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Abstract. By means of contact dynamics simulations, we investigate the creep deforma-
tion of a thin granular layer composed of irregular polyhedral particles under the action
of a constant vertical overload applied on a horizontal wall on top of the layer. We show
that the total deformation induced by the overload increases with the ratio between the
vertical and confining horizontal stresses and the aspect ratio of the sample. The effect
of the aspect ratio is a consequence of the mobilized wall-grain friction forces at the top
and bottom boundaries, that lead to enhanced strength by stabilizing strong force chains
at the center of the sample. We also evidence the influence of loading history due to
strain-induced fabric change or inertial effects resulting from the instant application of
the overload. The topology of the contact network evolves in close correlation with creep.
In particular, the face/face contacts between polyhedral particles concentrate largest force
chains and their number is an increasing function of creep. A crucial feature of a confined
granular system is the statistical variability of the mechanical response that we analyzed
for creep deformations by performing a large number of simulations for independent initial
configurations. Our data indicate that the distribution of fluctuations with respect to the
mean creep falls off exponentially.

1 Introduction

Granular media behaviour has been at the focus of several experimental studies. Ex-
amples are hopper flow, jamming-unjamming transition and granular avalanches [3, 11].
One of these phenomena is the creep in granular media under static overload. This creep
involves axial deformation induced by the applied overload, allowing the system to explore
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metastable configurations. This axial deformation produces in the granular material ac-
cumulated plastic deformations, know as settlement. Moreover, the mechanisms of creep
in granular media are badly understood.

In many configurations, we can find a few numbers of grains in a composed layer, such
as hopper flow, avalanches and railway ballast track, for example. These confined granular
systems are the thin granular interfaces since its thickness is below the correlation length
of contacts forces and particle displacement during a quasi-static flow [9].

In this paper, we present a numerical study of the mechanical behaviour of a confined
layer under the action of a constant overload. We use the contacts dynamics method
[5, 7, 2, 4, 10]. We focus on the settlement levels due to the creep deformation, under
several applied overload and different initial configurations. We show the influence of
the stress ratio, aspect ratio and loading history in the settlement. These results show
intrinsic fluctuations, which is associated with the statistical variability of the mechanical
response. Our data suggest that the distribution of mean creep fluctuations follow a
decreasing exponential law.

2 Numerical Procedures

In this section, we briefly introduce the contact dynamics (CD) method with polyhedral
particles as well as the numerical procedures used for the preparation of the numerical
samples.

2.1 Contact dynamics method

The simulations were carried out by means of the contact dynamics (CD) method with
irregular polyhedral particles [5, 7, 2, 4, 10]. The CD method is a discrete element ap-
proach for the simulation of nonsmooth granular dynamics with contact laws expressing
basically the mutual exclusions and dry friction between particles without elastic or vis-
cous regularization often used in explicit methods such as molecular dynamics or distinct
element method introduced by Cundall and Strack [1]. Hence, this method is particularly
adapted for the simulation of perfectly rigid particles. The nonsmoothness refers to vari-
ous degrees of discontinuity in velocities arising in a system composed of rigid particles.
In this method, the equations of motion for each particle are formulated as differential
inclusions in which velocity jumps replace accelerations [6]. The unilateral contact inter-
actions and Coulomb friction law are treated as complementarity relations or set-valued
contact laws. The time-stepping scheme is implicit but requires explicit determination
of the contact network. Due to implicit time integration, this scheme is unconditionally
stable1.

At a given step of time evolution, all kinematic constraints implied by frictional contacts

1For our simulations, we used the LMGC90 which is a multipurpose software developed in Montpellier,
capable of modeling a collection of deformable or non deformable particles of various shapes by different
algorithms [2, ?], see www.lmgc.univ-montp2.fr/ dubois/LMGC90.
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between particles are simultaneously taken into account, together with the equations of
dynamics, in order to determine all velocities and contact forces in the system. This
problem is solved by an iterative process pertaining to the non-linear Gauss-Seidel method,
which consists of solving a single contact problem with other contact forces being treated
as known, and iteratively updating the forces and velocities until a convergence criterion
is fulfilled.

