
II International Conference on Particle-based Methods - Fundamentals and Applications
PARTICLES 2011

E. Oñate and D.R.J. Owen (Eds)

STRATEGIES FOR SIMULATION SOFTWARE QUALITY
ASSURANCE APPLIED TO OPEN SOURCE DEM -

PARTICLES 2011

Stefan AMBERGER∗, Christoph GONIVA∗, Alice HAGER∗, Christoph

KLOSS∗

∗Christian Doppler Laboratory on Particulate Flow Modelling
Johannes Kepler University

Altenbergerstr. 69, 4020 Linz, Austria
e-mail: stefan.amberger@cfdem.com, www.cfdem.com

Key words: Granular Materials, Open Source DEM, Quality Assurance, Test Harness

Abstract. We present a strategy to improve the software quality for scientific simulation
software, applied to the open source DEM code LIGGGHTS [1] [2]. We aim to improve
the quality of the LIGGGHTS DEM code by two measures:

Firstly, making the simulation code open source gives the whole user community the
possibility to detect bugs in the source code and make suggestions to improve the code
quality.

Secondly, we apply a test harness, which is an important part of the work-flow for
quality assurance in software engineering [5]. In the case of scientific simulation software,
it consists of a set of simulation examples that should span the range of applicability of
the software as good as possible. Technically, in our case it consists of a set of 10-50
LIGGGHTS simulations and is being run automatically on our cluster, where the number
of processors, the code features and the numerical models are varied. Qualitative results
are automatically extracted and are plotted for comparison, so thus a huge parameter
space of flow regimes, numerical models, code features and parallelization situations can
be governed.

A test harness can aid in (a) finding bugs in the software, (b) checking parallel efficiency
and consistency, (c) comparing different numerical models, and, most importantly, (d)
experimental validation. Parallel consistency means that within a parallel framework, we
need to have the possibility to compare the answers that a run with a different number
of processors gives and the time that it takes to compute them. Experimental validation
is especially important for scientific simulations. If experimental data is available for a
test case, the experimental data is automatically compared to the numerical results, by
means of global quantities such number of particles in the simulation, translational and
rotational kinetic energy, thermal energy etc.

1

466



Stefan Amberger, Christoph Goniva, Alice Hager, Christoph Kloss

The LIGGGHTS test harness aims to be a transparent and open community effort that
everybody can contribute to in order to improve the quality of the LIGGGHTS code. We
illustrate the usefulness of the test harness with several examples, where we especially
focus on experimental validation.

1 INTRODUCTION

This paper presents one instance of testing as a possible strategy for software quality
assurance, using the example of the test harness, that is used for LIGGGHTS development.

Reading instructions for this paper are the following: The chapter Classification shows
the main reason why we used testing as the strategy of our choice. Following that the
chapter Functional Range presents the functionality of our test harness. The structure
of our test harness and terminology (names of modules) we use later on are defined in
section Basic Structure of the Program. At last we present several examples in order to
emphasize the benefits of highly modular software in section Examples and afterwards
conclude the paper.

2 CLASSIFICATION

One can distinguish two types of software verification: static verification and dynamic
verification.

For large systems like LIGGGHTS static verification, especially non-heuristic methods,
i.e. methods capable of actually proving the correctness of software by means of formal
methods of mathematics via automated theorem provers, are topic of current research and
not yet applicable [4]. A more applicable approach used excessively by software developers
is dynamic verification alias testing. One main purpose of this test harness is to do large
scale system tests on user defined sets of inputs, automatically verifying the correctness
of the output via comparison with the output of previous versions of LIGGGHTS as well
as data obtained via experiments, thus guaranteeing version consistency.

