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Abstract. Detailed rigid particle models have been proposed for modeling fracture in quasi-
brittle materials. The rigid particle circular models proposed in the literature do not properly 
reproduce the known rock friction angle and the observed rock tensile strength to compression 
strength ratio. In this article, a 3D rigid particle contact model, 3D-GCM, is presented which 
has been developed to study fracture phenomena in rock. The 3D-GCM contact model 
incorporates in a straightforward manner the force versus displacement relationships of the 
traditional contact point contact model model, PCM. Furthermore it provides both moment 
transmission and simple physical constitutive models based on standard force displacement 
relationships. The 3D-GCM model is validated against known triaxial and Brazilian tests of a 
granite rock. It is shown that the enhanced rigid particle model leads to a better agreement 
with the experimental results.

1 INTRODUCTION 
Detailed rigid particle models have been introduced in the study of fracture of continuous 

media such as concrete and rock in the early 1990's [1-6]. More recently 3D rigid spherical 
particle models have been proposed for rock, [7, 8], and for concrete, [9-11]. Models based on 
the rigid spring block method adopting 3D Voronoi shape polyhedra have also been 
developed for concrete, [12-13]. 

Through the simulation of the material meso-structure, the rigid particle models prevent 
localization of damage into regions not sufficiently large when compared to the 
inhomogeneity size. Particle models are conceptually simpler than a continuum approach, and 
the development of cracks and rupture surfaces appears naturally as part of the simulation 
process given its discrete nature. As discussed in Cundall [14], assemblies of discrete particles 
connected through simple interaction laws are able to capture the global behaviour of quasi-
brittle macro-material, like concrete or rock. The parameters of the interaction laws may 
require some calibration at the micro-level. 

In rock fracture studies the bonded particle model, BPM, [8] has received considerable 
attention given its known ability to model rock complex behaviour, namely in uniaxial 
compression. It adopts the traditional single point contact model, PCM, for grain behaviour, 
in parallel with a contact model that allows moment transmission through a rotational 
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the rigid spring block method adopting 3D Voronoi shape polyhedra have also been 
developed for concrete, [12-13]. 

Through the simulation of the material meso-structure, the rigid particle models prevent 
localization of damage into regions not sufficiently large when compared to the 
inhomogeneity size. Particle models are conceptually simpler than a continuum approach, and 
the development of cracks and rupture surfaces appears naturally as part of the simulation 
process given its discrete nature. As discussed in Cundall [14], assemblies of discrete particles 
connected through simple interaction laws are able to capture the global behaviour of quasi-
brittle macro-material, like concrete or rock. The parameters of the interaction laws may 
require some calibration at the micro-level. 

In rock fracture studies the bonded particle model, BPM, [8] has received considerable 
attention given its known ability to model rock complex behaviour, namely in uniaxial 
compression. It adopts the traditional single point contact model, PCM, for grain behaviour, 
in parallel with a contact model that allows moment transmission through a rotational 
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stiffness spring, parallel bond, PB, which attempts to simulate the cement behaviour. The 
BPM model, as presented in [8], is not able to model the ratio of tensile strength to 
compressive strength that occurs in rock. Also the macroscopic friction angle obtained 
through triaxial testing is quite low when compared to the known rock experimental values. 

In this work, a 3D generalized contact model, 3D-GCM, based on the 2D contact model 
[15] is presented. The number of local points used in the contact discretization is a model 
parameter and can be set to a given value. With the 3D-GCM it is still possible to model the 
traditional PCM contact model adopting only one contact point. By increasing the density of 
local contact points the elastic response converges to the response obtained with the PB 
contact model which adopts a uniform distribution of local points [8]. 

The proposed model is validated against known triaxial and Brazilian tests in a granite 
rock. It is shown that the enhanced rigid particle model leads to a better agreement with the 
known experimental results. 

