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Abstract

This work explores the use of stabilized finite element formulations for the incompressible
Navier-Stokes equations to simulate turbulent flow problems. Turbulence is a challenging
problem due to its complex and dynamic nature and its simulation if further complicated
by the fact that it involves fluid motions at vastly different length and time scales,
requiring fine meshes and long simulation times. A solution to this issue is turbulence
modeling, in which only the large scale part of the solution is retained and the effect of
smaller turbulent motions is represented by a model, which is generally dissipative in
nature.

In the context of finite element simulations for fluids, a second problem is the appari-
tion of numerical instabilities. These can be avoided by the use of stabilized formulations,
in which the problem is modified to ensure that it has a stable solution. Since stabiliza-
tion methods typically introduce numerical dissipation, the relation between numerical
and physical dissipation plays a crucial role in the accuracy of turbulent flow simula-
tions. We investigate this issue by studying the behavior of stabilized finite element
formulations based on the Variational Multiscale framework and on Finite Calculus, an-
alyzing the results they provide for well-known turbulent problems, with the final goal
of obtaining a method that both ensures numerical stability and introduces physically
correct turbulent dissipation.

Given that, even with the use of turbulence models, turbulent flow problems re-
quire significant computational resources, we also focused on programming and parallel
implementation aspects of finite element codes, and in particular in ensuring that our
solver can perform efficiently on distributed memory architectures and high-performance
computing clusters.

Finally, we have developed an adaptive mesh refinement technique to improve the
quality of unstructured tetrahedral meshes, again with the goal of enabling the sim-
ulation of large turbulent flow problems. This technique combines an error estimator
based on Variational Multiscale principles with a simple refinement procedure designed
to work in a distributed memory context and we have applied it to the simulation of
both turbulent and non-Newtonian flow problems.





Resum

Aquest treball estudia la possibilitat d’utilitzar formulacions estabilitzades d’elements
finits de les equacions de Navier-Stokes incompressibles per a la simulació de problemes
de flux turbulent. La descripció de la turbulència és un repte, ja que es tracta d’un
problema altament dinàmic i complex i la seva simulació numèrica es veu complicada pel
fet que hi intervenen moviments de masses fluides amb dimensions i temps caracteŕıstics
molt diferents i per tant requereix malles de càlcul molt fines i temps de simulació
llargs. Això s’ha provat de resoldre mitjançant l’ús de models de turbulència, mantenint
únicament la part de la solució de més gran escala i introduint un model de l’efecte dels
moviments de petita escala, que acostuma a tenir un efecte dissipatiu.

En el context de la simulació de fluids amb elements finits es planteja un segon prob-
lema amb l’aparició d’inestabilitats numèriques. Aquestes es poden evitar amb l’ús de
formulacions estabilitzades, en les quals el problema es modifica per assegurar que tingui
una solució estable. Ja que els mètodes d’estabilització t́ıpicament introdueixen dissi-
pació addicional, la relació entre la dissipació numèrica i la dissipació f́ısica té un paper
fonamental en la qualitat de la solució. Per investigar aquest fenomen hem estudiat
el comportament de diferents formulacions d’elements finits basades en mètodes varia-
cionals de subescala (VMS) i en el càlcul finit (FIC) en termes del seu comportament
en la simulació de problemes turbulents de referència, amb l’objectiu final de trobar un
mètode que a la vegada garanteixi l’estabilitat de la solució i introdueixi la dissipació
turbulenta f́ısicament necessària.

Tenint en compte que, fins i tot quan s’utilitzen models de turbulència, la simulació
de problemes de flux turbulent requereix molts recursos de càlcul, també hem estudiat
aspectes de la implementació paral·lela de programes d’elements finits per tal de garantir
que el nostre codi pot treure partit d’arquitectures de memòria distribüıda i servidors
de càlcul d’alt rendiment.

Finalment, hem desenvolupat una tècnica de refinament adaptatiu de malla que
permeti millorar la qualitat de malles de càlcul tetraèdriques, novament amb la intenció
de facilitar la simulació de grans problemes de flux turbulent. Aquesta tècnica combina
un estimador d’error basat en els principis de la formulació variacional de subescala



amb un procediment de refinament dissenyat per funcionar fàcilment en un context
de memòria distribüıda i s’ha utilitzat per simular problemes de flux turbulent i no-
Newtonià.
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Chapter 1
Introduction

1.1 Background and motivation

1.1.1 Turbulence modeling

Turbulent flows are a subject of paramount interest in engineering, physics and earth
sciences, since they govern many phenomena involving moving fluids like volumes of air
or water. Turbulent phenomena appear in flows of all sizes, from large scale processes
such as the atmospheric flow of air or oceanic currents to local problems such as wind
loads over lightweight structures or the efficiency of a wind turbine. However, the
complex nature of turbulent flows means that they can rarely be solved analytically
and, as a result, we have to rely on experimental studies or numerical simulations for
their analysis.

Experimental studies, which typically involve either campaigns of field measurements
or wind tunnel tests, tend to be expensive and complex endeavors (see for example [113])
and, although they are an essential tool in providing a deeper understanding of the prob-
lem, tend to provide localized measurements such as point recordings or line averages,
which are limited to the regions where sensors are placed, or indirect measurements, such
as trajectories of tracers. From this point of view, numerical modeling represents a less
costly alternative to experiments with the added advantage of providing a global image
of the velocity and pressure fields for the entire volume of interest. Unfortunately, nu-
merical study of turbulent problems is not without difficulty. The fundamental problem
in turbulent flow simulations is the wide range of time and spatial scales involved [101],
which have to be taken into account in the analysis.

Taking as an example the flow around an obstacle, the largest fluid motions, or
eddies, in the flow can be assumed to have a characteristic size L comparable to the
size of the obstacle itself. Under a turbulent flow regime, coherent flow structures
tend to break and the energy associated to these motions is transferred to successively
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smaller eddies until, for very localized fluctuations, viscous effects dominate and the
energy is dissipated. This process can be formalized in terms of the energy associated
to motions of a characteristic wavelength in what is known as the Kolmogorov energy
cascade [64, 65, 101] and the size at which viscous dissipation dominates is defined as
the Kolmogorov length η.

Turbulent flows can be characterized by the Reynolds number Re, a dimensionless
parameter indicative of the balance between inertial and viscous forces in the problem,

Re =
ρUL

µ
(1.1)

where ρ is the fluid’s density and µ its dynamic viscosity and U is a characteristic
velocity of the flow. The Kolmogorov length scale can be related to the largest motions
of the flow by means of the Reynolds number [101] as

L

η
= Re

3

4 (1.2)

To properly represent the full range of turbulent motions in a numerical simulation,
the size of the problem domain would be a multiple of the size of the obstacle on
each dimension, while the grid size would have to be small enough to capture motions
on the Kolmogorov scale. For a 3D problem, this implies that the total number of
elements would be on the order of Re9/4. Keeping in mind that the Reynolds number in
engineering applications is typically on the order of 104 ∼ 106, the number of elements
involved in a typical simulation would put it beyond the reach of most computers and
scientific computation clusters. As a result, this approach, which is known as Direct
Numerical Simulation (DNS) is only applicable to problems with a moderate Reynolds
number and is not commonly used in engineering.

The only viable option in most cases is to introduce a turbulence model to reduce
the computational requirements of the simulation. This typically involves neglecting the
smallest motions and modifying the problem to include terms that model the effect of the
neglected motions on the problem. The addition of such model increases the minimum
element size required to simulate the problem, extending the range of problems that can
be simulated with given computational resources. Turbulence models can be grouped
into two broad families, Reynolds Averaged Navier-Stokes (RANS) and Large Eddy
Simulation (LES).

RANS models are based on rewriting the problem in terms of time-averaged vari-
ables (or time- and space-averaged, if there are spatial directions of homogeneity) and
introducing a model for the effect of turbulent motions on the averaged solution. This
model has a dissipative effect, removing energy from the average motions, and most
commonly takes the form of an added viscosity, called turbulent or eddy viscosity. The
temporal and spatial distribution of the eddy viscosity is given by the specific model
and is usually determined by the solution of one or more additional equations that de-
scribe the production and transport of turbulent quantities. Typical examples of RANS
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models are the Spalart-Allmaras model [116], which involves one additional equation,
or the κ–ǫ [21, 68] and κ–ω models [132], which introduce two additional variables.

LES models are based on introducing a spatial filter to smooth out high wave num-
ber fluctuations in the solution and writing the problem equations in terms of filtered
quantities. This allows the separation of larger flow features, influenced by the geometry
of the fluid domain and the boundary conditions, from the smaller motions, which are
assumed to have an universal behavior and thus can be replaced by local dissipation
model, which is problem-independent. The most well known member of this family of
models is the Smagorinsky method [114], but many variants and alternatives exist [101].

Note that, while the use of turbulence models makes the simulation of turbulent flows
possible in terms of mesh resolution and computational resources, many flows of practical
interest still require fine meshes and long simulation times in order to obtain statistically
steady solutions and reliable statistical measurements. As a result, the simulation of
complex flows at high Reynolds number still requires significant computational resources,
frequently beyond what a single computer can provide, and has to be solved using High
Performance Computing (HPC) clusters.

1.1.2 Stabilized finite element formulations for turbulent flows

A second problem frequently encountered in the finite element simulation of incom-
pressible flows is the apparition of numerical instabilities, which are a consequence of
the incompressibility constraint and the effect of the convective term in the equations
for convection-dominated flows (see for example [39] for an introduction to this topic).
In the context of finite elements, one possible solution for this issue is the use of stabi-
lization techniques, where the original Galerkin weak form of the problem is modified to
obtain a stable formulation. The modified equations are characterized by the addition
of new terms that are typically dissipative in nature, in a way that ensures consistency,
that is, that the modified problem tends to the original equations as the simulation mesh
is refined.

For turbulent flows in particular, the interaction between turbulence models and sta-
bilization terms is an active area of research. While they have clearly different origins
and motivations (turbulence models are typically motivated using physical arguments,
while stabilization methods are purely numerical in nature), both types of methods have
a dissipative effect on the solution, which has raised some questions regarding their in-
teraction or the possibility of using a unified formulation to provide both stability and
turbulence modeling. This subject has been studied for example for Streamline-Upwind
Petrov-Galerkin (SUPG) stabilization [123, 127], Finite Calculus (FIC) based formu-
lations [92, 93] and stabilization techniques within the Variational Multiscale (VMS)
framework.

In the case of VMS formulations, the stabilized problem is motivated by a separation
of scales, differentiating a large scale part of the solution, that can be represented by
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the finite element mesh, from a small scale part, which remains unresolved, by means
of a projection of the solution onto the finite element mesh [53, 55]. This concept
has intriguing parallels with the spatial filtering introduced in LES methods and can
be understood as a mesh-induced filtering. This has motivated multiple investigations
studying the use VMS formulations in turbulence modeling [3, 9–11, 30, 32, 44, 47,
58, 59, 102], analyzing their relationship both from the theoretical point of view and
through its application to the simulation of turbulent flows of interest.

1.2 Objectives and methodology

The main topic of this monograph is the study of the applicability of stabilized finite
element techniques to the solution of turbulent flow problems of practical interest in
engineering, with a special focus in analyzing the behavior of different formulations as a
LES-like turbulence model. The research is organized around two main lines: The first
of them is centered on stabilized finite element formulations and their relationship with
turbulence modeling, while the second focuses on computational techniques to facilitate
the calculation of complex flows in large simulation domains.

Regarding the relationship between stabilized formulations and turbulence modeling,
we choose to focus on two types of methods. The first of them is the VMS framework,
where we intend to analyze the behavior of two well-known formulations, algebraic
subgrid scales and orthogonal subgrid scales, as well as dynamic subscales, while the
second is a new formulation derived from the application of the FIC balance to the
incompressible Navier-Stokes equations. We have implemented a fluid solver based on
the different techniques and used it to analyze their performance.

The first topic that will be discussed in terms of the computational aspects of the
present work is the use of parallel programming techniques for the simulation of finite
element problems in a distributed memory context. In this sense, all developments have
been made with a parallel implementation in mind, choosing algorithms and implemen-
tations that are suited to a parallel implementation in preference to alternatives that
are not, and the parallel capabilities of the implemented code have been evaluated.

A related topic in relation to the calculation of large problems is the use of adaptive
mesh refinement techniques to simplify the mesh generation procedure and reduce the
overall number of elements required to perform the simulation. We have developed a
technique based on a simple refinement technique that can work in a distributed memory
environment, which has been implemented to work in combination with the fluid solver.
During the course of the present work we also found the opportunity to apply these
refinement techniques to non-Newtonian flow problems. The results of our investigation
in this area will also be presented.

The methods presented in this document have been implemented within the open
source Kratos Multiphysics finite element framework [34, 35], which is based on C++
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and Python and has parallel calculation capabilities, some of which have been developed
or expanded as part of the present work. This implementation has been used to simulate
all the examples considered and generate the presented results.