3 FUNCTIONAL RANGE

The design of this test harness allows it to be used to

1. assure version consistency

2. detect bugs in newly added functionality

3. detect and pinpoint bugs accidentially introduced while updating

4. detect unwanted behaviour of newly implemented models

5. check parallel efficiency and consistency

2

467



Stefan Amberger, Christoph Goniva, Alice Hager, Christoph Kloss

Figure 1: Typical folder structure created by step1

6. compare different numerical models (w.r.t. cpu time, total translational / rotational
kinetic energy of the simulated system)

7. provide a platform for generating sets of data for experimental verification

8. automated and repeated model verification via experimental data

4 BASIC STRUCTURE OF THE PROGRAM

The test harness consists of four main parts that can be combined in different ways to
yield different results, thus supporting a wide range of application (see section 3).

In step one a folder structure is generated: for each executable (one or two) a folder
containing all examples and all input-scripts is created. These input-scripts are then
sequentially simulated with the respective executables. All this happens on the clus-
ter, where multiple nodes can be accessed by LIGGGHTS via MPI, according to what
the input-scripts of the respective examples require. The output of each simulation is
stored in a folder which unique name indicates success, failure or abortion of the simu-
lation. Figure 1 shows a typical folder-structure created by step1, where “in n.ex” is the
n-th input-script of example ex and nameof executable1 / nameof executable2 are the
(file)names of the executables used. The name of this step is step1.

In step two the test harness branches: depending on which data was produced in step
one (dump-data: coordinates, velocities, and radii of all particles for each timestep OR
thermo-data: timestep, number of particles, translational and rotational kinetic energy
of the system, cpu-time) one chooses the branch accordingly. In this phase two data sets

3

468



Stefan Amberger, Christoph Goniva, Alice Hager, Christoph Kloss

in the form of folder structures of step one are compared. This happens in 5 (6) steps in
step2 dump (and step2 thermo):

1. For all examples it is checked whether the simulation finished successfully.

2. For all examples which successfully finished the number of timesteps is checked (or
difference thereof).

3. For all examples that passed tests one and two positively and without differences the
normalized (regarding total number of particles) root mean square of the number
of particles per timestep is calculated.

4. and 5. For all examples that passed tests one and two positively and without dif-
ferences the normalized (regarding total number of particles and total translational
/ kinetic energies) root mean square of translational and rotational kinetic energies
are calculated.

6. the difference in CPU time is calculated. This only happens with thermo output.

This step outputs a table that shows the differences between the two simulations of
corresponding examples on different executables and basic properties of the simulation.
If the folder-structure, that is analyzed during execution of the step, contains only the
output of one executable the program automatically tries to extract basic properties of
the simulation instead of comparing to data of another simulation. The name of this steps
are step2 dump and step2 thermo.

The third part of the test harness is software, that parses input-scripts of LIGGGHTS
and detects differences therein, thus allowing to locate bugs if some scripts fail to execute,
and some do not. The output of this part is a table showing which LIGGGHTS function-
ality is called during execution, allowing easy comparison of input-scripts. The name of
this part of the program is compareIS.

The fourth part of the test harness allows to compare experimental data e.g. in the
sense of hopper mass-flow rate [3] to data obtained by simulations, and prints a visual-
ization of the accuracy of the models used. The name of this part is mDischarge.

These four parts can be combined in different ways to yield different results. Some of
the possible combinations are listed in section 3 and described in section 5.

5 EXAMPLES

5.1 Assuring Version Consistency

After simulating three examples with step1 the algorithm outputs a folder structure
similar to Figure 1. This structure now can be the input of step2 dump. This yields output
like illustrated in Figure 2. In this example one can easily see, that both translational and
rotational kinetic energy changed slightly in one example (ex3). This - if not willingly
introduced - indicates inconsistencies between the two versions of this test.