The determination of the contact set for irregular polyhedral particles proceeds in three
steps. First, a “bounding box” method is used to sort a list of neighboring particle pairs.
Then, for each pair, the overlaps are calculated through a 3D extension of the “shadow
overlap method” [2, 12]. Several algorithms exist for overlap determination between con-
vex polyhedra [8, 13]. In the case of an overlap, the contact plane is determined by means
of the intersection between the two particles. This detection procedure is fairly rapid and
allows us to simulate large samples composed of polyhedral particles.

The contacts between polyhedral particles belong to different categories, namely face-
face, edge-face, vertex-face, edge-edge, vertex-vertex, vertex-edge. The vertex-vertex and
vertex-edge contacts are rare. Face-face contacts are represented by three points, cor-
responding to three geometrical constraints, and thus will be referred below as triple
contacts. The edge-face contacts are represented by two points and will be called double
contacts. All other contacts are simple contacts represented by a single point. In the
iterative procedure of determination of the contact forces and velocities, the points rep-
resenting the contacts between two particles are treated as independent points but the
resultant of the calculated forces are attributed to the contact with its application point
located on the contact plane.

2.2 Sample preparation

We generate 32 numerical samples composed of 2700 perfectly rigid polyhedral grains.
The grain shapes are taken from a library of 1000 digitalized ballast grains2. Each grain
has at most 70 faces and 37 vertices and at least 12 faces and 8 vertices. Fig. 2 shows
several examples of the polyhedral grains used in the simulations. The size of a grain is
defined as two times the largest distance between the barycenter and the vertices of the
particle, to which we will refer as the “diameter” of the particle. The grain sizes vary
between 25 mm and 50 mm with 50% of diameter 25 mm, 34% of diameter 37.5 mm and
16% of diameter 50 mm. The bulk density of the grains is 2700 kg m−3. The coefficient of
friction between the grains is 0.8 for all samples. The normal and tangential coefficients
of restitution are � 0.

The preparation protocol consists in first pouring the grains into a cylindrical box
with zero grain-wall friction. A rigid block of weight W = 16 kg is placed on top of
the sample. Then, the cylinder is removed and a radial confining pressure of 80 kPa is
applied on the sample by a uniform distribution of radial forces over the outmost grains

2The library was provided by the French Railway Company SNCF.
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Figure 1: Snapshot of a numerical sample. Figure 2: Four examples of polyhedral grains used in
the simulations.

located on the periphery of the cylinder while keeping the bottom plane fixed. The sample
obtained by this procedure is subjected to vibrations of small amplitude by applying a
vertical sinusoidal displacement on the top wall. The vibrations last for about 0.4 s with
a frequency of 10 Hz. Then, the vibration is stopped and the sample is allowed to relax
to static equilibrium. The resulting sample has a height of H0 = 0.4 m and a radius of
R � 35 cm. The applied protocol is fairly reproducible and the packing fraction ρ for the
32 samples is in the range [0.610, 0.626]. Fig. 1 shows a snapshot of a numerical sample.

The creep deformation is studied by applying a constant overload F on the top wall.
In a series of simulations, 500 different values of F varying from 0.9 kN to 120 kN were.
The deformation lasts until a stable equilibrium state is reached. The time step was
4.10−4s in all simulations and at most 150 time steps were needed for full stabilization.
The CPU time was 2.10−3s per particle and per time step on a Dell computer of speed
3.16 GHz. The creep was also investigated by stepwise application of small overloads and
with different values of a “pre-consolidation” overload; see below.

3 Creep deformation

Figure 3 shows the creep deformation δH of a sample subjected to different values of
the overload F as a function of time. The total creep increases with η.

The total creep deformation ∆H depends on how the overload is applied. The same
total overload may be applied in two or more steps. Let n be the number of steps. We
find that n∆H(F/n) < (n−1)∆H(F/(n−1). This implies that a quasi-staic compression
of the sample should yield the lowest level of deformation. In other words, quasi-static
loading provides the lower bound for creep deformation.

Fig. 4 displays the creep deformation ∆H(t) for different stepwise applications of a
total overload of F = 60 kN.

