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Abstract. A general approach to realization of models of elasticity and plasticity of isotropic 
materials within the framework of discrete element method (DEM) is proposed in the paper. It 
is based on building many-body potentials/forces of discrete element interaction, which 
provide response of element ensemble correctly conforming to the response of simulated 
solids. Developed formalism makes possible realization of various rheological models in the 
framework of DEM to study deformation and fracture of solid-phase media of various nature. 

1 INTRODUCTION
An important direction in deformable solid mechanics is development of numerical 

methods and their application to problems connected with deformation and fracture of 
heterogeneous materials. A perspective and intensively developed representative of numerical 
methods in mechanics is a group of particle methods. At the present time this term is 
collective one as it includes very different numerical methods that belong both to 
“conventional” representatives of the discrete approach in mechanics (PM, DEM, MCA) and 
to meshless algorithms for numerical solution of equations of continuum (for example, 
particle-in-cell method [1], SPH [2], SPAM [3] and so on). Moreover, nowadays some 
modern realizations of conventional numerical methods (such as particle-finite element 
method [4]) are also referred to as particle methods. The following consideration will concern
“conventional” particle methods.

In the framework of “conventional” particle methods simulated material is considered as 
an ensemble of interacting particles (elements) having finite size and predefined initial shape 
that can change as a consequence of loading. Evolution of an ensemble is defined by solution 
of the system of Newton-Euler motion equations:
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where iR


and i


are radius-vector and rotation angle of the particle i, mi and iĴ are particle 
mass and moment of inertia, ij

nF


and ijF


are forces of central (normal) and tangential 
interaction of considered element i with neighbor j, ijM


is momentum of force, Ni is a number 

of neighbors (conventionally only nearest neighbors of element i are taken into account). It is 
seen from (1) that “macroscopic” (integral) properties of ensemble of elements are defined by 
the structure and parameters of potential (potential forces) of element interaction.

The best known representative of this group of particle methods is the discrete element 
method (DEM) [5,6]. At the present time DEM is widely used to study behavior of granular 
(loose) and weakly bonded media including features of their rheology, deformation and 
fracture pattern, mixing effects and so on [5-7]. Nevertheless, until recently, potentialities of 
application of DEM to study mechanical phenomena in consolidated medium were limited, as 
a rule, by porous brittle materials [5,6]. These limitations are concerned with insufficient 
development of mathematical models of interaction of discrete elements. In particular, 
overwhelming majority of models within the framework of DEM is based on use of pair-wise 
(two-particle) potentials/forces of element interaction. Such simplification can lead to a series 
of artificial manifestations (effects) of response of the ensemble of elements that are not 
inherent to modelled medium. Most important of them are:
 strongly pronounced dependence of macroscopic mechanical properties of ensemble of 

discrete elements on packing type (close, square, stochastic,…);
 inability to realize arbitrary desired ratio between macroscopic elastic moduli (shear and 

bulk moduli, Young modulus and Poisson ratio and so on);
 problems in correct simulation of irreversible strain accumulation in ductile 

materials, whose plasticity is provided by mechanisms of crystal lattice scale;
 etc.

These disadvantages are of principle for simulation of consolidated low porous materials. 
In this connection one of fundamental problems in DEM is formulation of interaction 
potentials/forces, which provide response of element ensemble conforming to response of 
consolidated solids with various rheological properties (elastic-plastic, visco-elastic-plastic 
and so on). It is clear that such potentials/forces have to have many-body form.

2 GENERAL FORMALISM OF MANY-PARTICLE INTERACTION
Authors propose a general approach to building many-body forces of discrete element 

interaction to simulate deformation and fracture of consolidated heterogeneous media. The 
structural form of these forces is analogous to interatomic forces calculated on the basis of 
embedded-atom method. In the framework of embedded-atom model [8] the general 
expression for potential energy of atom i contains a pair interaction potential  as a function of 
distance rij between atoms i and j and a “density-dependent” embedding function F (here it 
depends on electron charge density i ):
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where  


ij

ijji r is a sum of contributions of neighbors j to local value of density at the 

location of atom i.
By analogy with this expression the following general form of notation of the expression 

for the force iF


acting on discrete element i from surroundings is proposed:
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This force is written as a superposition of pair-wise constituents ij
pairF


depending on spatial 
position/displacement of element i with respect to nearest neighbor j and of volume-
dependent constituent iF


connected with combined influence of nearest surroundings of 

element. 
When simulating locally isotropic media with various rheologies the volume-dependent 

contribution iF


can be expressed in terms of pressure Pi in the volume of discrete element i as 
follows [9]:
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where Sij is square of area of interaction (contact) of elements i and j, ijn is a unit vector 
directed along the line between mass centres of considered elements, A is a parameter. 