4

469



Stefan Amberger, Christoph Goniva, Alice Hager, Christoph Kloss

Figure 2: Output of a version consistency test

Figure 3: Output of a test detecting bugs in newly added functionality

5.2 Detecting Bugs in Newly Added Functionality

Via running a relatively large number of examples one can check whether some new
functionality has obvious errors or not. Step1 can run the simulations (also on only
one executable, namely the newly compiled one), which results can be interpreted with
step2 dump or step2 thermo respectively. For now we assume the set of simulations suit-
able for testing the newly added functionality output dump data. Then step2 thermo
outputs a *.csv like in Figure 3. Here the following examples did not finish, thus resulted
in abortion due to a bug: example 1: input-script 1, example 3, example 5, example 6:
input-script 1 and example 8: input-script 2. If one knows properties of these examples
that differenciate them to the examples that finished the simulation one knows where to
search for the bug. Also compareIS can now be used to pinpoint the function that causes
the termination of the simulation.

5.3 Detecting and Pinpointing Bugs Accidentially Introduced While Updat-

ing

Detecting Bugs can be done like in Subsection 5.1. Now assume we have three input-
scripts, two of them work perfectly fine and one (the third one) not functioning properly.
Then compareIS returns a table that shows the used functionality of LIGGGHTS of the
respective input-scripts and might look like the one in Figure 4, suggesting an error related
to either the command processors or the command pair style.

5

470



Stefan Amberger, Christoph Goniva, Alice Hager, Christoph Kloss

Figure 4: Output of compareIS

Figure 5: Output of step2 thermo when checking scalability

5.4 Checking Parallel Efficiency

For checking parallel efficiency a set of examples can be run two times, using a different
number of processors. The number of processors is changed automatically. The output of
both simulations afterwards is combined into one folder, simulating the output of step1.
This time however this folder does not, as usual, contain the output of two different
executables, but the output of one executable but using a different number of processors
in each simulation. Hence step2 thermo compares these runs and shows the speedup in
the last column of the output-table. Figure 5 shows one possible output, run for examples
ex1, ex2 and ex3. In this figure all examples have about the same speedup, due to the
small problem size only about 1.6.

5.5 Experimental Validation via Hopper Mass Flow Rate

One way of verifying the models used is to measure the hopper mass flow rate of
e.g. glass beads and compare the results to the hopper mass flow rate of a corresponding
simulation that models the experiment. A concrete example incorporated 28 experimental
setups, using mono-disperse spherical glass beads of particle diameters ranging from 2-
4 mm and variable hopper orifice diameters, ranging from 14-38 mm. The hopper that
was used was equivalent to the hopper described by Kloss, Goniva and Pirker [2]. A
simulation snapshot can be seen in Figure 6(a), the results in Figure 6(b). For most of
the cases the simulated and measured mass flow rates were in good agreement.

6

471



Stefan Amberger, Christoph Goniva, Alice Hager, Christoph Kloss

(a) Snapshot of a hopper discharge simula-
tion

(b) Comparison of measured and simulated
hopper mass-flow rates

Figure 6: Experimental validation via hopper mass flow rates

6 CONCLUSION

It is vital to assure consistency and accurracy of models, thus the developers of LIGGGHTS
put high emphasis on testing and verifying. In this context the modularity of this test
harness allows it to be used in a wide area of applications and makes quality assurance
easier and faster.

REFERENCES

[1] Kloss C.; Goniva C., LIGGGHTS A New Open Source DEM Simulation Software,
Proc. 5th Intl. Conf. on Discrete Element Methods, London, August 25-26 2010

[2] Kloss C.; Goniva C.; Pirker S., Open Source DEM and CFD-DEM with LIGGGHTS
and OpenFOAM R©, Proc. Open Source CFD International Conference, Munich,
November 4-5 2010

[3] Ortega-Gomes J., Granular Experiments on Hopper Flow, Particle Charging and Bed
Formation, Master Thesis, Johannes Kepler University Linz, 2010

[4] Research Institute for Symbolic Computation, Formal Methods in Computer Science,
Wolfgang Schreiner
http://www.risc.jku.at/research/formal/description/
April 10 2011

[5] Staknis M., Software Quality Assurance Through Prototyping and Automated Testing,
Journal of Information and Software Technology, 32, p. 26-33, 1990

7

472