1.3 Outline of this document

The present document is organized along the main goals outlined above. In Chapter 2 we
introduce VMS methods, with a special emphasis on dynamic subscale approximations,
and review the arguments that have been used in the literature to relate them to LES
formulations. Our tests have driven us to propose a variant of the method characterized
by a new model for the pressure subscale. We use both the standard approach and our
modified formulation to simulate a turbulent channel flow benchmark problem, which
allows us to compare our results to DNS data.

In Chapter 3 we present a new stabilized formulation for incompressible flows based
on the FIC balance principles. This formulation is also used to simulate the channel
flow problem, as well as other benchmark examples.

Chapter 4 is concerned with different aspects of the parallel implementation of the
finite element flow solver that has been used to perform the simulations presented in
the previous chapters, including tests of the parallel performance of the solver. In the
same chapter we present the approach we used to record spatial averages and variances
in a distributed memory context.

Chapter 5 presents an adaptive mesh refinement technique that combines a parallel
refinement algorithm based on edge subdivision with an error indicator motivated by
the VMS formulation. This technique is then used to solve both turbulent and non-
Newtonian flow cases.

Finally, in Chapter 6 we summarize the work and present its main conclusions, as
well as proposing future lines of research.





Chapter 2
Variational multiscale stabilization for

turbulent flow problems

2.1 Introduction

Variational multiscale (VMS) methods [53, 55] provide a theoretical framework for the
design of stabilized finite element formulations based on the separation of the solution
into resolved and unresolved parts, which is achieved through the definition of large scale
and small scale solution spaces. The projection of the original equations onto the large
scale space gives an equivalent problem that depends on the small scale variables, while
the projection of the original equations onto the small scale space is used to motivate a
model for the effect of the small scale variables, which are not solved, to the large scale
solution.

This methodology has interesting parallels with LES turbulence models, which use
a spatial filter to introduce a separation between the resolved and unresolved parts
of the solution. This fact has motivated research into the relationship between VMS
stabilized formulations and LES methods, and in particular on the possible use of VMS
methods as turbulence models. In the present chapter we review some current trends
in VMS formulations, including the derivation of algebraic and orthogonal models for
the small scales, and the arguments that have been used to relate them to turbulence
modeling. We also direct our attention to dynamic subscale models [28, 30], which have
been shown to provide good results in turbulent flow simulations without requiring the
use of an explicit turbulence model [7, 32, 102].

In spite of the success of the method in the mentioned tests, some aspects of the
behavior of VMS methods as turbulence models are not completely understood. In
particular, the solution of the problem has a degree of dependency on the precise defini-
tion of the stabilization parameters (see for example [7]) and on using or neglecting the
pressure small scale [32]. We investigate this issue through the analysis of the results
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of turbulent channel flow simulations. Additionally, we propose a new model for the
pressure small scale, which we found to provide more accurate results in our simulations.

The chapter is organized as follows: in the next pages we review the state of the art for
the formulations of interest, introducing the Galerkin weak form of the incompressible
Navier-Stokes equations Section 2.2 and using it Section 2.3 to obtain the complete
stabilized equations for the different variants that will be considered in this work. We
continue by presenting the arguments that have been used to justify their use as a
turbulence model in Section 2.4. In Section 2.5 we present the finite element solver
that we have implemented based on the described VMS formulations. In Section 2.6 we
present our proposal for a new model of pressure small scale and in Section 2.7 we use
both this and standard VMS methods to simulate a turbulent channel flow test case,
analyzing the solution in terms of different measured statistics of the flow and their
comparison with reference DNS data. Finally, we present our conclusions in Section 2.8.

2.2 Variational form of the Navier-Stokes equations

2.2.1 Problem statement

The incompressible Navier-Stokes equations state the balance of linear momentum and
mass in a fluid domain Ω, given by

ρ ∂tu+ ρu · ∇u−∇ · σ = f in Ω× [0, T ) (2.1)

∇ · u = 0 in Ω× [0, T ) (2.2)

where u is the fluid velocity, ρ its density, σ represents the stress tensor and f the
external forces acting on the domain.

The problem described by Eqs. (2.1) and (2.2) must be completed with suitable
initial and boundary conditions. We denote the domain boundary as ∂Ω and introduce
its partition into Dirichlet (ΓD) and Neumann (ΓN) parts, verifying ∂Ω = ΓD ∪ ΓN and
ΓD ∩ΓN = ∅. The initial and boundary conditions for the problem can be expressed as:

u = u0 in Ω, t = 0 (2.3)

u = uD in ΓD × [0, T ) (2.4)

σ · n = t in ΓN × [0, T ) (2.5)

where u0 is the initial velocity field, uD represents the imposed velocity on the Dirich-
let boundary, n the outer normal vector and t the imposed traction acting along the
Neumann boundary. Note that the initial velocity u0 must be chosen to be divergence
free to ensure that Eq. (2.2) is verified at all times.

For Newtonian fluids, the stress tensor σ can be related to the fluid velocity u and
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pressure p using the constitutive relation

σ = −p I + 2µ

(

∇su− 1

3
(∇ · u) I

)

(2.6)

where I is the second order identity tensor, µ the fluid’s viscosity and∇su the symmetric
gradient of velocity, defined as

∇su =
1

2

(

∇u+ (∇u)T
)

(2.7)

To obtain a finite element formulation for the Navier-Stokes equations we need to
rewrite them in weak form. We multiply Eq. (2.1) by a velocity test function w, defined
to be zero on the Dirichlet boundary ΓD, and Eq. (2.2) by a pressure test function q.
Integrating the resulting expressions over the fluid domain we obtain

∫

Ω

w · (ρ ∂tu+ ρu · ∇u−∇ · σ) dΩ =

∫

Ω

w · f dΩ (2.8)
∫

Ω

q∇ · u dΩ = 0 (2.9)

The Neumann boundary condition can be introduced in the formulation by using
the product rule on the stress term in Eq. (2.8) and expressing the resulting divergence
as a boundary integral, which allows us to write

−
∫

Ω

w∇ · σ dΩ =

∫

Ω

∇w : σ dΩ−
∫

Ω

∇ · (w · σ) dΩ

=

∫

Ω

∇w : σ dΩ +

∫

∂Ω

w · σ · n dΓ =

∫

Ω

∇w : σ dΩ +

∫

ΓN

w · t dΓ
(2.10)

Substituting Eq. (2.10) into Eq. (2.8) and introducing the definition of the stress
tensor in Eq. (2.6) we obtain

∫

Ω

w · (ρ ∂tu+ ρu · ∇u) dΩ +

∫

Ω

∇sw : 2µ

(

∇su− 1

3
(∇ · u)

)

dΩ

−
∫

Ω

∇ ·w p dΩ =

∫

Ω

w · f dΩ +

∫

ΓN

w · t dΓ
(2.11)

∫

Ω

q∇ · udΩ = 0 (2.12)

Eqs. (2.11) and (2.12), together with the initial and Dirichlet boundary conditions,
allow us to state the weak form of the problem. In addition, they also impose regularity
requirements on the solution, test functions and problem data, as it must be ensured
that all the integrals that appear in the equations remain bounded. This is only briefly



10 Variational multiscale stabilization for turbulent flow problems

discussed here, directing the reader to more specific literature on this topic for a rigorous
formulation (see for example [41, 124]). In general, for any two given functions f, g we
want to ensure that ∫

Ω

fg dΩ < ∞

We define the L2 norm of a function as

‖f‖L2(Ω) =

(∫

Ω

f 2 dΩ

) 1

2

and functions with bounded L2 norm are said to be square-integrable. The space of
functions that are square-integrable in Ω is denoted as L2 (Ω).

Although no proof is given here, it can be shown that, for any given time instant t,
it is sufficient to require that both the momentum test function w, the velocity solution
u and their first order derivatives belong to L2(Ω). The space of functions verifying this
property is a Hilbert space commonly denoted as H1(Ω) in functional analysis. For the
mass conservation test function q and the pressure solution p, it is enough to require
them to be square-integrable, as their spatial derivatives do not appear in Eqs. (2.11)
and (2.12).

Considering that u must verify the Dirichlet boundary condition when evaluated in
the Dirichlet boundary ΓD and w is zero in ΓD by definition, the solutions (for any fixed
instant in time) and test functions must be contained in the spaces of functions given
by

u ∈ H1
D =

{
u ∈ H1(Ω)

∣
∣ u = uD in ΓD

}

w ∈ H1
0 =

{
w ∈ H1(Ω)

∣
∣ w = 0 in ΓD

}

p, q ∈ L2(Ω)

Likewise, the external forces f must be such that the domain integral in the right hand
side of Eq. (2.11) is well defined. Given that w ∈ H1(Ω), this is equivalent to requiring
the forces to belong to the dual of that space, denoted as H−1(Ω). There is a similar
requirement on the traction t, as it has to be integrable when multiplied by the test
function w restricted to the Neumann boundary, but it will not be formally stated here.

Finally, to make sure that the dynamic problem is well-posed it is sufficient to require
that ‖u‖L2(Ω) and ‖∂ui/∂xj‖L2(Ω) square-integrable along the time interval of the prob-

lem. This is denoted as u ∈ L2 (0, T,H1
D(Ω)). In the case of the pressure it is enough

to enforce that the L2 norm is square-integrable in time, that is, p ∈ L2 (0, T, L2(Ω)).

2.2.2 Conservation properties

Before we introduce the variational form of the problem, there is an important remark
to be made about the convective term in the momentum equation Eq. (2.1). As long as
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the velocity field is strongly (point-wise) divergence-free, the following three expressions
are identical:

u · ∇u = ∇ · (u⊗ u) =
1

2
u · ∇u+

1

2
∇ · (u⊗ u) (2.13)

or, in variational form,
∫

Ω

w · (u · ∇u) dΩ =

−
∫

Ω

∇w : (u⊗ u) dΩ +

∫

ΓN

(w · u) (u · n) dΓ =

1

2

∫

Ω

w · (u · ∇u) dΩ− 1

2

∫

Ω

∇w : (u⊗ u) dΩ +
1

2

∫

ΓN

(w · u) (u · n) dΓ

(2.14)

The three expressions in Eq. (2.13) are respectively known as non-conservative, con-
servative and skew-symmetric forms of the convective term. However, in practice, the
expressions in Eq. (2.14) are not equivalent for the discrete problem, as the velocity
solution is only divergence-free in a weak (integral) sense. In fact, as shown in [29],
each of them gives rise to a variational problem with different conservation properties.
While the continuous Navier-Stokes equations enforce the balance of linear and angular
momentum, as well as kinetic energy, none of the discrete variants ensures conservation
of the three quantities at the same time. According to the analysis in the same refer-
ence, the variational form resulting from each expression conserves the quantities listed
in Table 2.1.

Convective term Linear momentum Angular mom. Kinetic energy

Non-conservative For equal u-p interpolations No No
Conservative Yes Yes No

Skew-symmetric For equal u-p interpolations No Yes

Table 2.1: Conserved quantities in the discrete Navier-Stokes equations depending on
the expression of the convective term, according to [29].

In the present work we have used the skew-symmetric form, as the kinetic energy
balance is an important concern in the present study and something that can be mea-
sured to to gain insight on turbulent flow simulations. In fact, we can report that using
a formulation based on the skew-symmetric form resulted in a better fit to DNS data in
our preliminary tests for the channel flow simulations presented in Section 2.7.

2.2.3 Galerkin weak form

Using the skew-symmetric form for the convective term, the Galerkin weak form of the
Navier-Stokes problem can be stated as
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Find u ∈ L2 (0, T,H1
D(Ω)), p ∈ L2 (0, T, L2(Ω)) such that, ∀w ∈ H1

0 (Ω), ∀q ∈ L2(Ω),

∫

Ω

w ·
(

ρ ∂tu+ ρ
1

2
u · ∇u

)

dΩ−
∫

Ω

∇w : ρ
1

2
(u⊗ u) dΩ

+

∫

Ω

∇sw : 2µ

(

∇su− 1

3
(∇ · u)

)

dΩ−
∫

Ω

∇ ·w p dΩ =

∫

Ω

w · f dΩ +

∫

ΓN

w ·
(

t+ ρ
1

2
(u · n)u

)

dΓ

∫

Ω

q∇ · udΩ = 0

Unfortunately, this problem is not straightforward to solve using finite elements, as
its discrete version is not numerically stable. In fact, to ensure that that problem of
finding a pair u, p that satisfies the above weak form for all suitable choices of w, q has
a stable solution, the discrete spaces in which the solution is sought must verify the
inf-sup or Ladyzhenskaya-Babuška-Brezzi (LBB) condition, given by

inf
q 6=0 q∈Q

sup
w 6=0 w∈V

∫

Ω
q∇ ·w dΩ

‖q‖Q ‖w‖V
≥ C (2.15)

where V and Q are spaces containing the velocity and pressure solutions, respectively,
and C is a positive constant. In practice, satisfaction of the LBB condition implies the
use of a higher order interpolation for velocity than for pressure, as is done for example
in Taylor-Hood elements [122].