In such formulation the right part of the expression (2) can be reduced to the sum of forces 
of interaction of pairs of elements and divided into central ( ij

nF


) and tangential ( ijF


) 
constituents:

         









iii N

j

ijij
n

N

j
ij

ij
shear

ij
pairijijiij

ij
npair

N

j
ijiji

ij
pairi FFtlFnSAPhFnSAPFF

11
,,

1

 (4)

where ij
npairF , and ij

pairF , are central and tangential components of pair-wise interaction force

that depend on the values of element-element overlap hij and relative shear displacement ij
shearl

( ij
shearl is calculated taking into account rotation of both elements) [5,6]. Note that although the 

right part of the expression (4) formally confirms to notation of element interaction in 
conventional models (1) [5-7], their fundamental distinction consists in many-body form of
central interaction of discrete elements in the proposed model.

It is seen from (4) that an important problem of building many-particle interaction is 
definition of local value of pressure (Pi) in the volume of discrete element. Authors propose to 
use an approach to calculation of pressure Pi (or, what is the same – of mean stress) in the 
volume of the element i that is based on the computation of components of average stress 
tensor in the volume of the element [6]. 

The case of plane motion of three-dimensional objects (quasi-two-dimensional 
approximation) is considered in the paper. In this approximation the expression for average 
stresses in terms of central ( ij

nF ) and tangential ( ijF ) interaction forces can be written as 
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follows [6]:
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where , = x,y (XY is a plane of motion); Vi is a current value of the volume of element i; qij is a 
distance from mass centre of element i to the central point of area of interaction (contact area) 
with neighbour j; ij, is an angle between the line connecting mass centres of interacting 
elements i and j and axis  of laboratory system of coordinates (Figure 1). Components i

xz

and i
yz are identically zero in the framework of considered quasi-two-dimensional 

approximation and definition of i
zz depends on constitutive equations of considered medium.

Note that values of i
xy and i

yx coincide only in static equilibrium state of ensemble of 
discrete elements, while they can slightly differ at the stage of establishing static equilibrium. 
Therefore their mean value (   2i

yx
i
xy  ) is used in the proposed model (hereinafter it is 

called as i
xy ).

Figure 1: An example of definition of angle ij, between line connecting mass centers of discrete elements in 
the pair i-j and -axis of laboratory system of coordinates (=X is considered here). The center of coordinate 

system is translated to the mass center of the element i.

Calculated in this way the stress tensor components can be used to determine the pressure 
in the volume of discrete element:
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Note that calculated values of average stress tensor components can be used to determine 
other tensor invariants as well, for example stress intensity:
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It follows form (1), (4), (5) that the central problem in the framework of proposed
approach to building many-body interaction of discrete element is to determine expressions 
for ij

nF and ijF , which provide necessary rheological characteristics of mechanical response 
of ensemble of elements. Analysis of relationships (1), (4), (5) leads to the conclusion that 
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expressions for interaction forces could be directly reformulated from constitutive equations
of considered medium (equations of state). Below is a derivation of such expressions for
locally isotropic elastic-plastic materials.

3 DESCRIPTION OF ELASTIC-PLASTIC MEDIUM WITH DEM FORMALISM
For convenience hereinafter parameters of interaction of discrete elements will be 

considered in reduced units.
In particular, values of central and tangential relative displacements of elements of the pair 

i-j are distributed among them and normalized to element sizes:
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where symbol  hereinafter indicates increment of corresponding parameter during one time 
step t, rij is the distance between mass centers of discrete elements i and j (Figure 2), qij and qji

are the distances from mass centers of elements i and j to the center of area of interaction 
(qij+qji=rij), d is size of element, ij

shearV is a velocity of relative shear displacement of elements 
(it is calculated taking into account rotation of both elements [6]). Space variables i(j) and i(j)

hereinafter will be called as central and shear strains of discrete element i in the pair i-j.

rij

ji
qij qji

Figure 2: Parameters of spatial relation of the pair of discrete elements i and j: distance between mass centers 
(rij) and distances from mass centers of element to the center of area of interaction (qij and qji).

