from laminar to turbulent
flow that makes difficult that the numerical and analytical data fit wit the experimental
ones.
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7.1.3 Analysis results

Fig. 7.1.3 shows the numerical, analytical and experimental results for the Shields
diagram. Analytical results show two limiting situations, that correspond to the initiation
of motion by rolling or lifting. The experimental and numerical results fall between this
situations. It is clear that the numerical model only predicts the initiation of motion by
rolling since the numerical model is only able to simulate such initiation. For low Re⋆ the
drag force Fd is linear, then the left part of the logarithmic Shield’s diagram is almost
planar. Real particles are not fully spherical, then the drag coefficient Cd and the friction
is higher than that for a sphere and a high stress τ ⋆ is needed to initiate the motion. That
is the reason that experimental results provides higher values than the analytical and
experimental. For turbulence, the velocity distribution around particles is logarithmic,
therefore the relation given by the right part of the logarithmic graph is linear.

Num.
Shields. Exp.
Large Re⋆ lift

Large Re⋆ rolling
Small Re⋆ lift

Small Re⋆ rolling

Re⋆

τ
⋆

1001010.1

1

0.1

0.01

Figure 5: Shield’s diagram for a single particle, experimental, analytical and numerical results

7.2 Shields diagram for inclined surfaces

This example analyses the initiation motion of the external inclined sides of a triangular
shaped assembly composed by thousands of circular rigid particles of the same radius, as
shown in Figs. 7.2.2. This analysis is focused in the surface particles since this is the
interface between landform and fluid.

7.2.1 Set up

The internal geometry of the landform is defined by disks of the same radius disposed
with an arrangement that provides the maximum packaging. The geometry of the shape

9
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is defined by the following parameters: inclination of the sides α and height h. The disks
are geometrically defined by its radii and the mechanical parameters: density ρs, friction
coefficient µ (or friction angle φ). No cohesion is considered. Radii, the friction and
inclination angles define the global stability of the landform. In order to reach stability,
the friction angle φ has been chosen to be greater than the inclination α.

7.2.2 Results

Following the same procedure explained in the previous simulation the numerical rela-
tionship Re⋆ – τ ⋆ that forces the general motion of the particles is obtained. According to
several papers the initiation of motion is reached when the particles fluid is greater than a
given quantity, see [8], that is equal to an equivalent number of particles dependent of the
particle radius. This relationship shown in Figs. 7.2.2 for several inclinations α, showing
a similar relationship to Shields diagram. The results are higher than the previous since
the inclination α makes difficult the motion of the particles upwards due to the inclined
component of the weight. Additionally, the numerical results show that τ ⋆ are always
greater than the experimental since the latter are measured over a flat surface. τ ⋆ grows
with α since as φ increases it is more difficult to move the particle upstream. Inclination
α must be always lower than φ to prevent the collapse of the assembly. For larger radii
particles, the numerical data highly differ from Shields since the geometry of the sides is
quite rough that makes the motion difficult. This phenomenon is increased with α.

Exp. Shields
30◦
25◦
15◦

Re⋆

τ
⋆

1001010.1

1

0.1

0.01

Figure 6: Re⋆ – τ⋆ relationship for multiple inclinations α. Comparison with experimental data for flat
bed from Shields

The rolling upwards is usual mechanism for the initiation of motion. Particles never
roll downwards since the friction and drag forces avoid that kind of motion. The motion

10
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usually starts on the top side of the landform since in this location the gradient of the
flow velocities is high and the motion of the particles is not so restricted. Due to the
high gradient on the top particles usually lift, while those situated on the bottom and
middle roll, as shown in the three snapshot depicted in Figs. 7.2.2 where it is clear that
the initiation of motion always starts in in the upstream side and particles climb over the
existing ones.

Figure 7: Snapshots at several instants in wich the initiation of motion is produced

8 CONCLUSIONS

- A coupled numerical model has been applied to simulate the initiation of motion of
landforms combining DEM-FEM.

- The Discrete Element Method allows to simulate the micromechanics of the land-
form, therefore it provides realistic results that fit well to the experimental given by
Shields. Additionally, FEM gives a good representation of the flow that acts over
the landform.

- The coupled numerical method has been able to simulate accurately the experi-
mental results and that for no experimental are available. Therefore it converts in
a powerful tool to simulate the initiation of motion in complex situations where
analytical results are not valid.

- It is expected to model accurately more complex problems increasing the number
of particles although the parallelization will be needed.
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