Numerical instabilities in the discrete solution of the Navier-Stokes may also appear
in convection-dominated flows, that is, when the convective term is large in relation to
the viscous term. In turbulent flows, this issue can be understood from a physical point
of view by noting that viscous dissipation occurs predominantly due to high velocity
gradients at small scales. If the finite element mesh is coarse, these gradients cannot be
reproduced and dissipation is underestimated, which leads to energy accumulation on
the larger scales and the eventual loss of convergence of the solution.

Both instabilities can be cured by the use of a stabilized formulation, which involves
obtaining a modified weak form not restricted by the inf-sup condition of Eq. (2.15).
This has the advantage of allowing the use of equal order interpolations for velocity
and pressure. Two classical stabilized formulations for the Navier-Stokes equations are
known as Streamline-Upwind Petrov-Galerkin (SUPG) [57] and Galerkin-Least Squares
(GLS) [56]. Other alternatives are methods within the VMS framework, which are the
main subject of the present chapter, and the Finite Calculus (FIC) approach, presented
in Chapter 3.
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2.3 Variational multiscale stabilization

2.3.1 Scale separation

The Variational Multiscale (VMS) method, introduced in [53, 55, 60] is a theoretical
framework for the development of stabilized finite element methods that has been used
extensively during the last two decades in finite element formulations for fluid problems.
The basic premise of this method is the separation of the problem variables into large
scale (·)h and small scale, or subscale, values (·)s, which in our case corresponds to

u = uh + us p = ph + ps

w = wh +ws q = qh + qs

The (·)h notation chosen to represent the large scales should be understood as a
reference to the finite element mesh size h. In practice, scale separation is closely
related to the spatial discretization used to solve the problem. This is shown graphically
in Figure 2.1, where the solution along a line is represented. The large scales correspond
to the part of the solution that can be described using the finite element interpolation,
while the small scales represent fine features of the solution that cannot be reproduced
due to the limitations of the discrete interpolation.

(a) Continuous domain. (b) Discrete domain.

(c) Continuous solution.

(d) Large scale solution.

(e) Small scale solution.

Figure 2.1: Scale separation.

Once a finite element discretization is defined, the space containing the large scale
part of the solution can be identified with that of the admissible finite element functions
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on the discrete domain. This implies that, instead of working with test functions and
solutions defined on infinite-dimensional spaces of functions, we now seek a solution on
a restricted, finite-dimensional space of admissible solutions, expressed as

uh ∈ Wh ⊂ W ≡ L2
(
0, T,H1

D(Ω)
)

ph ∈ Qh ⊂ Q ≡ L2
(
0, T, L2(Ω)

)

This in turn allows us to define spaces containing the small scale part of the solution
ws ∈ Ws, qs ∈ Qs. The subscale spaces complete the corresponding large scale space,
that is, W = Wh ⊕Ws, Q = Qh ⊕Qs. As a result, it is clear that small scale spaces are
infinite-dimensional, unlike the large scale ones, and have to be approximated in order
to obtain a solution. There is no single way to approximate them and, in fact, the choice
of approximate space for the small scales is one of the defining features of the solution
method.

We introduce the following compact notation

B (w,a,u) =

∫

Ω

w ·
(

ρ ∂tu+ ρ
1

2
a · ∇u

)

dΩ−
∫

Ω

∇w : ρ
1

2
(a⊗ u) dΩ

+

∫

Ω

∇sw : 2µ

(

∇su− 1

3
(∇ · u)

)

dΩ +

∫

ΓN

w · ρ1
2
(a · n)udΓ

D (w, p) =

∫

Ω

∇ ·w p dΩ

L (w) =

∫

Ω

w · f dΩ +

∫

ΓN

w · t dΓ

Note that we have modified the convective terms in B (w,a,u) to introduce a convection
velocity a. This notation is introduced for convenience, as it will allow us to introduce
a linearized version of the operator later. Using the compact notation, the weak form
of the problem can be expressed as

B (w,u,u)−D (w, p) = L (w) (2.16)

D (u, q) = 0 (2.17)

We introduce the scale separation of the problem variables in Eqs. (2.16) and (2.17).
Testing against large scale functions, we can write

B (wh,a,uh + us)−D (wh, ph + ps) = L (wh) (2.18)

D (uh + us, qh) = 0 (2.19)

If the small scale test functions are used instead, the following expression is obtained

B (ws,a,uh + us)−D (ws, ph + ps) = L (ws) (2.20)

D (uh + us, qs) = 0 (2.21)
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The large scale problem given by Eqs. (2.18) and (2.19) represents the finite element
approximation of the original problem, now containing terms that describe the effect
of the unresolved scales on the large scale solution. These additional terms cannot be
evaluated in practice, as the small scale variables are not known. VMS methods are
based on the definition of a model for the small scale variables, which is motivated by
the small scale problem of Eqs. (2.20) and (2.21). This model can then be introduced
in the large scale equations, closing the problem.

Before we apply this procedure to our problem, it is convenient to operate on
Eqs. (2.18) and (2.19) to eliminate all spatial derivatives of small scale functions, ob-
taining an expression that depends on us and ps, which will be modeled, but not on
their gradients, which will remain unknown. We start by separating the terms involving
the large and small scale parts of the solution

B (wh,a,uh)−D (wh, ph) + B (wh,a,us)−D (wh, ps) = L (wh)

D (uh, qh) +D (us, qh) = 0

Integrating by parts within each element in the mesh, differential operators acting
on us and ps are moved to the test functions. To do so, we introduce the notation of Ωe

to refer to the part of the problem domain corresponding to element e and Γe to denote
its boundary.

B (wh,a,uh)−D (wh, ph) +

∫

Ω

wh ρ∂tus dΩ

−
∑

e

∫

Ωe

ρ (a · ∇wh) · us dΩ +
∑

e

∫

Γe

w · ρ1
2
(a · n)us dΓ

−
∑

e

∫

Ωe

2µ∇ ·
(

∇swh −
1

3
(∇ ·wh)

)

us dΩ−
∫

Ω

∇ ·wh ps dΩ

+
∑

e

∫

Γe

2µwh ·
(

∇sus · n− 1

3
(∇ · us)n

)

dΓ = L (wh)

(2.22)

D (uh, qh) =
∑

e

∫

Ωe

∇qhus dΩ−
∑

e

∫

Γe

qhus · ndΓ (2.23)

In the present work, the boundary integrals appearing in Eqs. (2.22) and (2.23) will
be neglected. This is common in VMS formulations, and can be understood as assuming
that the small scale unknowns vanish on element boundaries.

In the following we express this element-by-element integration using the notation

∑

e

∫

Ωe

dΩ =

∫

ΣΩe

dΩ
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2.3.2 Small scale equation

Now the question is to define a model for us and ps that can be used to evaluate the
domain integrals in Eqs. (2.22) and (2.23). To do this, we start from the small scale
problem, given by Eqs. (2.20) and (2.21), which can be developed to read

∫

Ω

ws · ρ
(

∂tuh + ∂tus +
1

2
a · ∇ (uh + us)

)

dΩ−
∫

Ω

∇ws : ρ
1

2
(a⊗ (uh + us)) dΩ

+

∫

Ω

∇sws : 2µ

(

∇s (uh + us)−
1

3
∇ · (uh + us) I

)

dΩ−
∫

Ω

∇ ·ws (ph + ps) dΩ =

∫

Ω

ws · f dΩ +

∫

ΓN

ws ·
(

t+ ρ
1

2
(a · n) (uh + us)

)

dΓ

(2.24)
∫

Ω

qs ∇ · (uh + us) dΩ = 0

(2.25)

Again, it is convenient to use integration by parts element-by-element on some of
the terms in the momentum equation, obtaining the expression

∫

ΣΩe

ws · ρ
(

∂tuh + ∂tus +
1

2
a · ∇ (uh + us) +

1

2
∇ · (a⊗ (uh + us))

)

dΩ

+

∫

ΣΩe

ws∇ ·
(

(ph + ps) I − 2µ

(

∇s (uh + us)−
1

3
∇ · (uh + us) I

))

dΩ

+
∑

e

∫

Γe

ws

(

(ph + ps) · n + 2µ

(

∇s (uh + us)−
1

3
∇ · (uh + us)

)

· n
)

dΓe

+

∫

ΓN

ws · ρ
1

2
(a · n) (uh + us) dΓ−

∑

e

∫

Γe

ws · ρ
1

2
(a · n) (uh + us) dΓ =

∫

Ω

ws · f dΩ +

∫

ΓN

ws · t dΓ

(2.26)

Note that the elemental boundary integrals in Eq. (2.26) vanish over internal boundaries
because they involve either the exact traction or the exact velocity over the boundary,
which are both continuous. Similarly, they cancel out with the corresponding traction in
the Neumann boundary. As a result, all boundary terms in Eq. (2.26) can be eliminated
in the following.

Rearranging terms in Eqs. (2.26) and (2.25) to separate large and small scale un-
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knowns we can write
∫

ΣΩe

ws · ρ
(

∂tus +
1

2
a · ∇us +

1

2
∇ · (a⊗ us)

)

dΩ

∫

ΣΩe

ws ·
(

∇ps − 2µ∇ ·
(

∇sus −
1

3
(∇ · us) I

))

dΩ =

∫

Ω

ws · f dΩ−
∫

ΣΩe

ws · ρ
(

∂tuh +
1

2
a · ∇uh +

1

2
∇ · (a⊗ uh)

)

dΩ

−
∫

ΣΩe

ws ·
(

∇ph − 2µ∇ ·
(

∇suh −
1

3
(∇ · uh) I

))

dΩ

(2.27)

∫

Ω

qs∇ · us dΩ = −
∫

Ω

qs∇ · uh dΩ (2.28)

Eqs. (2.27) and (2.28) can be understood as the L2 projection onto the space of
small scales Ws×Qs of a differential equation, in the same sense as Eqs. (2.8) and (2.9)
represent the L2 projection onto W × Q of the Navier-Stokes equations. Moreover,
observing the right hand side terms of Eq. (2.27), we can see that it represents the
projection of the strong-form linear momentum equation applied to the large scale part
of the solution uh,ph. The same can be said about the right hand side of Eq. (2.27),
which corresponds to the mass conservation equation applied to the large scale velocity.

Denoting the projection onto the small scale spaces Ws, Qs with ΠVs
(·) and ΠQs

(·),
respectively, Eqs. (2.27) and (2.28) equation can be stated as

ΠVs

(

ρ∂tus + ρ
1

2
a · ∇us + ρ

1

2
∇ · (a⊗ us)

+∇ps − 2µ∇ ·
(

∇sus −
1

3
(∇ · us) I

))

=

ΠVs

(

f − ρ∂tuh − ρ
1

2
a · ∇uh − ρ

1

2
∇ · (a⊗ uh)

−∇ps + 2µ∇ ·
(

∇suh −
1

3
(∇ · uh) I

))

(2.29)

ΠQs
(∇ · us) = ΠQs

(−∇ · uh) (2.30)

Since Eqs. (2.29) and (2.30) must hold for all admissible small-scale test functions
ws and qs, they are equivalent to imposing that the small scale variables us, ps verify
the following problem in each element Ωe:

ρ∂tus + ρ
1

2
a · ∇us + ρ

1

2
∇ · (a⊗ us) +∇ps

−2µ∇ ·
(

∇sus −
1

3
(∇ · us) I

)

= Rm (uh, ph)− ξh

in Ωe × [0, T ) (2.31)

∇ · us = Rc (uh)− δh in Ωe × [0, T ) (2.32)
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whereRm (uh, ph) andRc (uh) represent the residual form of the Navier-Stokes equations
applied to the large scale variables

Rm (uh, ph) = f − ρ∂tuh − ρ
1

2
a · ∇uh − ρ

1

2
∇ · (a⊗ uh)−∇ph

+ 2µ∇ ·
(

∇suh −
1

3
(∇ · uh) I

) (2.33)

Rc (uh) = −∇ · uh (2.34)

and ξh and δh are chosen to enforce that right hand sides of Eqs. (2.31) and (2.32)
belong to the corresponding small scale space.

As mentioned in the previous pages, the small scale spaces are infinite-dimensional
and have to be approximated before the problem given by Eqs. (2.31) and (2.32) can
be solved. In practice, the definition of an approximate small scale space corresponds
to a choice of projectors ΠVs

(·) and ΠQs
(·). The most straightforward possibility is to

use the entire residual (without projecting to a particular space), which corresponds
to considering operators ΠVs

(·), ΠQs
(·) equal to the identity function or, equivalently,

ξh = 0 and δh = 0. This formulation gives rise to the algebraic sub-grid scale (ASGS)
method [27].

Another well-known choice consists in taking a small scale space that is orthogonal
to the large scale space. If ΠVh

(·) and ΠQh
(·) are the L2 projection onto the large scale

spaces Wh and Qh respectively, then the projections in Eqs. (2.29) and (2.30) are defined
as ΠVs

(·) ≈ Π⊥
Vh

(·), ΠQs
(·) ≈ Π⊥

Qh
(·). In this case, ξh and δh are chosen to subtract

from the equation the part of the residuals that belongs to the finite element space, that
is,

ξh = ΠVh
(Rm (uh, ph)) (2.35)

δh = ΠQh
(Rc (uh)) (2.36)

This choice leads to the orthogonal sub-scale (OSS) method, presented in [25, 28].