So, in the general case strains of elements i and j in the pair i-j differ from each other. As 
shown below, the rule of strain distribution in the pair is inseparable linked with the 
expression for element interaction forces.

Forces of central ( ij
nF ) and tangential ( ijF ) interaction of discrete elements i and j will be 

considered in specific units:

ijij
ij
n SF 

(9)

ijij
ij SF 

Specific values (ij and ij) of interaction forces will be called as central and tangential pair 
stresses. In accordance with (4), the general form of expressions for the central and tangential 
interaction forces in specific units can be written as follows:
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pair
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(10)
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The proposed below model of elastic-plastic interaction of discrete elements will be 
formulated in terms of reduced values of interaction parameters.

3.1 Description of linearly-elastic medium
Stress-strain state of isotropic linearly elastic medium is described on the basis of 

generalized Hooke's law. The following notation of this law will be used in the paper:

meanK
GG   )21(2

(11)

  G

where , = x,y,z;  and  are diagonal components of stress and strain tensors;  and 
are off-diagonal components;   3zzyyxxmean  is mean stress; K is bulk modulus; G is 
shear modulus.

It can be seen that the form and the matter of expressions (11) for diagonal and off-
diagonal stress tensor components are analogous to expressions (10) describing normal and 
tangential interaction of discrete elements. This leads to the simple idea to write down 
expressions for force response of automaton i to the impact of the neighbor j by means of 
direct reformulation of Hooke’s law relationships:
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where Gi and Ki are shear and bulk elastic moduli of material filling the element i, i(j) and i(j)

are central and shear strains of element i in the pair i-j, mean stress i
mean is calculated using 

(6).
Proposed relationships (12) for force of element response to the impact of the neighbor j

are not arbitrary. Thus, by substituting relations (6) in (4) easy to show that proposed 
expressions for respond force automatically provide implementation of Hooke’s law for 
components of average stress ( i

 ) and strain ( i
 ) tensors in the volume of element i. Note 

that i
 are determined by analogy with (5) in terms of strains i(k) and i(k) of the element i in 

pairs i-k.
Proposed relationships (12) make it possible to calculate central and tangential interaction 

of discrete elements, whose ensemble simulates isotropic elastic medium. Taking into account 
the need to implement Newton's third law for interacting pairs of discrete element (ij=ji and
ij=ji) and the need to distribute relative displacement of elements in the pair the expressions 
for specific interaction forces can be written as follows:
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and
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Here, relations for calculating the central and tangential interaction forces are written in 
increments (in hypoelastic form).

It should be noted that in two-dimensional formulation of the problem approximations of 
plane stress or plane strain state are widely used. A similar approach is used in described
model:
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Testing results (including comparison with results obtained using the commercial software 
ANSYS/LS-DYNA) showed that ensemble of discrete elements that interact according to (4)-
(6), (8), (9), (13)-(15), demonstrates a “macroscopically” isotropic response, even with the 
regular packing of elements of the same size. Note that achieving isotropic response of 
regularly packed elements is a fundamental problem in conventional models of DEM that use 
approximation of two-particle interaction.

3.2 Description of elastic-plastic medium
An important advantage of proposed approach to building many-body interaction of 

discrete elements is a capability to realize various models of elasticity and plasticity within 
the framework of DEM. In particular, a model of plastic flow (incremental plasticity) with the 
criterion of Mises was implemented to simulate deformation of isotropic elastic-plastic media.

For this purpose, radial return algorithm of Wilkins [10] was adopted to discrete element 
approach. Typically, this algorithm is formulated in terms of the stress deviator (Figure 3):

MDD   ˆˆ (16)

where
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D
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


ˆ

Being written in terms of stress, for components of average stress tensor in the volume of 
discrete element i it has the following form:
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where , = x,y,z and ;  
i and  

i are corrected (returned) average stress tensor 

components; i
 and i

 are stress tensor components, which result from solution of elastic 
problem (13)-(15) at the current time step; ii

pliM int is current value of the coefficient M

for discrete element i; i
pl is current radius of von Mises yield circle for the element i; i

int is 
calculated on the basis of (7) after solving elastic problem at the current time step.