The abrupt application of an overload leads to the inertial motion of the grains. The
extra inertial forces, in addition to the total force F + top wall weight+ sample weight
can be measured on the bottom wall.
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Figure 3: Creep deformation of a sample subjected
to different values of the overload F as a function of
time.
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Figure 4: Creep deformation of a sample subjected
for a given total overload of 60 kN applied in one and
more steps.

The creep deformation depends also on the aspect ratio α = H0/D0 of the sample.
This is mainly due to the fact that the static equilibrium of the sample is controlled both
by the internal angle of friction and the friction with the walls at the top and bottom
walls (this will be analyzed below).

Fig. 5 shows the time evolution of creep deformation for different samples of different
aspect ratios α for the same overload. Larger aspect ratios lead to larger creep deforma-
tion.

Finally, the creep deformation shows sample-to-sample fluctuations. Fig. 6 shows
the time evolution of creep deformation for the same values of η and aspect ratio α but
for different initial configurations. The total deformation ∆H is different. The initially
configurations have slightly different values of packing fraction. This difference cannot
explain the large creep fluctuations.

All these data indicate clearly that the settlement due to creep deformation depends
on various parameters (stress ratio, aspect ratio, loading history) and shows intrinsic
fluctuations (depending on subtle details of the microstructure), which can be considered
as resulting from a stochastic process.

In the following, we first consider the mean behavior by averaging over different real-
izations of creep deformations as a function of the stress ratio and and aspect ratio for a
given protocol of loading history. Then, we focus on the fluctuations and sample-to-sample
variability.

4 Parametric study

In this section, we focus on the joint effects of stress ratio η and aspect ratio α on the
total creep deformation.
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Figure 5: Time evolution of creep deformation for
different samples of different aspect ratios α for the
same overload F = 60kN .
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Figure 6: Time evolution of creep deformation for the
same values of η and aspect ratio α but for different
initial configurations.

Fig. 7 shows the total settlement ∆H as a function of η for the same initial config-
uration and for α = 0.5. We observe that ∆H increases with η in two steps. ∆H only
slightly with η until η � 0.5, then grows much faster for higher η.

The rather low creep deformation below η = 0.5 is mainly localized at the interface
with the top wall where the packing fraction lower and the contact between the wall
and the grains is ensured by a rather lower number of contacts. Only for η > 0.5,
the deformation propagates into the bulk of the sample. This point will be analyzed in
connection with creep variability below. This creep can be suppressed by pre-loading
(pre-consolidation) the sample and allowing the sample to relax. Pre-loading levels out
and homogenizes the interface and allows for a more uniform deformation of the sample.
Fig. 7 shows the total plastic deformation as a function of η for α = 0.5 and after a pre-
consolidation of the sample with a load of F = 3.6 KN. We see that the initial low creep
has disappeared. This effect reflects the plasticity of the material. The pre-consolidation
modifies the microstructure not only at the wall interface but also in the bulk. Beyond
η = 0.5, the pre-consolidation has no effect as the microstructure does not evolve anymore
with loading.

The joint effect of the stress ratio η and aspect ratio α on the total creep deformation
for a sample is displayed in grey level in Fig. 8. The isovalues of creep show clearly that
the same level of creep deformation can be reached with a low stress ratio at high aspect
ratios or with a high stress ratio at low aspect ratios.

The observed dependence of creep deformation on the aspect ratio is a consequence of
friction with the top and bottom walls. The deformation of the packing can be viewed as
a radial ”extrusion” of the material under vertical forcing. This radial spreading of the
material causes a radial mobilization of friction that plays a major role in the equilibrium.
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Figure 7: Total creep deformation as a function of
η for the initial configuration before and after the
pre-loading.
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Figure 8: The isovalues of total creep deformation as
a function of η and α

0 0.1 0.2 0.3 0.4
50

100

150

200

250

300

350

400

r (m)

σ
rr

 

 

Data

Fit (R
2
=0.99)

Figure 9: Radial stress as a function of the distance
to the symmetry axis of the sample.