Note that, due to their definition, ξh and δh belong to the space of finite element
functions and can be constructed from their values on mesh nodes using standard finite
element interpolation functions.

A second important remark is that the calculation of ξh and δh requires knowledge
of the finite element solutions uh, ph and, as a result, it is coupled to the solution of the
stabilized Navier-Stokes equations. In principle, this would double the number of nodal
degrees of freedom of the problem. However, in practice, given that the Navier-Stokes
problem is non-linear and has to be solved iteratively anyway, the projection problem
can be implemented in an staggered way, updating the projections after each non-linear
Navier-Stokes iteration.

The problem for the small scales, given by Eqs. (2.31) and (2.32), is not usually
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solved. Instead, it is approximated by an expression of the form

ρ∂us +
1

τ u

us ≈ Rm (uh, ph)− ξh

1

τp
ps ≈ Rc (uh)− δh (2.37)

where second order tensor τ u and the scalar τp, known as stabilization parameters, are
algorithmic quantities that have to be defined to complete the method.

A motivation for this expression can be found in [28], where the parameters in
Eq. (2.37) are designed to ensure that the L2 norm of the modeled subscale variables is
the same as that of the exact small scale values. A different justification, based on the
approximation of the Green’s function of the small scale problem, is provided in [9, 55].

2.3.3 Quasi-static small scale models

While Eq. (2.37) represents the complete small scale model derived from the dynamic
Navier-Stokes equations, many VMS formulations that can be found in the literature
(see for example [9, 27, 46]) neglect the time variation of the velocity small scale model
and define the small scales as

us ≈ τ u (R
m (uh, ph)− ξh) ps ≈ τp (R

c (uh)− δh) (2.38)

This choice corresponds to the assumption that the velocity small scales adapt au-
tomatically to the large scale residual. Following the nomenclature of [27], we refer to
models based on Eq. (2.38) as quasi-static subscales, as opposed to dynamic subscale
models, based on Eq. (2.37).

To complete the formulation, a definition for the stabilization parameters is needed.
We follow the approach of [27], where the velocity stabilization parameter is taken to
be a diagonal matrix τ u = τuI and

τu =

(
c1µ

h2
+

c2ρ ‖a‖
h

)−1

(2.39)

τp =
h2

c1τu
= µ+

c2 ‖a‖ h
c1

(2.40)

where h is a characteristic length of the element and c1, c2 are constants, which, for
linear finite elements, are usually defined as c1 = 4, c2 = 2 (this is the case for example
in [26] or [29]). However, the studies presented in [7] for a turbulent channel flow in
the low Mach number regime suggest that the choice of values for these parameters can
have an impact on the solution. Based on the results presented in that reference and
in [32], we have adopted c1 = 8, c2 = 2 for our tests.

As pointed out in [30], the use of quasi-static subscales leaves open the possibility of
instabilities appearing for small time steps once the problem is discretized in time. The
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same instability is studied in [15] for the Stokes problem, where it is shown that it can
be neutralized if the stabilization parameter satisfies the condition

δt ≥ Cτu (2.41)

where δt is the time step and C is a constant. To avoid this instability, the stabilization
parameter τu can be replaced by the modified expression

τt =

(
ρ

δt
+

c1µ

h2
+

c2ρ ‖a‖
h

)−1

(2.42)

although, as remarked in [30], this introduces a dependency of the solution on the time
step, even for problems that result in a stationary solution.

2.3.4 Dynamic small-scale models

If, instead of the quasi-static model of Eq. (2.38), we use the dynamic model of (2.37),
the time evolution of the velocity small scale us has to be taken into account. This was
achieved in [28, 30] by introducing a time discretization for the small scale acceleration,
resulting in the time-discrete small scale model

ρ
un+θ

s − un
s

δt
+

1

τu
un+θ

s = (Rm (uh, ph)− ξh)|n+θ (2.43)

Taking θ = 1, which corresponds to a backward Euler time scheme, we can write a
closed expression for the small scale velocity, given by

(
ρ

δt
+

1

τu

)

un+1
s = (Rm (uh, ph)− ξh)|n+1 +

ρ

δt
un

s (2.44)

As remarked in [30], the effective stabilization parameter in Eq. (2.44) is

(
ρ

δt
+

1

τu

)−1

=

(
ρ

δt
+

c1µ

h2
+

c2ρ ‖a‖
h

)−1

(2.45)

which is precisely the expression introduced as τt in Eq. (2.42) and prevents the appari-
tion of instabilities due to small time steps. However, unlike in quasi-static approxi-
mations, when the problem has a stationary solution, the dependency on the time step
is eliminated as, in that case, un+1

s = un
s and the quasi-static model of Eq. (2.38) is

recovered.

From the point of view of its implementation, the main difference between the quasi-
static model of Eq. (2.38) and Eq. (2.44) is that the latter introduces the old value of
the velocity small scale un

s in the model. This means that us has to be tracked in time.
In practice, this implies evaluating and storing historical values for us on the integration
points of the finite element mesh.
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2.3.5 Complete equations

Once the small scale model is defined, it can be introduced in the large scale equations,
given by Eqs. (2.22) and (2.23). The most general formulation that can be obtained
from the material presented in the previous section is given by

Momentum equation

∫

Ω

wh · ρ
(

∂tuh +
1

2
a · ∇uh

)

dΩ−
∫

Ω

∇wh : ρ
1

2
(a⊗ uh) dΩ

−
∫

Ω

∇ ·wh ph dΩ +

∫

Ω

∇swh : 2µ

(

∇suh −
1

3
(∇ · uh) I

)

dΩ

+

∫

Ω

wh · ρ∂tus dΩ−
∫

ΣΩe

ρ (a · ∇wh) τt

(

Rm (uh, ph)− ξh +
ρ

δt
un

s

)

dΩ

−
∫

Ω

∇ ·whτp (R
c (uh)− δh) dΩ =

∫

Ω

whf dΩ +

∫

ΓN

wh

(

t− ρ
1

2
(a · n)uh

)

dΓ

(2.46)

Mass conservation

∫

Ω

qh∇ · uh dΩ =

∫

ΣΩe

∇qh τt

(

Rm (uh, ph)− ξh +
ρ

δt
un

s

)

dΩ (2.47)

The first two rows of Eq. (2.46), in combination with its right hand side, constitute
the standard Galerkin discretization of the momentum equation. The terms in the third
row model the effect of the velocity small scale fluctuations and the velocity small scale
itself, respectively, on the large scale equations, while the first term in the last row of
Eq. (2.46) represents the effect of pressure small scales.

Analogously, the left hand side of Eq. (2.47) represents the Galerkin weak form of
the incompressibility equation, while its right hand side models the effect of the small
scales in mass conservation.

While Eqs. (2.46) and (2.47) represent a general VMS formulation, they can be
particularized to recover several well-known stabilized methods:

D-ASGS Dynamic algebraic sub-grid scales [30]. The algebraic approximation to the small
scales is characterized by using an identity projector to define the small scale space,
which implies that the projection terms ξh and δh are zero.

Q-ASGS Quasi-static algebraic sub-grid scales [27]. A quasi-static approximation to the
small scales can be recovered by neglecting all terms involving either the small
scale acceleration ∂tus or the old small-scale velocities un

s and replacing τt by the
static stabilization parameter τu. Additionally, as the small scales are algebraic,
projection terms ξh and δh are also zero.



22 Variational multiscale stabilization for turbulent flow problems

D-OSS Dynamic orthogonal subgrid-scales [28, 30]. If the small scale space is assumed to
be orthogonal to the large scale space, the integral involving wh and ∂tus is zero,
as it corresponds to the L2 product of two terms belonging to orthogonal spaces.

Q-OSS Quasi-static orthogonal subgrid-scales [28] can be recovered from the original ex-
pression by neglecting all terms involving ∂tus or u

n
s and replacing τt by τu.

For OSS formulations, the projections ξh and δh are defined as the L2 projections of
the momentum and mass residuals, respectively, onto the finite element mesh. Applying
this definition, they can be obtained as the solution of the projection problem

∫

Ω

wh · ξh dΩ =

∫

Ω

wh ·Rm (uh, ph) dΩ

=

∫

Ω

wh

(

f − ρ∂tuh − ρ
1

2
a · ∇uh − ρ

1

2
∇ · (a⊗ uh)

)

dΩ

+

∫

Ω

wh

(

2µ∇ ·
(

∇suh −
1

3
(∇ · uh) I

)

−∇ph

)

dΩ

(2.48)

∫

Ω

qhδh dΩ =

∫

Ω

qhR
c (uh) dΩ = −

∫

Ω

qh∇ · uh dΩ (2.49)

The only question that remains to close the formulation is to provide a formal defi-
nition for the auxiliary convection velocity a, something that we have been deliberately
avoiding up to this point. This variable was introduced to linearize the convective
term, and in practice we can identify it with the last known value of velocity, which
corresponds to a Picard linearization of the momentum equation. However, in a con-
text of scale separation, should we use the large scale velocity uh or the full velocity
u = uh + us?

Both choices result in viable stabilized formulations. The classical approach is to
use only the large scale velocity uh, as it corresponds to the finite element solution.
However, from a theoretical point of view, using the full velocity uh+us has interesting
implications for turbulence modeling, which will be the main focus of Section 2.4.

2.4 VMS methods and Large Eddy Simulation

The concept of scale separation introduced by VMS formulations has some parallels
with Large Eddy Simulation (LES) methods for the simulation of turbulent flows. LES
turbulence models are also based on separating large and small motions in the flow, but
in the LES approach this is is typically achieved through the introduction a filtering
operation [101], defined as

u (x, t) =

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2

G (x− χ)u (χ, t) dχ (2.50)
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where G (x− χ) is a filter function defined on the interval [−∆/2,∆/2] and ∆ is known
as the filter width.

Applying a filter function to Eqs. (2.1) and (2.2) allows us to write the filtered
Navier-Stokes equations, given by

ρ ∂tu+ ρ∇ · (u⊗ u)− ρ∇ · τR −∇ · (2µ∇su) +∇p = f in Ω× [0, T ) (2.51)

∇ · u = 0 in Ω× [0, T ) (2.52)

where we have used the conservative form of the convective term and τR is the subgrid
stress tensor, defined as

τR = u⊗ u− u⊗ u (2.53)

The subgrid stress tensor represents the effect of the small scale motions on the
large scale part of the solution and and is an unknown, since the quantity u⊗ u cannot
be obtained from the filtered velocity u. This means that Eqs. (2.51) and (2.52) do
not represent a closed expression. However, if the filter width is chosen small enough
that the filtered-out small scale motions can be assumed to lie in the inertial subrange,
Kolmogorov’s hypotheses [64, 65] tell us that they have an isotropic, universal (problem-
independent) behavior. LES methods use this approach to motivate a model for τR and
justify its introduction in the filtered equations, closing the formulation.

Introducing the subgrid velocity ũ = u − u, the subgrid stress tensor τR can be
rewritten using the Leonard decomposition as

τR = L+C +R (2.54)

where each of the individual terms is defined as:

L = u⊗ u− u⊗ u Leonard stress (2.55)

C = ũ⊗ u+ u⊗ ũ Cross stress (2.56)

R = ũ⊗ ũ Reynolds stress (2.57)

The different terms in Eqs. (2.55)–(2.57) represent subgrid stresses due to the inter-
action between resolved motions (Leonard stresses), to the interaction between large and
unresolved motions (cross stresses) and to the effect of completely unresolved motions
(Reynolds stresses).

Like filtering in LES methods, scale separation in VMS formulations introduces a
clear division between the resolved and unresolved parts of the solution, which in this
case is achieved through the L2 projection to the finite element mesh. This projection
to the mesh was introduced in writing the large scale equation, given by Eqs. (2.18)
and (2.19), which is rewritten using the conservative form of the convective term to be
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consistent with the LES expression above, obtaining

∫

Ω

wh · ρ (∂tuh + ∂tus) dΩ−
∫

Ω

ρ∇wh : (uh + us)⊗ (uh + us) dΩ

+

∫

Ω

∇swh : 2µ∇s (uh + us) dΩ−
∫

Ω

∇ ·wh (ph + ps) dΩ =

∫

Ω

wh · f dΩ

(2.58)

∫

Ω

qh∇ · (uh + us) dΩ = 0 (2.59)

where boundary terms and terms related to the trace of the viscous stresses have been
omitted for clarity and the full velocity uh + us has been used for both arguments of
the convective term.