Figure 3: Schematic representation of functioning of radial return algorithm of Wilkins. Here el is stress 
intensity after elastic problem solution at the current time step.

The main problem in realization of the algorithm of Wilkins within the framework of DEM 
is formulation of correcting relations for element interaction forces that provide for 
implementation of necessary conditions of the algorithm [10]. By analogy with the elastic 
problem the expressions for correction of specific central and tangential forces of response of 
the element i were derived by direct reformulation of relations (17) for average stress:

  i
meani

i
meanijij M 

(18)

iijij M

where ij and ij are corrected specific forces.
It is easy to show that substitution of (18) in expression (5) for average stress tensor 

automatically provides reduction of its components to yield circle for the element i. This 
demonstrates the correctness of the proposed model.

It is necessary to note that in the general case values of reduced specific forces of response 
of element i ( ij and ij ) to the impact of neighbor j differ from those of element j ( ji и ji ). 
In view of the need for implementation of Newton’s third law correction of specific 
interaction force in the pair i-j has to be done with use of “united and matched” coefficient Mk:

  k
meank

k
meanijij M 

(19)

kijij M

where k=i or k=j depending on the rule of matching of specific forces. We propose to use the 
minimum one of  ji MM , as the coefficient Mk:

 jik MMM ,min (20)

where
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ji MMifik  ,
(21)

ji MMifjk  ,

Such “individual” approach to correction of forces of interaction of the element i with 
different neighbours j can result in divergence from rigorous satisfaction of the necessary 

conditions (   i
mean

i
mean 


 and   i

i
i M intint 


 [10]) of the algorithm of Wilkins. Nevertheless 

testing results demonstrate that divergence from precise fulfillment of these conditions is 
quite small even for pairs of dissimilar elements, the elastic constants (G и K) and hardening 
curves of which differ considerably. 

It should be also noted that in considered two-dimensional formulation of the problem the 
peculiarities of the algorithm of Wilkins for approximations of plane stress or plane strain 
state are taken into account [10,11]:

    strainplaneM i
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zziter
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,

1

where i
zzs is a Z-component of the average stress deviator tensor,  iii KGb 41 , iter

iM is a 
stress correction coefficient that is calculated on the basis of Mi with use of iterative method of 
Newton [11].

Testing results have shown that proposed model of elastic-plastic interaction of discrete 
elements provides good agreement of spatial distribution of stresses and strain in the 
ensemble of discrete elements modeling elastic-plastic medium with corresponding analytical 
solutions as well as with results of numerical simulation by means of commercial software
ANSYS/LS-DYNA.

4 DISCRETE ELEMENT MODELS OF FRACTURE AND COUPLING
A fundamental advantage of DEM as a numerical technique is its inherent capability of 

direct simulation of material fracture (including multiple fracture and mixing of fragments) 
and coupling (cohesion) of fragments. This capability is taken into account by means of 
change of the state of the pair of discrete elements (“linked” pair  “unlinked” pair, 
Figure 4a). Within the framework of conventional models of two-particle interaction of 
elements pair-wise force or deformation criteria of fracture are used. They are expressed in 
terms of critical values of central and tangential forces or relative displacements [6]. 
Potentialities of the developed approach to building many-body interaction of discrete 
elements make it possible to apply various multiparametric “force” fracture criteria (Huber-
Mises-Hencky, Drucker-Prager and so on) as criteria of interelement bond breaking. 
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b

Figure 4: a) schematic representation of switching between linked (at the left) and unlinked (at the right) states 
of the pair of discrete elements i and j; b) instantaneous local coordinate system concerned with current spatial 

position of interacting pair i-j.