Figure 10: A snapshot of the grain stresses in a ver-
tical section of the sample passing through the axis
of symmetry.
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Figure 11: Coefficient of variation of the total creep
deformation as a function of stress ratio.
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Figure 12: The probability density function of creep
deformations in different samples normalized by the
mean creep deformation for each value of stress ratio.

We propose here a simple calculation of internal stresses by assuming that the friction
is fully mobilized at the walls and inside the material as in the Jansen model for a silo.
This model predicts an exponential fall-off of the stress components from the center of
the cylindrical sample towards its periphery. Fig. 9 shows the radial stress σrr estimated
from the data as a function of the distance r from the central axis. These data are in
good agreement with an exponential fall-off of the stress in exception to the central part
where the stresses are over-estimated.

Higher stresses at the center of the sample means that the strongest force chains occur
at the center of the sample. This can be seen in a snapshot of the particle stresses
displayed in Fig. 10.

5 Creep variability

In order to evaluate the variability of creep deformation, we generated 32 independent
configurations of the same aspect ratio α by the same protocol and subjected them to
500 different values of stress ratio η. Fig. 12 shows the coefficient of variation Cv =
〈∆H(η)〉/SN(η) as a function of η. We see in that Cv declines in the range η ∈ [0, 0.5]
and then remains almost constant. The high variability in the range [0, 0.5] is related to
the low values of the mean creep deformation and reflects the fact that the grain/wall
interface varies statistically more in different samples than the bulk structure.

Fig. 13 shows the probability density function of the creep deformation for all samples
where the deformations are normalized by the mean deformation for each value of η. The
broad distribution of creep deformation declines almost exponentially above the mean. A
peak occurs for a values of creep deformation slightly below the mean. This means that the
most frequent creep deformation is not the mean creep. Both high creep deformations (the
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Figure 13: Evolution of the fractions of simple, dou-
ble and triple contacts with time for η = 2.5.
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Figure 14: Evolution of the mean force carried by
simple, double and triple contacts with time for η =
2.5.

tail of the distribution) and low creep deformations may occur with significant probability.

6 Fabric variables

The fabric, i.e. the spatial organization of gains and topology of the contact network,
encodes most of the past history of loading. In this section, we consider the evolution of
several basic fabric variables during creep deformation. These are the mean coordination
number Z, the fractions Ks, Kd and Kt of simple, double and triple contacts, respectively,
as well as the mean force carried by each type of contact. We show that creep deformation
leads to hardening basically as a result of the evolution of the proportions of contact types.
In particular, the fraction of triple and double contacts increases, leading to a higher force
concentration, whereas Z does not evolve. We also find that Ks is higher than Kd +Kt,
but ft and ft are larger than fs. This means that the triple contacts concentrate force
chains.
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modélisation des problèmes d’intéraction. In Actes du sixième colloque national en
calcul des structures - CSMA-AFM-LMS -, volume 1, pages 111–118, 2003.

[3] H. M. Jaeger, S. R. Nagel, and R. P. Behringer. The physics of granular materials.
Physics Today, 49(4):32–38, 1996.

9

582



J.C. Quezada, F. Radjai and G. Saussine

[4] M. Jean. The non smooth contact dynamics method. In Special issue on modeling
contact and friction. 1999.

[5] M. Jean and J. J. Moreau. Unilaterality and dry friction in the dynamics of rigid
body collections. In Proceedings of Contact Mechanics International Symposium,
pages 31–48, Lausanne, Switzerland, 1992. Presses Polytechniques et Universitaires
Romandes.

[6] J.J. Moreau. Unilateral contact and dry friction in finite freedom dynamics, volume
302 of International Centre for Mechanical Sciences, Courses and Lectures. Springer,
Vienna, 1988.

[7] J.J. Moreau. Some numerical methods in multibody dynamics: Application to gran-
ular materials. European Journal of Mechanics A/Solids, supp.(4):93–114, 1994.
Formulation mathematiques titre du livre Contacts mechanics.

[8] E.G. Nezami, Y.M.A Hashash, D. Zaho, and J. Ghaboussi. A fast contact detection
for 3-d discrete element method. Computers and Geotechnics, 31:575–587, 2004.
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