An analogy can be established between Eqs. (2.51) and (2.52), which represent the
filtered Navier-Stokes equations and Eqs. (2.58) and (2.59), which expresses the pro-
jection of the Navier-Stokes equations to the finite element mesh. This was analyzed
in [30, 58], where it is remarked that the convective term in Eq. (2.58) can be expanded
as

∫

Ω

ρ∇wh : (uh + us)⊗ (uh + us) dΩ =

∫

Ω

ρ∇wh : uh ⊗ uh dΩ

+

∫

Ω

ρ∇wh : us ⊗ uh dΩ +

∫

Ω

ρ∇wh : uh ⊗ us dΩ +

∫

Ω

ρ∇wh : us ⊗ us dΩ

(2.60)

The last three terms in Eq. (2.60) can be understood as a variational version of the LES
subgrid stress tensor τR. Ignoring the density, they can be rearranged as

∫

Ω

∇wh : us ⊗ uh dΩ +

∫

Ω

∇wh : uh ⊗ us dΩ +

∫

Ω

∇wh : us ⊗ us dΩ

=

∫

Ω

∇wh : (uh + us)⊗ (uh + us) dΩ−
∫

Ω

∇wh : uh ⊗ uh dΩ

=

∫

Ω

∇wh : τR
VMS dΩ

(2.61)

where we introduced τR
VMS as a variational analogue of the LES subgrid stress tensor.

Furthermore, τR
VMS can be decomposed into Cross and Reynolds terms as:

∫

Ω

∇wh : us ⊗ uh dΩ +

∫

Ω

∇wh : uh ⊗ us dΩ Cross stress (2.62)
∫

Ω

∇wh : us ⊗ us dΩ Reynolds stress (2.63)

while an analogue of the Leonard stress, representing the contribution of the resolved
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velocities uh to the unresolved stresses, appears in the corresponding small scale equation

∫

Ω

∇wh : uh ⊗ uh dΩ−
∫

Ω

∇w : uh ⊗ uh dΩ =

−
∫

Ω

∇ws : uh ⊗ uh dΩ Leonard stress

(2.64)

Assuming that the grid size is small enough for the unresolved scales to be in the
inertial subrange, we can observe that scale separation and projection to the finite
element mesh play a similar role to that of filtering in classical LES methods. It is
worth mentioning that the concept of mesh-induced filtering has also been explored
by the LES community, where it is known as implicit filtering. This is the basis of
the Monotone Integrated Large-Eddy Simulation (MILES) approach of Boris et al. [16],
where the authors propose not using an explicit model for the subgrid stresses and relying
instead on a specially designed numerical method to introduce the correct dissipation
for a given mesh resolution.

A different approach to VMS-based LES, which will only be mentioned here, is based
on a three–level scale separation (see for example [45, 46] or the review of [44]). In such
approaches, the small scales are in turn divided into resolved and unresolved small scales.
The presence of two levels of small scales can be used to either introduce explicit LES
model terms to represent the effect of the unresolved small scales on the problem or to
calibrate the amount of dissipation that is introduced using the variational equivalent
of the Germano identity [83, 84].

2.4.1 The VMS kinetic energy balance

Given that the derivation of VMS formulations is based exclusively in numerical and
mathematical arguments, the physical behavior of VMS methods, in terms of reproduc-
ing the expected dissipation rates when the small scales are on the inertial subrange,
has to be verified. This topic has been studied in [58, 59] for the formulation that we
are calling Q-ASGS and in [47, 102] for OSS-based methods.

An energy balance for the original Navier-Stokes problem can be obtained by taking
w = u in the Galerkin weak form of the momentum equation, given by Eq. (2.11),
which produces

∫

Ω

u · ρ∂tu dΩ +

∫

Ω

u ·
(
ρu · ∇u

)
dΩ +

∫

Ω

2µ∇su : ∇su dΩ

−
∫

Ω

∇ · up dΩ =

∫

Ω

u · f dΩ +

∫

ΓN

w · t dΓ
(2.65)

We are interested in obtaining a balance for the kinetic energy, E = ρu ·u/2. Using
the fact that the full velocity is incompressible and the equality u ∂u/∂x = 1/2 ∂u2/∂x,
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Eq. (2.65) can be expressed as
∫

Ω

∂tE dΩ

︸ ︷︷ ︸

I

+

∫

Ω

u · ∇E dΩ

︸ ︷︷ ︸

II

=

∫

Ω

u · f dΩ

︸ ︷︷ ︸

III

+

∫

ΓN

u · t dΓ
︸ ︷︷ ︸

IV

−
∫

Ω

2µ∇su : ∇sudΩ

︸ ︷︷ ︸

V

(2.66)

Eq. (2.66) expresses the balance of total kinetic energy E in the domain, and the
individual terms represent energy storage (I) and convection (II), the power exerted by
external forces (III) and boundary tensions (IV ) and finally viscous dissipation (V ).

We can obtain an equivalent expression for the kinetic energy contained in the large
scale motions, Eh = ρuh · uh/2, by taking wh = uh in Eq. (2.58), qh = ph in Eq. (2.59)
and adding the two equations, obtaining:
∫

Ω

uh · ρ (∂tuh + ∂tus) dΩ +

∫

Ω

uh · ρ∇ · ((uh + us)⊗ (uh + us)) dΩ

+

∫

Ω

∇suh : 2µ∇s (uh + us) dΩ−
∫

Ω

∇ · uh (ph + ps) dΩ

+

∫

Ω

ph∇ · (uh + us) dΩ =

∫

Ω

uh · f dΩ

(2.67)

Note that in Eq. (2.67), and for the remainder of this section, we neglected all
boundary integrals to simplify the discussion. This is equivalent to considering a problem
with homogeneous Dirichlet boundary conditions.

It is convenient to integrate some of the terms in Eq. (2.67) by parts and rearrange
the convective term as follows:

∫

Ω

uh · ρ∇ · ((uh + us)⊗ (uh + us)) dΩ =

=

∫

Ω

uh · ρ∇ · ((uh + us)⊗ uh) dΩ +

∫

Ω

uh · ρ∇ · ((uh + us)⊗ us) dΩ

=

∫

Ω

uh · ρ (uh + us) · ∇uh dΩ−
∫

Ω

ρ∇uh : (uh + us)⊗ us dΩ

=

∫

Ω

(uh + us) · ∇Eh dΩ−
∫

Ω

usρ (uh + us) · ∇uh dΩ

where we have used the fact that the exact velocity uh + us is divergence free.

With this, Eq. (2.67) can be restated as
∫

Ω

∂tEh dΩ

︸ ︷︷ ︸

I

+

∫

Ω

u · ∇Eh dΩ

︸ ︷︷ ︸

II

=

∫

Ω

uh · f dΩ

︸ ︷︷ ︸

III

−
∫

Ω

2µ∇suh : ∇suh dΩ

︸ ︷︷ ︸

IV

+

∫

Ω

ps∇ · uh dΩ

︸ ︷︷ ︸

V

−
∫

Ω

uh · ρ∂tus dΩ +

∫

Ω

us · (ρu · ∇uh +∇ph +∇ · (2µ∇suh)) dΩ

︸ ︷︷ ︸

V I

(2.68)
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Analogously to the complete energy balance, Eq. (2.68) can be understood as a bal-
ance for the kinetic energy associated to large scale motions. Terms I and II represent
the storage and convection of large scale kinetic energy, while term III represents the
power exerted by the external forces on large scale motions. Term IV is the viscous dis-
sipation associated to the large scale motions, which can be assumed to be negligible for
high Reynolds numbers. The remaining terms represent the transfer of energy between
large scale and residual motions, playing an analogous role to production terms in the
filtered Navier-Stokes equations.

Finally, we define the residual kinetic energy as kr = E − Eh. A balance statement
for kr can be obtained by subtracting Eq. (2.68) from Eq. (2.66), which results in

∫

Ω

∂tkr dΩ

︸ ︷︷ ︸

I

+

∫

Ω

u · ∇kr dΩ

︸ ︷︷ ︸

II

=

∫

Ω

us · f dΩ

︸ ︷︷ ︸

III

−
∫

Ω

2µ∇su : ∇su dΩ

︸ ︷︷ ︸

IV

+

∫

Ω

2µ∇suh : ∇suh dΩ

︸ ︷︷ ︸

V

−
∫

Ω

ps∇ · uh dΩ

︸ ︷︷ ︸

V I

+

∫

Ω

uh · ρ∂tus dΩ−
∫

Ω

us · (ρu · ∇uh +∇ph +∇ · (2µ∇suh)) dΩ

︸ ︷︷ ︸

V II

(2.69)

In Eq. (2.69), terms I and II represent the storage and convection of residual kinetic
energy, while term III represents the power exerted by the external forces on small scale
(high wavenumber) motions. The next two terms represent the difference between the
total viscous dissipation (IV ) and the large scale viscous dissipation (V ), which was
already accounted for in the large scale energy balance of Eq. (2.68). Again, we remark
that, in practice, term V is expected to be negligible in comparison to term IV , since
viscous dissipation occurs predominantly for motions in the range of the Kolmogorov
length scale, while uh will contain only motions on a much larger scale h, lying on
the inertial subrange. Finally, terms V I and V II represent the production of residual
energy due to the pressure and velocity small scales, respectively, and are exactly the
same (but now with opposite sign) as the production terms in Eq. (2.68).

Terms V I and V II can be modified by noting that, since ps ∈ Qs and us ∈ Vs,
∫

Ω

ps∇ · uh dΩ =

∫

Ω

psΠQs
(∇ · uh) dΩ (2.70)

∫

Ω

us · (ρu · ∇uh +∇ph +∇ · (2µ∇suh)) dΩ =
∫

Ω

us ·ΠVs

(
ρu · ∇uh +∇ph +∇ · (2µ∇suh)

)
dΩ

(2.71)

The last step to obtain the residual kinetic energy balance is to introduce the small
scale models for velocity and pressure in Eqs. (2.70) and (2.71). Noting that (2µ∇suh)
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represents the large scale viscous dissipation and will be negligible for high Reynolds
numbers, we can write
∫

Ω

us · ΠVs
(ρu · ∇uh +∇ph) dΩ +

∫

Ω

psΠQs
(∇ · uh) dΩ =

∫

Ω

τuΠVs
(f) · ΠVs

(ρu · ∇uh +∇ph) dΩ

︸ ︷︷ ︸

I

−
∫

Ω

τu
∣
∣ΠVs

(ρu · ∇uh +∇ph)
∣
∣2 dΩ

︸ ︷︷ ︸

II

+

∫

Ω

τuρ∂tus · ΠVs
(ρu · ∇uh +∇ph) dΩ

︸ ︷︷ ︸

III

−
∫

Ω

τp
∣
∣ΠQs

(∇ · uh)
∣
∣
2
dΩ

︸ ︷︷ ︸

IV

(2.72)

It is clear that terms II and IV , since the stabilization parameters τu and τp were
defined as strictly positive. They play the role of energy sinks in the large scale energy
balance of Eq. (2.68), while acting as sources on the residual energy equation Eq. (2.69).
Term I is problem dependent but, if an OSS small scale model is used, it will vanish
unless the external forces have a high-frequency (small scale) component. Finally, term
III only exists for dynamic small scale models. This fact was used in [102] to justify
that OSS formulations can account for backscatter (energy transfer from the small scales
to the large ones) if a dynamic small scale model is used.

Starting from a similar reasoning, Guasch and Codina [47] use statistical and scaling
arguments to show that OSS formulations extract energy from the large scale equations
at the correct rate, provided that some constraints on the behavior of stabilization
parameters are respected.

As a final remark on this topic, we compare the large scale energy balance to the
filtered energy balance used in filter-based LES formulations. If the kinetic energy
associated to the filtered velocity field is defined as E = ρu ·u/2, the balance for E can
be obtained by multiplying the filtered linear momentum equation Eq. (2.51) by u and
integrating over the fluid domain (see [101]), resulting in
∫

Ω

∂tE dΩ+

∫

Ω

u ·∇E dΩ =

∫

Ω

u ·f dΩ−
∫

Ω

2µ∇su : ∇su dΩ+

∫

Ω

∇su : τR dΩ (2.73)

where boundary fluxes have been omitted.

We can introduce the definition of the VMS subgrid stress tensor τR
VMS in Eq. (2.67),

obtaining
∫

Ω

uh · ρ (∂tuh + ∂tus) dΩ +

∫

Ω

ρuh∇ · (uh ⊗ uh) dΩ

−
∫

Ω

ρ∇uh : τR
VMS dΩ +

∫

Ω

∇suh : 2µ∇s (uh + us) dΩ

−
∫

Ω

∇ · uh (ph + ps) +

∫

Ω

ph∇ · (uh + us) =

∫

Ω

uh · f dΩ

(2.74)
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where the conservative form of the convective term has been used. Rearranging some
terms, Eq. (2.74) can be rewritten as
∫

Ω

∂tEh dΩ

︸ ︷︷ ︸

I

+

∫

Ω

uh · ∇Eh dΩ

︸ ︷︷ ︸

II

=

∫

Ω

uh · f dΩ

︸ ︷︷ ︸

III

−
∫

Ω

2µ∇suh : ∇suh dΩ

︸ ︷︷ ︸

IV

+

∫

Ω

ps∇ · uh dΩ

︸ ︷︷ ︸

V

−
∫

Ω

uh · ρ∂tus dΩ−
∫

Ω

us · (∇ph −∇ · (2µ∇suh)) dΩ

︸ ︷︷ ︸

V I

+

∫

Ω

ρ∇suh : τR
VMS dΩ

︸ ︷︷ ︸

V II

(2.75)

where we have used the fact that τR
VMS is a symmetric tensor to write ∇uh : τR

VMS =
∇suh : τR

VMS. Terms I to V I have an analogous interpretation to their counterparts in
Eq. (2.68), but here we have obtained an additional term, V II, which explicitly repre-
sents the contribution of the residual subgrid stresses in the energy transfer. Comparing
Eq. (2.75) to Eq. (2.73), we see that both LES and VMS approaches extract energy
from the large scale problem through subgrid stresses, but that the variational approach
gives rise to two additional energy transfer mechanisms, represented by terms V and
V I, compared to filter-based LES.