  

2 FORMULATION 

2.1 Fundamentals 
In the DEM, the domain is replaced by an assembly of discrete entities that interact with 

each other through contact points or contact interfaces. The ability to include finite 
displacements and rotations, including complete detachment, and to recognize new contacts as 
the calculation progresses are essential features. The set of forces acting on each particle are 
related to the relative displacements of the particle with respect to its neighbours. At each 
step, given the applied forces, Newton's 2nd law of motion is invoked to obtain the new 
position of the particle. The equations of motion, including local non-viscous damping, of a 
particle may be expressed as: 
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where: ( )tFi  and ( )tM i  are, respectively, the total applied force and moment at time t 
including the exterior contact contribution, m and I are, respectively, the particle mass and 
moment of inertia, ix  and ix  are the particle acceleration and velocity, iω and iω are, 
respectively, the particle angular acceleration and velocity. The damping forces are given by: 
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being, ix the particle velocity and α the local non-viscous damping and the function sign (x) 
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2.2 Generalized contact model (3D-GCM) 
The 3D-GCM as defined is based on the 2D-GCM contact model that considers on a given 

contact width a discrete number of local contact points that are able to transfer normal and 
shear forces [15]. In the 3D-GCM contact model, one can have on an idealized cylindrical 
contact surface, several concentric circular clouds of contact points, Figure 1. 

  

a)  (t,n) plane 

f

b) (t,s) plane

 Figure 1: 3D-GCM contact model discretizations   

The number of layers and the total number of points per layer is a model parameter. As the 
number of contacts points is increased, one obviously obtains the equivalent continuum 
solution, PB contact model [8]. Given the contact surface discretization, it is possible to 
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transfer through the contact surface both force, bending and torsional moments. As referred, 
the traditional PCM contact model only allows the transmission of force. The contact unit 
normal is defined given the particles centre of gravity and the inter-particle distance, see 
Figure 1a): 
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The contact overlap for the reference contact point and its location are given by: 
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In the 3D-GCM contact model it is further required to set for each local contact point, its 
contact location and local contact overlap. For this reason, a local (t,s) axys is defined, Figure 
1b). Given the contact discretization one needs to know for each local contact point, its local 
coordinates relative to the reference contact point. Then the local contact point position in 
global coordinates can be defined using: 

[ ] [ ] [ ] [ ] [ ] [ ]t
i

js
i

j
i

j
i xtxsxx ++= 0

(6)

where: [ ]s
ix  and [ ]t

ix  are the global coordinates of the local s axys and local t axys, 
respectively. The contact forces that are acting on each local contact point can be decomposed 
into its normal and shear component with respect to the contact plane: 
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The contact velocity of a given local contact point, which is the velocity of particle B 
relative to particle A, at the contact location is given by: 
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The contact displacement normal increment, NJx ,∆ , stored as a scalar, and shear increment, 
SJ

ix ,∆ , stored as a vector, are given by: 
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The local contact point overlap is defined incrementally for all the local points based on 
the current contact velocity time step, t∆ : 
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Given the normal and shear stiffness of the local contact point, the normal and shear forces 
increments are obtained following an incremental linear law: 
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The predicted normal and shear forces acting at the local contact point are then updated by 
applying the following equations: 
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Due to the fact that the shear contact force is stored in global coordinates, it is necessary to 
redefine it in the updated contact plane. Given the predictive normal and shear contact forces, 
the adopted constitutive model is applied. If the predictive forces do not satisfy the 
constitutive model an adjustment, that is model dependent, needs to be carried. The resultant 
contact force at the local contact point is then given by: 
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At the reference contact point, the resultant contact force and contact moment are defined 
given the contribution from all the contact points:
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The contact force and moment are then transferred to the particle centre of gravity of each 
particle in contact through: 
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2.3 Numerical stability 
When only a steady state solution is sought, a mass scaling algorithm is adopted in order to 

reduce the number of time steps necessary to reach the desired solution. The particle mass and 
inertia are artificially scaled so the centred-difference algorithm has a higher rate of 
convergence for a given loading step. The particle scaled mass and inertia, used in the 
calculations are set assuming a unit time increment, given the particle stiffness at a given time 
through: 

θkIkm scaled
t

scaled 25.0;25.0 ==
(17)

The total translation stiffness kt and the rotational stiffness kθ of each particle must 
include the contribution of all particles in contact at a given time step: 
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2.4 Local contact stiffness and local contact strength 
  