Authors proposes the following method of calculating these criteria for pairs of “linked” 
discrete elements i and j. It is based on determination of local values of stress tensor 
components at the area of interaction of considered pair i-j (hereinafter denote this tensor as 

ij


 ) in the local coordinate system XY of the pair (Figure 4b). Indeed, in the coordinate 

system XY in accordance with (5) values of components yy  and yx  for elements i and j
are identically equal to each other and numerically equal to specific forces of central (ij) and 
tangential (ij) interaction of the elements:

ij
ij
y

ij
yy

i
yy fn

y
  

(23a)

ij
ij
x

ij
yx

i
yx fn

x
  

where =x,y; n are direction cosines; ijf are projections of specific value of interaction 
force vector (stress vector at the area of interaction of elements i and j). It is evident that these 
values of stress tensor components can be assigned to the area of element interaction 
( ij

yyij  and ij
yxij  ). At the same time, other components ( xx  and zz  ) of average 

stress tensor in the local coordinate system XY are different for elements i and j. Therefore 
corresponding components of tensor ij


 at the area of interaction of the elements can be

calculated on the basis of “lever rule”:

ij

ij
j
xxji

i
xxij

xx r
qq 






(23b)

ij

ij
j
zzji

i
zzij

zz r
qq 






where i
 and j

 are components of average stress tensor in the volume of elements i and 
j in the local coordinate system of the pair.

Components ij


 , thus defined, are used to calculate necessary invariants of stress tensor 

which then can be used to calculate current value of applied criterion of pair fracture. In 
particular, below the conditions of bond breaking in the pair i-j with use of Huber-Mises-
Hencky and Drucker-Prager criteria are shown:
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criterionHenckyMisesHuberc
ij int

(24)

    criterionagerDrucaa c
ij
mean

ij Prker15.115.0int 

where c is corresponding threshold value for considered pair (value characterizing strength of 
chemical bond), a is a ratio of material compressive strength to tensile strength, ij

int and
ij
mean are calculated by analogy with (6)-(7).
Distinctive features of interaction of “unlinked” (i.e. contacting) elements i and j, among 

other things, are the lack of resistance to tension (pair is considered as interacting only when
ij0) and limited value of the force of tangential interaction. Maximum allowed value of 
tangential force in “unlinked” pairs is determined by the model of friction of surfaces of 
interacting elements (Amonton’s law of friction, model of Dieterich [12] and so on).

In many problems (in particular, modeling of friction pairs [13]) it is important to take into 
account a possibility of coupling of interacting elements (onset of cohesion in the pairs of 
previously “unlinked” elements). For this purpose, authors proposed some simple criteria of
formation of “linked” pairs as a result of contact interaction (compression + friction) of 
“unlinked” elements. Examples of such criteria are: i) specific value of central force under 
compression (ij0, bondij  where bond is threshold value for bonding); ii) pair strain under 

compression (ij0, bondij  ); iii) friction work in considered pair taking into account the 
value of central interaction force (ij) i.e. the value of compression.

5 CONCLUSIONS
- A solution to the problem of modeling the consolidated elastic-plastic media by 

ensemble of discrete elements is proposed in the paper. This solution is based on use 
of many-particle interaction forces and on determination of volume-dependent 
constituent of interaction via calculation of components of average stress tensor in 
the volume of discrete elements. Final relations for central and tangential interaction 
forces are derived from constitutive rheological equations for modeled medium.

- An important advantage of the proposed expressions for element interaction is a 
possibility of implementation of various models of elastoplasticity or 
viscoelastoplasticity (which are conventionally written in terms of stress/strain tensor 
components) in terms of element interaction force and displacement increments. In 
particular, the authors realized plastic flow theory with von Mises yield criterion 
within the framework of DEM.

- Another important advantage of the developed formalism is a possibility to directly
apply conventional multiparametric fracture criteria (Huber-Mises-Hencky, Drucker-
Prager, Mohr-Coulomb etc.) as criteria of interelement bond breakage. The use of 
these criteria is very important for correct modeling of fracture of complex 
heterogeneous materials of various nature.

- At the present time described models of interaction of discrete elements are approved 
and widely applied to study response (including fracture) of heterogeneous materials 
at different scales from nanoscopic to macroscopic one. Advantages of the approach 
to description of elastic-plastic interaction of discrete elements makes possible 

413



Evgeny V. Shilko, Alexey Yu. Smolin, Sergey V. Astafurov and Sergey G. Psakhie.

12

correct simulation of phenomena and processes, whose study by conventional 
numerical methods of continuum mechanics is difficult. The problems of this type 
include, for example, study of physical and mechanical processes in contact patches 
of technical and natural frictional pairs [13,14].
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