2.5 Discrete problem

To obtain a finite element solver based on the VMS formulation introduced in Section 2.3
we need to discretize the simulation domain, both in space and in time, and linearize
the problem to obtain a system of equations that can be inverted using a linear solver.
We start by introducing a finite element partition Ωh for the problem domain Ω. Given
the discrete domain Ωh, the large scale interpolation spaces Vh and Qh can be identified
with the standard finite element interpolation functions and the large scale part of the
solution, uh and ph, can be represented using a finite element interpolation as

uh =

nn∑

a

N a (x)ua ph =

nn∑

a

Na (x) pa (2.76)

where nn represents the number of nodes in the finite element mesh, ua and pa are
the nodal values of the large scale variables uh and ph respectively, Na represents the
standard finite element basis function associated to node a and N a its counterpart for
vectorial variables, given by

N a =





Na 0 0
0 Na 0
0 0 Na





Additionally, we introduce the following notation for the gradient and divergence of
the finite element shape functions, which will be used to write the discrete form of the
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differential operators involved in the problem

(∇Na)
T =

[
∂Na

∂x

∂Na

∂y

∂Na

∂z

]

∇ ·N a =

[
∂Na

∂x

∂Na

∂y

∂Na

∂z

]

(∇N a)
T =












∂Na

∂x
0 0

∂Na

∂x
0 0

∂Na

∂x
0 0

0
∂Na

∂y
0 0

∂Na

∂y
0 0

∂Na

∂y
0

0 0
∂Na

∂z
0 0

∂Na

∂z
0 0

∂Na

∂z












(2.77)

We also introduce the following operator to describe convection

a · ∇N a =





a · ∇Na 0 0
0 a · ∇Na 0
0 0 a · ∇Na



 (2.78)

and the strain rate matrix, which will be used to write the discrete version of the viscous
term

BT
a =












∂Na

∂x
0 0

∂Na

∂y
0

∂Na

∂z

0
∂Na

∂y
0

∂Na

∂x

∂Na

∂z
0

0 0
∂Na

∂z
0

∂Na

∂y

∂Na

∂x












(2.79)

Additionally, we define U , U̇ and P as the vectors of nodal values of large scale
velocity uh, acceleration ∂tuh and pressure ph, respectively.

We introduce the finite element discretization of Eq. (2.76) in the variational formu-
lation given by Eqs. (2.46) and (2.47) to obtain the matrix form of the problem. We
will analyze the resulting expression for each of the variants we are considering in turn.

Note that in the present work we use linear finite elements, which can not be used to
write second derivatives of the variables or test functions. As a result, terms involving
∇ · ∇swh in Eq. (2.46) or the strong-form viscous term that appears in the residual
Rm (uh, ph) introduced in Eq. (2.33) will be neglected in the discrete form. It must be
remarked that all terms lost in this way are related to viscous stresses, which should be
small in turbulent flow problems.

2.5.1 Quasi-static ASGS formulation

The quasi-static ASGS formulation is in some sense the classical VMS formulation for
the Navier-Stokes equations. It is also relatively simple, as it does not involve dynamic
terms or projections, so we will present it first.



2.5. Discrete problem 31

Starting from Eqs. (2.46) and (2.47), we can neglect all terms involving the projec-
tions ξh or δh. As the small scales are described using Eq. (2.38), terms involving un

s

or ∂tus in these equations can be ignored and the momentum stabilization parameter
is τu, given by Eq. (2.39). After these simplifications, we introduce the finite element
interpolation of Eq. (2.76) to describe the problem variables uh, ph. Testing against
each nodal basis function in turn we obtain a system of equations that can be expressed
in matrix form as

[
M + Sm (τu,a)

]
U̇ +

[
C (a) +K + Su (τu,a) +Hu (τp)

]
U

+
[
G+ Sp (τu,a)

]
P = F + T + Sf (τu,a)

(2.80)

Qm (τu) U̇ +
[
D +Qu (τu,a)

]
U +Qp (τu)P = Qf (τu) (2.81)

Again, we have used a generic convection velocity a in all terms that have a non-
linear dependence of velocity. Doing so, we leave open the possibility of using either
the full velocity a = uh + us or the only large scale part a = uh. Note that, for linear
finite elements, the latter choice is equivalent to the Galerkin-Least Squares (GLS)
method [56].

The different matrices in Eqs. (2.80) and (2.81) represent the discrete version of the
operators in Eqs. (2.46) and (2.47) and can be built from the assembly of elemental
contributions. In general, matrix A is constructed by the finite element assembly of
elemental matrices of the form Ae. For a finite element with N nodes, Ae can be
defined using N × N blocks Ae

ab, where a and b are local node indices. Using this
notation, the standard Galerkin terms in the variational form of the problem give rise
to the following elemental matrices

M e
ab =

∫

Ωe

ρNT
aN b dΩ (2.82)

C (a)eab =

∫

Ωe

ρ
1

2

(

NT
a a · ∇N b − (a · ∇N a)

T
N b

)

dΩ (2.83)

+

∫

ΓN

N T
a ρ

1

2
(a · n)N b dΓ (2.84)

Ke
ab =

∫

Ωe

BT
aCµBb dΩ (2.85)

Ge
ab =−

∫

Ωe

(∇ ·N a)
T Nb dΩ (2.86)

De
ab =

∫

Ωe

Na∇ ·N b dΩ = −
(
Ge

ba

)T
(2.87)

F e
a =

∫

Ωe

NT
a f dΩ (2.88)

T e
a =

∫

ΓN

NT
a t dΓ (2.89)
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When defining the viscous matrix Ke
ab in Eq. (2.85) we introduced the constitutive

matrix Cµ, which is given by

Cµ =











4µ/3 −2µ/3 −2µ/3 0 0 0
−2µ/3 4µ/3 −2µ/3 0 0 0
−2µ/3 −2µ/3 4µ/3 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ











(2.90)

In the same way, the stabilization terms in the Q-ASGS give rise to additional
elemental matrices, expressed here as

Sm (τu,a)
e
ab =

∫

Ωe

(ρa · ∇N a)
T τu N b dΩ (2.91)

Su (τu,a)
e
ab =

∫

Ωe

(ρa · ∇N a)
T τu ρa · ∇N b dΩ (2.92)

Sp (τu,a)
e
ab =

∫

Ωe

(ρa · ∇N a)
T τu ∇Nb dΩ (2.93)

Sf (τu,a)
e
ab =

∫

Ωe

(ρa · ∇N a)
T τu f dΩ (2.94)

Qm (τu)
e
ab =

∫

Ω

(∇N a)
T τu N b dΩ (2.95)

Qu (τu,a)
e
ab =

∫

Ωe

(∇N a)
T τu ρa · ∇N b dΩ =

(
Sp (τu,a)

e
ba

)T
(2.96)

Qp (τu)
e
ab =

∫

Ωe

(∇N a)
T τu ∇N b dΩ (2.97)

Qf (τu)
e
ab =

∫

Ωe

(∇N a)
T τu f dΩ (2.98)

Hu (τp)
e
ab =

∫

Ωe

(∇ ·N a)
T τp ∇ ·N b dΩ (2.99)

2.5.2 Quasi-static OSS formulation

The next variant to be presented is the quasi-static OSS formulation. Compared to the
Q-ASGS formulation, OSS is characterized by the inclusion of the projections ξh and δh,
which make the small scale variables orthogonal to the large scale unknowns and should
reduce the overall amount of numerical diffusion introduced in the problem. As in the
previous case, we leave open the possibility of using either a = uh + us or a = u for
convection and the corresponding stabilization terms. The matrix form of the Q-OSS
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formulation can be expressed as

[
M + Sm (τu,a)

]
U̇ +

[
C (a) +K + Su (τu,a) +Hu (τp)

]
U

+
[
G+ Sp (τu,a)

]
P = F + T + Sf (τu,a)− SΠ (τu,a)−HΠ (τu)

(2.100)

Qm (τu) U̇ +
[
D +Qu (τu,a)

]
U +Qp (τu)P = Qf (τu)−QΠ (τu) (2.101)

where the following three new terms terms, involving the projections, have been intro-
duced:

SΠ (τu,a)
e
a =

∫

Ωe

(ρa · ∇N a)
T · τu ξh dΩ (2.102)

QΠ (τu)
e
a =

∫

Ωe

(∇Na)
T · τu ξh dΩ (2.103)

HΠ (τp)
e
a =

∫

Ωe

(∇ ·N a)
T τp δh dΩ (2.104)

The calculation of the projections involves the solution of an additional problem,
given by Eqs. (2.48) and (2.49), which can be expressed in discrete form as

M ξΞ = Rξ (2.105)

M δ∆ = Rδ (2.106)

where Ξ and ∆ represent the vectors of nodal values of ξh and δh respectively and the
remaining matrices and vectors are given by

M e
ξ ab =

∫

Ωe

NT
a N b dΩ (2.107)

M e
δ ab =

∫

Ωe

NaNb dΩ (2.108)

Re
ξ a =

∫

Ωe

NT
a ·Rm (uh, ph) dΩ (2.109)

Re
δ ab =

∫

Ωe

NaR
c (uh) dΩ (2.110)

Eqs. (2.105) and (2.106) represent an additional problem, coupled to Eqs (2.100)
and (2.101), which effectively doubles the number of nodal unknowns in the problem.
However, since the system matrices for the projection problem, defined by Eqs. (2.107)
and (2.108), are effectively mass matrices, they can be replaced by the corresponding di-
agonal mass matrix, which allows us to obtain an approximate projection while avoiding
the solution of an additional system.

Note that the matrices Sm (τu,a) andQm (τu) that appear in Eqs. (2.100) and (2.101)
are not strictly necessary in OSS based formulations, since they involve the acceleration
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term that appears in the residual Rm (uh, ph). As noted in [27], the acceleration of
the large scale lies in the large scale space Vh and therefore its projection should be
itself. As a result, we could neglect both these terms if we also not take into account
∂tuh when evaluating the residual that appears in the projection right hand side vector
Rξ. However, as the projection is only calculated approximately using a diagonal mass
matrix, we have found it convenient to take these terms into account to improve stability.

2.5.3 Dynamic ASGS formulation

When we use a dynamic approximation for the subscales we have keep track and update
the small scale values at each integration point of the mesh. The dynamic small scale
velocities are defined by the local problem given by Eq. (2.37), which was discretized in
time using a Backward Euler time scheme to produce Eq. (2.43). Eq. (2.43) provides an
expression for un+1

s in terms of the residual and the old subscale value un
s . The same

Backward Euler scheme can also be used to obtain the following time-discrete expression
for the small scale acceleration ∂tus that appears in the variational form of the problem:

∂tus ≈
un+1

s − un
s

δt
=

τt
δt

(

Rm (uh, ph)
∣
∣
n+1

− ξh

)

+ ρ
τt
δt2

un
s −

1

δt
un

s (2.111)

Introducing Eq. (2.111) in Eqs. (2.46), we obtain a modified momentum equation
with time-discrete small scales, given by

∫

Ω

wh · ρ
(

∂tuh +
1

2
a · ∇uh

)

dΩ−
∫

Ω

∇wh : ρ
1

2
(a⊗ uh) dΩ

−
∫

Ω

∇ ·wh ph dΩ +

∫

Ω

∇swh : 2µ

(

∇suh −
1

3
(∇ · uh) I

)

dΩ

+

∫

ΣΩe

ρwh ·
( τt
δt

(Rm (uh, ph)− ξh) + ρ
τt
δt2

un
s

)

dΩ−
∫

Ω

∇ ·whτp (R
c (uh)− δh) dΩ

−
∫

ΣΩe

ρ (a · ∇wh) τt

(

Rm (uh, ph)− ξh +
ρ

δt
un

s

)

dΩ =

∫

Ω

whf dΩ +

∫

ΓN

wh

(

t− ρ
1

2
(a · n)uh

)

dΓ +

∫

ΣΩe

ρwh
1

δt
un

s dΩ

(2.112)

where the first term in the third row and the last term on the right hand side appear
from the time discretization of the small scale acceleration. Note that all terms without
an n index are evaluated at the current time step. Although they play no role in ASGS
stabilization, we have included the projections ξh and δh both in Eq. (2.111) and in
Eq. (2.112), since the same expressions will be used as a starting point for the dynamic
OSS method.
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The matrix form of the D-ASGS formulation can be written as
[
M + Ŝm (τt,uh + us)