In this work the total 3D-GCM contact stiffness associated to the contact is given by:  
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where: R is minimum radius of the particles in contact, d is the distance between the 

particles in contact, E  is the Young modulus of the equivalent continuum material and η  is a 
constant that relates the normal and the shear stiffness spring value. The total tensile and shear 
contact strength are defined given the maximum stresses and the contact area by: 
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The contact properties, strength and stiffness of each local contact point are then defined 
given the contact local weight and the total contact values. In this work the same weight is 
given to the local points. For the local inter-particle contacts, a brittle Mohr-Coulomb model 
including a frictional term before failure with tension cut-off is adopted, Figure 2. As soon as 
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the maximum shear or tensile strength is reached the local contact is considered to be cracked 
only transferring forces under compression.  

 Figure 2: 3D-GCM local contact constitutive model   

2.5 Particle generation scheme 
The particle assemblies here presented have been generated using the algorithms proposed 

in [8]. The initial circular particle assembly is created by first inserting the particles with half 
their radius guaranteeing that the particles do not overlap with each other, Figure 3a). Then 
the particle real radius is adopted, and a DEM cohesionless type solution is obtained, leading 
to a redistribution of the particle overlap throughout the assembly. The final assembly, Figure 
3b), is obtained by setting the desired initial isotropic stress, followed by a floater elimination 
procedure, [8]. 

a) Half  radius insertion b) Final assembly 

 Figure 3: Particle assembly for a granite rock   

The particle assemblies generated, similar to the presented in [8], are then triangulated 
using a Delaunay scheme. In this work it is considered that two particles interact with a GCM 
contact model if they share a common Delaunay tetrahedron edge, even if they are not in real 
contact. When compared to the particle assemblies presented in [8], where only particles 
closer than 1x10-6 of the average radius are considered to be in contact, the number of 
connections is significantly increased. 
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3 TRIAXIAL AND BRAZILIAN TEST IN A GRANITE ROCK 
The 3D-GCM model is validated against triaxial and Brazilian tests in a granite rock (Lac du 
Bonet) [8]. The tests were performed in cylindrical specimens with a 0.0634 m height and 
0.0317 m radius. Two different particles assembly sizes were adopted. A coarser assembly 
with a uniform diameter distribution ranging from 1.50 mm to 2.49 mm, with a total average 
of 7800 particles. And a finer particle assembly, with a uniform diameter distribution ranging 
from 1.19 mm to 1.98 mm, with 15600 particles in average.  
In the triaxial tests the initial isotropic pressure is applied through the vertical and lateral 
confinement walls, Figure 4a). After setting the isotropic stress, a small downward velocity is 
given to the upper vertical wall, 0.25x10-8 m/s, in order to simulate quasi-static conditions. 
The lateral walls are subdivided into several polyhedrical pieces that do not interact with each 
other and can only have inward displacement, in order to approximate the behaviour of a 
flexible membrane. Also with this purpose, the lateral wall contacts with the spherical 
particles have a lower stiffness, around 10% of the inter-particle stiffness. In the Brazilian 
tests the quasi-static load is applied by giving a downward velocity, 0.75x10-9 m/s, to the 
upper plate.  

a) Triaxial test (without top plate) b) Brazilian test 

Figure 4: Particle assemblies – Boundary conditions 

Table 1 presents the micromechanical elastic and strength properties that were adopted for the 
different particle assemblies adopted. Given some difficulties in matching the Poisson ratio of 
the Lac du Bonet granite ( =ν 0.26) it was also assessed a GCM model with different spring 
stiffness for tensile and compression loading. For the GCM contact a local discretization of 5 
local points was adopted, one central point and four peripherical local points, all with the 
same local weight. The strength micro-parameters were calibrated on a trial and error basis 
in order to match the experimental uniaxial compression strength and the Brazilian test 
tensile strength. 
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Table 1: Micro-properties for Lac du Bonet granite 

nK
(tension)

nK
(compression)

η
tn.σ

[MPa]
τ

[MPa]

µ

GCM-A1 50.0 - 0.25 33.5 43.5 0.30
GCM-A2 24.0 48.0 0.30 25.0 33.0 0.30
GCM-B1 50.0 - 0.25 33.0 44.0 0.30
GCM-B1 24.0 48.0 0.30 25.0 33.5 0.30