]
U̇ +

[
C (+)K + Ŝu (τt,uh + us) +Hu (τp)

]
U

+
[
G+ Ŝp (τt,uh + us)

]
P = F + T + Ŝf (τt,uh + us) + Sd (τt,u

n
s )− Ŝd (τt)u

n
s

(2.113)

Qm (τt) U̇ +
[
D +Qu (τt,uh + us) +Qd (τt,u

n
s )
]
U +Qp (τt)P = Qf (τt) (2.114)

where we have introduced three new terms on the right hand side involving the old
subscale velocity, defined as

Sd (τt,u
n
s )

e
a =

∫

Ωe

(ρa · ∇N a)
T · ρ τt

δt
un

s dΩ (2.115)

Ŝd (τt)u
n
s
e
a =

∫

Ωe

ρ (N a)
T · ρ τt

δt2
un

s dΩ (2.116)

Qd (τt,u
n
s )

e
a =

∫

Ωe

(∇N a)
T · ρ τt

δt
un

s dΩ (2.117)

The terms that arise from the residual in the expression for the small scale acceler-
ation, Eq. (2.111), have been grouped with the corresponding terms in the small scale
velocity model, resulting in the following modified stabilization matrices:

Ŝm (τt,a)
e
ab =

∫

Ωe

ρ

(

a · ∇N a −
1

δt
N a

)T

τt N b dΩ (2.118)

Ŝu (τt,a)
e
ab =

∫

Ωe

ρ

(

a · ∇N a −
1

δt
N a

)T

τt ρa · ∇N b dΩ (2.119)

Ŝp (τt,a)
e
ab =

∫

Ωe

ρ

(

a · ∇N a −
1

δt
N a

)T

τt ∇Nb dΩ (2.120)

Ŝf (τt,a)
e
ab =

∫

Ωe

ρ

(

a · ∇N a −
1

δt
N a

)T

τt f dΩ (2.121)

Note that, unlike in the quasi-static variants, we will only consider using the full
velocity uh + us to calculate convection for dynamic subscale models.

2.5.4 Dynamic OSS formulation

Finally, we consider the discrete form of the dynamic OSS formulation. Here, contrary
to what happened for the D-ASGS formulation, the integral involving wh and ∂tus can
be eliminated a priori, since it corresponds to the L2 inner product of two terms that
belong to orthogonal subspaces. This results in the following matrix formulation:

[
M + Sm (τt,uh + us)

]
U̇ +

[
C (+)K + Su (τt,uh + us) +Hu (τp)

]
U

+
[
G+ Sp (τt,uh + us)

]
P =

F + T + Sf (τt,uh + us) + Sd (τt,u
n
s )− SΠ (τt,uh + us)−HΠ (τp)

(2.122)
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Qm (τt) U̇ +
[
D +Qu (τt,uh + us)

]
U+

Qp (τt)P = Qf (τt) +Qd (τt,u
n
s )−QΠ (τt)

(2.123)

where all involved elemental matrices have already been defined in the previous sections.

Note that, as presented for the Q-OSS method, the projections can be solved using a
diagonal mass matrix to avoid the solution of an additional system. In this case, there is
also the possibility of re-introducing in Eq. (2.122) and (2.123) all terms neglected using
an orthogonality argument. To do so, we can replace Sm (τt,uh + us), Su (τt,uh + us),
Sp (τt,uh + us) and Sd (τt,u

n
s ) by their D-ASGS variants, given by Eqs. (2.118)–(2.121),

and subtracting Ŝd (τt)u
n
s , given by Eq. (2.116), from the right hand side of Eq. (2.122).

2.5.5 Time integration

Regardless of the VMS variant used, once the problem has been discretized in space we
obtain an equivalent matrix problem written in terms of the vectors of nodal velocities
U , pressures P and accelerations U̇ that can be expressed in general form as

M̃

[

U̇

0

]

+ C̃

[
U

P

]

= F̃ (2.124)

We need to introduce a time discretization to write the accelerations in terms the
velocities. For this we use the Bossak time integration method (see [54]), which can be
described as a member of the generalized-α Newmark family of methods with second or-
der accuracy in time. The basic expression of the Newmark method, which is commonly
used in solid mechanics problem and written in terms of displacements d, velocities u
and accelerations u̇, is

dn+1 = dn +∆t un +
∆t2

2
[(1− 2βN) u̇

n + 2βN ] (2.125)

un+1 = un +∆t
[
(1− γN) u̇

n + γN u̇
n+1
]

(2.126)

where βN and γN are constant parameters. In fluid dynamics it is convenient to rewrite
Eq. (2.125) and (2.126) in terms of velocities, as these are the main variables of the
problem, resulting in

u̇n+1 =
1

γN∆t

(
un+1 − un

)
−
(

1

γN
− 1

)

u̇n (2.127)

dn+1 = dn +∆t

(

1− βN

γN

)

un +∆t2
γN − 2βN

2γN
u̇n +

βN∆t

γN
un+1 (2.128)

Note that for the velocity based formulation, the displacements only appear in the
equation for the new displacements, Eq. (2.128). As a result, both the displacements
and the equation to obtain them can be omitted from the problem if we are not interested
in their values.
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The Bossak method is a generalization of the Newmark method based on introducing
a relaxation factor on the acceleration of the system

(1− αB)M̃

[

U̇
n+1

0

]

+ αBM̃

[

U̇
n

0

]

+ C̃

[
Un+1

P n+1

]

= F̃ (2.129)

In the Bossak scheme, Eq. (2.127) is used to discretize in time Eq. (2.129), obtaining
a system that depends exclusively on velocities, pressures and their spatial gradients.
After rearranging some terms, this yields the following time-discrete problem
(
1− αB

γN∆t
M̃ + C̃

)[
Un+1

P n+1

]

=

F̃ − 1− αB

γN∆t
M̃

[
Un

0

]

+

{

(1− αB)

(
1

γN
− 1

)

+ αB

}

M̃

[

U̇
n

0

] (2.130)

A common choice for the Bossak parameter is αB = −0.3, which provides maximum
damping of high-frequency oscillations. The Newmark parameters are then chosen to
be

γN =
1

2
− αB βN =

(1− αB)
2

4

2.5.6 Linearization of the large scale problem

The system described in Eq. (2.130) is non-linear due to the fact that the convective
operator, the stabilization parameters, multiple stabilization matrices and the projec-
tions all depend on the current value of velocity. We define the residual of the problem
at time step n + 1 after i non-linear iterations as

R
(
Un+1, i,P n+1, i

)
= F̃ − 1− αB

γN∆t
M̃

[
Un

0

]

+

{

(1− αB)

(
1

γN
− 1

)

+ αB

}

M̃

[

U̇
n

0

]

−
(
1− αB

γN∆t
M̃ + C̃

)[
Un+1, i

P n+1, i

] (2.131)

The problem now consists in finding Un+1, i+1, P n+1, i+1 such that Rn+1, i+1 = 0. De-
noting the increment between two successive iterations with δU i = Un+1, i+1 −Un+1, i,
we use a first order Taylor decomposition to write the zero of Eq. (2.131) as

R
(
Un+1, i+1,P n+1, i+1

)
= R

(
Un+1, i,P n+1, i

)
+

∂R
(
Un+1, i+1,P n+1, i+1

)

∂
(
δU i, δP i

)

[
δU i

δP i

]

= 0

(2.132)
We use Picard iterations, evaluating all matrices and vectors using the last known values
of the variables. With this approximation, the system matrix can be written as

∂R
(
Un+1, i+1,P n+1, i+1

)

∂
(
δU i, δP i

)

∣
∣
∣
∣
∣
i

≈ 1− αB

γN∆t
M̃ + C̃ (2.133)
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which means that the linear system of equations that is assembled and solved at each
iteration is

−
(
1− αB

γN∆t
M̃ + C̃

)[
δU i

δP i

]

= R
(
Un+1, i,P n+1, i

)
(2.134)

The problem given by Eq. (2.134) is solved iteratively until the increments of the system
variables δU i and δP i or the residual vector R

(
Un+1, i,P n+1, i

)
are smaller than a

predefined tolerance.

2.5.7 Tracking of dynamic subscales

The dynamic small scale problem was discretized in time as Eq. (2.44). Using the full
velocity, which is divergence-free, as the convective velocity, and neglecting the viscous
stress term, since we are restricting ourselves to linear finite elements, we expand the
residual Rm (uh, ph) that appears in Eq. (2.44) to obtain the following expression for
the small scale velocity:

1

τt
un+1

s = f − ρ
(
∂tu

n+1
h −

(
un+1

h + un+1
s

)
· ∇un+1

h

)
−∇pn+1

h − ξn+1
h +

ρ

∂t
un

s (2.135)

Eq. (2.135) is non-linear, since τt and ξh both depend on un+1
s when using a =

uh + us. Moreover, it is coupled to the large scale problem through its dependence to
un+1

h and pn+1
h . Similarly, under these assumptions, all terms that depend on τt or the

convection velocity in the large scale problem require a value for un+1
s to be computed.

To update the value of the small scale velocity we follow the procedure presented
in [7, 8]. Given known values of the large scale variables, un+1

h and pn+1
h , we define a

target function

g
(
un+1, k

s

)
=f − ρ

(
∂tu

n+1
h − un+1

h · ∇un+1
h

)
−∇pn+1

h

− ξn+1
h +

ρ

∂t
un

s −
1

τkt
un+1, k

s − ρun+1, k
s · ∇un+1

h

(2.136)

where we use τkt to denote τt computed using a = un+1
h + un+1, k

s in Eq. (2.42). We use
Newton-Raphson iterations to find a zero of g (un+1

s ), resulting in

− ∂g
(
un+1, k

s

)

∂un+1, k
s

(
un+1, k+1

s − un+1, k
s

)
= g

(
un+1, k

s

)
(2.137)

The tangent matrix in Eq. (2.137) is computed neglecting the dependence of τt on
un+1, k

s , resulting in:

− ∂g
(
un+1, k

s

)

∂un+1, k
s

≈ 1

τt
I +

(
∇un+1

h

)T
(2.138)

With this we can obtain new values for un+1
s by iteratively solving Eq. (2.137) on each

integration point. These can be used to evaluate the values of the convective velocity
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and τt in the next iteration of the large scale problem. Similarly, once the large scale
problem is converged and we advance to the next time step, Eq. (2.137) is solved once
more to obtain the historical values for the small scale.

Note that, for OSS formulations, ξn+1
h also depends on the value of un+1, k

s , as it
represents the L2 projection of Rm (uh, ph). However, this dependence is ignored in
the procedure outlined in this section. Taking it into account would imply solving the
(global) projection problem, given by Eqs. (2.105) and (2.106), every time a new un+1, k

s

is obtained.

2.5.8 Finite element solution algorithm

As a summary of the formulation described in this section, we present the full solution
procedure for the method as Algorithm 2.1, including the calculation of nodal projections
and tracking of dynamic small scales. For variants where they are not necessary, the
corresponding step in the algorithm can be skipped.

Algorithm 2.1 VMS incompressible flow solver.

1: for n in [0, N ] do
2: Set n = n+ 1, t = t+∆t
3: Set un+1, 0

h = un
s , p

n+1, 0
h = pns

4: while
∥
∥R

(
Un+1, i,P n+1, i

)∥
∥ ≤ tolerance do

5: Set i = i+ 1
6: for each integration point do
7: Given u

n+1, i
h , pn+1, i

h , obtain un+1, i
s by iteratively solving Eq. (2.137).

8: end for

9: Assemble and solve the global system of Eq. (2.134) for δU i, δP i.
10: Update u

n+1, i
h , pn+1, i

h .
11: Use Eqs. (2.105) and (2.106) to find new projections ξn+1, i

h , δn+1, i
h .

12: end while

13: Calculate the large scale acceleration ∂tu
n+1
h according to Eq. (2.127).

14: for each integration point do
15: Solve Eq. (2.137) to obtain historical values for the small scale un+1

s .
16: end for

17: end for

This procedure was implemented within the Kratos Multiphysics finite element
framework and used to compute all numerical test cases presented in this chapter.
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2.6 A new model for the pressure subscale

As described in the previous pages, the VMS formulation provides a stabilized method
for the simulation of the Navier-Stokes equations that can be understood as a turbulence
model, as justified in Section 2.4. However, its application in numerical simulations
shows that the results have a strong dependency on the choice of the stabilization
parameters. This is observed both in our own results and in the literature (see for
example [7, 32], which use basically the same formulation we have described), where it
can be observed that the obtained mean velocity profile in the turbulent channel flow
changes depending on the precise definition of τu and on whether the pressure small
scale is considered or taken to be zero. In particular, the results in [32] suggest that the
optimal choice is problem-dependent, since some test cases provide a better fit to the
reference data when the pressure small scale is kept, while in other cases neglecting it
yields better results.

All this suggests that the current design for the stabilization parameters does not
capture the correct behavior for at least some turbulent flow problems. To further
investigate this issue, we study an alternate design for the pressure subscale. We start
by motivating the design for the stabilization parameters we have been using up to this
point and follow by presenting an alternative.