Table 2 presents the macro strength properties obtained with the different particles 
assemblies and contact models. It can be identified that a spring with reduced value under 
tensile loading increases the Poisson ratio. In order to match the Poisson ratio with a 

constant spring stiffness it would be necessary to adopt a constant 
s

n

K

K
=η lower than 

0.07, which can be considered to be quite low. In [8] a similar mechanism was adopted, 
the cemented contacts, PB type, work under compression in parallel with granular type 
contacts, and under tensile loading only the PB contacts carry the tensile loading.  
The macroscopic friction angle and the cohesion values are set according to the 
expressions defined in [8] that take as input the triaxial results. Lac du Bonet granite is 
considered to have an average friction angle of 59º and a cohesion value of 30 MPa [8]. 
The numerical macroscopic friction angle is still lower than the Lac du Bonet value, 

=φ 59.0º, but it is in much better agreement when compared with the numerical value 
obtained in [8] ( =φ 32.1º) with an equivalent spherical model and particle assembly. The 
uniaxial maximum compression values are also in good agreement with the Lac du Bonet 
granite that has a known average value of 200.0 MPa. 

Table 2: Macro-properties for Lac du Bonet granite 

  E
[GPa]

ν
  uq
[MPa]

φ
[º]

C 
[MPa]

tσ
[MPa] t

uq
σ

GCM-A1 72.8 0.19 202.1 44 42.5 28.7 7.0
GCM-A2 72.7 0.24 201.6 40 47.5 28.5 7.1 
GCM-B1 74.0 0.18 205.5 46 41.6 26.4 7.8 
GCM-B1 73.5 0.23 203.3 43 43.9 24.3 8.4 

Table 2 also shows that the 3D-GCM contact model with a brittle contact law is not 
able to model the ratio of compression strength to tensile strength. The Lac du Bonet 
granite has a known 21.5 ratio. This shows that the 3D-GCM contact model needs to be 
further enhanced, for example by considering the fracture energy at the micro-level. 
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Figure 5 : Strength envelope for the 3D-GCM models and experimental testing [8] 

Figure 5 compares the strength envelope results obtained with the 3D-GCM contact 
model with an equivalent spherical particle model [8] and with the experimental results 
obtained for Lac du Bonet granite [8]. It can be seen that the 3D-GCM contact model 
leads to a better agreement with the known Lac du Bonet strength envelope.  

Figure 5a) presents the strength envelope obtained with a zero micro-mechanical 
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friction angle, 0.0=µ , GCM-A3. Note that the latter strength envelope is close to the 
obtained with an equivalent spherical model that also does not include the friction angle at 
the inter-particle contact [8]. This shows that the friction angle value, that can be 
straightforwardly included within a GCM-contact formulation, is relevant in order to have 
a better agreement with the known experimental value. 

12 CONCLUSIONS 
A generalized 3D contact model, 3D-GCM, is presented which is defined through 

identifiable mechanisms of shear and normal force transfer through the contact interface. In 
this paper, the GCM contact model is adopted in the interaction between particles that share a 
common tetrahedron edge. Note that when compared to other particle models for rock [8] 
each particle has a higher number of particle interactions.  

The 3D-GCM contact model incorporates in a straightforward manner the force versus 
displacement relationships of the traditional contact point contact model model, PCM, 
providing both moment transmission and simple physical constitutive models based on 
standard force displacement relationships. The results indicate that 4 local points at the outer 
boundary of the contact are sufficient in order to obtain complex macro-responses. 

It is also shown that 3D-GCM model between spherical particles by incorporating a 
frictional term at the inter-particle contact level leads to a more realistic hard rock 
macroscopic behaviour, namely the macroscopic friction angle is increased. 

Finally, the 3D-GCM contact model with a brittle contact law is not able to model the 
ratio of compression strength to tensile strength of the Lac du Bonet granite. It is 
expectable to have a better agreement with the real response if a more complex contact 
constitutive law, e.g. softening at the contact level, is incorporated within a 3D-GCM contact 
model. 
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