2.6.1 On the design of the stabilization parameters

Recall that the small scale model is motivated by the small scale problem, given by
Eqs. (2.31) and (2.32), repeated here in simplified form as

ρ∂tus + ρa · ∇us − 2µ∇ · ∇sus +∇ps = Rm (uh, ph)− ξh in Ωe × [0, T ) (2.139)

∇ · us = Rc (uh)− δh in Ωe × [0, T ) (2.140)

where we have written the convective term in non-conservative form and neglected the
trace of ∇sus. The motivation for the stabilization parameters used up to now, τu (or
τt) and τp, is given in [28], where the response of Eqs. (2.139) and (2.140) to high wave
number excitations (which we are most interested in, since the small scales represent
highly fluctuating motions) is analysed. In such circumstances, it is observed that

ρa · ∇us − 2µ∇ · ∇sus ∼ us

[
(

c1
µ

h2

)2

+

(

c2
ρ ‖a‖
h

)2
]1/2

(2.141)

‖∇ps‖ ∼ ps
1

h
∇ · us ∼

1

h
‖us‖ (2.142)

The design for τu given in Eq. (2.39) can be justified by noting that 1/τu has the same
limit behavior as the term in Eq. (2.141) when either the convective or the viscous terms
are significantly larger than the other. The justification for τp is given by introducing
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Eq. (2.141) in the static version of Eq. (2.139) and taking the divergence. Assuming
that Rm (uh, ph) and a are divergence-free, we obtain

[
(

c1
µ

h2

)2

+

(

c2
ρ ‖a‖
h

)2
]1/2

∇ · us +∇ · ∇ps = 0 (2.143)

or, equivalently,
1

τu
∇ · us +∇ · ∇ps = 0 (2.144)

The analysis in [28] also shows that the pressure Laplacian in Eq. (2.144) behaves
as −1/h2, resulting in

1

τu
∇ · us −

c1
h2

ps = 0 (2.145)

where the algorithmic constant c1 is adopted by analogy with the viscous term in
Eq. (2.141). From this expression, and using Eq. (2.140) the usual formulation for
the pressure subscale is recovered

1

τp
ps ≈ ∇ · us = Rc (uh)− δh τp =

h2

c1τu
= µ+

c2 ‖a‖ h
c1

(2.146)

Finally, we introduce the scaling argument of Eq. (2.141) back to Eq. (2.139) and
obtain

ρ∂tus +
1

τu
us +∇ps = Rm (uh, ph)− ξh (2.147)

The small scale model we have been using up to this point, given by Eq. (2.37), is then
recovered by neglecting ∇ps, which effectively uncouples the small scale velocity and
pressure models.

2.6.2 Alternative design for the pressure subscale

As an alternative, we propose a formulation which keeps the pressure gradient ∇ps in
Eq. (2.139) and uses it to introduce the pressure subscale. We start by analyzing how
keeping the small scale pressure gradient modifies the large scale problem. Retaining
∇ps means that Eq. (2.147) can be rewritten as

ρ∂tus +
1

τu
us = Rm (uh, ph)− ξh −∇ps (2.148)

hence the corresponding time-discrete small scale velocity model is

1

τt
un+1

s = Rm (uh, ph)|n+1 − ξn+1
h −∇pn+1

s +
1

δt
un

s (2.149)
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Introducing Eq. (2.149) as our small scale model in Eqs. (2.46) and (2.47) we can
obtain the full problem corresponding to this formulation. The resulting formulation,
particularized for the quasi-static subscale case to reduce the number of terms involved,
can be expressed as

∫

Ω

wh · ρ
(

∂tuh +
1

2
a · ∇uh

)

dΩ−
∫

Ω

∇wh : ρ
1

2
(a⊗ uh) dΩ

+

∫

Ω

∇swh : 2µ

(

∇suh −
1

3
(∇ · uh) I

)

dΩ−
∫

Ω

∇ ·whps dΩ

−
∫

ΣΩe

ρ (a · ∇wh) τu (R
m (uh, ph)− ξh −∇ps) dΩ−

∫

Ω

∇ ·wh ph dΩ =

∫

Ω

whf dΩ +

∫

ΓN

wh

(

t− ρ
1

2
(a · n)uh

)

dΓ

(2.150)

∫

Ω

qh∇ · uh dΩ =

∫

ΣΩe

∇qh τu (R
m (uh, ph)− ξh −∇ps) dΩ (2.151)

where the terms including contributions from ∇ps have been underlined. Note that the
same reasoning could be applied to dynamic subscale formulations.

If we could define an approximate space for ps and discretize Eqs. (2.150) and (2.151),
we would be able to write a matrix problem of the type

[
Auu Aup

Apu App

] [
U

P

]

+

[
Eu (τu,a,∇ps)
Ep (τu,∇ps)

]

=

[
Bu

Bp

]

(2.152)

where matrix A and vector B represent the matrix problem resulting from either
Eqs. (2.80) and (2.81) for the Q-ASGS formulation or Eqs. (2.100) and (2.101) for the
Q-OSS formulation, U and P are the (large scale) vectors of nodal unknowns and E

results from the contribution of ∇ps to the underlined terms in Eqs. (2.150) and (2.151).
Its precise definition, if ∇ps was known at the integration points of each element, would
be given by

Eu (τu,a,∇ps)
e
ab =

∫

Ωe

ρ (a · ∇N a)
T · τu ∇ps dΩ (2.153)

Ep (τu,∇ps)
e
ab =

∫

Ωe

∇Naτu ∇ps dΩ (2.154)

We need to provide a model for ∇ps before we can complete the formulation. To do
so, we take a little detour. Consider that the finite element velocity solution uh, which
is not divergence-free, can be decomposed as

uh = ω +∇φ
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where ω is a solenoidal field verifying ∇ · ω = 0 and ∇φ is a potential field. We
identify the pressure small scale with the potential part of the solution φ, with the goal
of obtaining a velocity field that is more divergence-free in some weak sense.

Taking the divergence of uh and integrating over the element’s domain, we write
∫

Ωe

qs∇ · uh dΩ =

∫

Ωe

qs∇ · ∇ps dΩ (2.155)

Integrating by parts both sides of Eq. (2.155) we obtain

−
∫

Ωe

∇qs · uh dΩ = −
∫

Ωe

∇qs∇ps dΩ (2.156)

Eq. (2.156) can not be evaluated in practice, since the exact small scale space is infinite-
dimensional, but can be estimated using an approximate small scale space. Our proposal
is to assume that the the space for the small scale pressure can be approximated by the
discontinous version of the large scale space, that is, functions that are linear within each
element and discontinuous across element boundaries. The fact that our interpolation
functions are discontinuous across element boundaries allows us to write a local problem
on each element, given by the discrete form of Eq. (2.156). Denoting with N̂a the small
scale shape function for node a, we can write

D̂
e
U + L̂

e
P s = 0 (2.157)

where U and P s represent the nodal values of uh and ps on the element and the matrices
are build from nodal contributions of the type

D̂
e

ab =

∫

Ωe

N̂a∇ ·N b dΩ (2.158)

L̂
e

ab =

∫

Ωe

∇N̂a∇N̂b dΩ (2.159)

Note that, for the shape functions we are proposing, on a given element, D̂
e
is equivalent

to the elemental discrete divergence matrix De of the large scale problem, given by
Eq. (2.87).

Matrix L̂
e
represents the discrete form of a Laplacian problem and can be explicitly

inverted on each element if additional restrictions are imposed on the variable ps. In
our tests, we have imposed that ps is zero on average over the element, which allows us
to write

P s =
(

L̂
e
)−1

D̂
e
U (2.160)

Going back to the enhanced matrix problem of Eq. (2.152), the small scale shape func-
tions can be used to rewrite the additional terms Eu and Ep in terms of the nodal Ps

vector [
Auu Aup

Apu App

] [
U

P

]

+

[
Êu (τu,a)

Êp (τu)

]
[
P s

]
=

[
Bu

Bp

]

(2.161)
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where we introduced the new finite element matrices

Êu (τu,a,∇ps)
e
ab =

∫

Ωe

ρ (a · ∇N a)
T · τu N̂b dΩ (2.162)

Êp (τu,∇ps)
e
ab =

∫

Ωe

∇Naτu N̂b dΩ (2.163)

Finally, we substitute Eq. (2.160) in Eq. (2.161), eliminating the additional variables
from the problem algebraically




Auu + Êu (τu,a)

(

L̂
e
)−1

D̂
e

Aup

Apu + Êp (τu,a)
(

L̂
e
)−1

D̂
e

App





[
U

P

]

=

[
Bu

Bp

]

(2.164)

To complete the formulation we would need to define a model for ps (as opposed
to its gradient), which also appears in Eq. (2.150). However, since we imposed that ps
is zero on average in each element to ensure that L̂

e
can be inverted and we are using

linear shape elements (which means that ∇·N a is constant within each element), it can
be verified that, for the proposed formulation,

∫

Ωe

∇ ·whps dΩ = ce

∫

Ωe

ps dΩ = 0 (2.165)

where ce is a constant that depends on the shape of the element.

2.7 Application to the turbulent channel flow

The turbulent channel flow is a classical benchmark for LES formulations, in which a
fluid circulates between two parallel walls. In the turbulent regime, the flow is charac-
terized by a transfer of energy from the central regions to the zones close to the wall,
achieved through turbulent motions, where it is dissipated through viscous friction. This
problem represents a challenge for turbulence models in general and LES methods in
particular and is well studied in the literature [101, 125]. For moderate Reynolds num-
bers, it is also within reach of direct numerical simulation (DNS), which means that
simulations representing all scales of the flow are available in the literature. In partic-
ular, we will use data from the simulations of Moser et al. [81] to validate our results.
Note that, while this particular problem could be simulated using DNS, we are not in-
terested in fully resolving all scales of the flow, since we want to study the behavior of
the formulation as a LES method.

There is abundant literature validating VMS (and other) formulations on this par-
ticular benchmark, which was simulated using dynamic subscales in [32], and in [7] for
the low Mach number regime; with and without explicit LES (Smagorinsky) modelling
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terms in [45], using VMS methods in combination with isogeometric finite element for-
mulations [3, 9] and using SUPG stabilization by itself [127] or in combination with the
Smagorinsky model [123]. As a result, this example allows us to validate our implemen-
tation and test our new approach for the pressure subscale. However, we also note that
all previous studies, as far as we know, have used linear hexahedra or higher order in-
terpolations. In contrast with previous studies, we want to use this example to compare
the results obtained with tetrahedral and hexahedral elements since, while hexahedra
provide a richer interpolation, tetrahedra are in many cases the only practical choice to
discretize complex geometries, and we want to quantify the impact of using tetrahedral
interpolation on the solution.

The simulation consists in modeling the flow between two parallel flat plates that
are separated a distance 2δ. The flow is driven by a pressure gradient applied on the
streamwise direction, dP/dx, which is balanced by the friction produced by the wall,
τw. The wall friction is conventionally expressed as τw = ρu2

τ , where uτ is defined as the
friction velocity. Given that the forces acting on the problem must be in equilibrium, the
pressure gradient and the wall friction are related by the following expressions (see [125]
for example):

τw = −δ
dP

dx
= ρu2

τ or uτ =

(

−δ

ρ

dP

dx

) 1

2

The Reynolds number can be given in terms of the friction velocity and the channel
width as

Reτ =
uτδ

ν

which is denoted by Reτ to distinguish it from the bulk Reynolds number, computed
using the average streamwise velocity of the flow (see [101]).

For our tests, the Reynolds number is set to Reτ = 395, which can be obtained by
setting the problem parameters to

ρ = 1Kg/m3 ν = 1.472× 10−4m2/s δ = 1m
dP

dx
= −3.372040× 10−3N/m2

The problem domain is restricted to [0, 2π]× [−δ, δ]× [0, 2π/3] in the stream-wise, wall-
normal and cross-stream directions respectively, which corresponds to the domain used
in [9]. Zero Dirichlet conditions are applied on the solid walls and periodic boundary
conditions are used for the remaining sides.

2.7.1 Effect of the simulation mesh

For a first set of tests, we simulate the problem using regular hexahedral and tetrahedral
meshes. The meshes are defined by introducing 32 or 64 divisions on each coordinate
direction, which immediately defines a mesh of 323 or 644 hexahedra. Tetrahedral meshes
can then be obtained by splitting each hexahedra into six tetrahedra. The mesh nodes
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are evenly distributed on the streamwise and cross-stream directions while, on the wall
normal direction, they are distributed according to the law

yi = δ

tanh

(

w

(
2i

nel
− 1

))

tanh (w)
i ∈ [0, ny]

where ny is the number of divisions on the y direction and yi ∈ [−δ, δ]. The weight w is
chosen as w = 2.432 for ny = 64 and w = 2.927 for ny = 32 so that the first node has a
dimensionless distance to the wall y+ = yuτ/ν = 1.

The flow is simulated using a time step of ∆t = 0.02 s, starting from the average
flow profile plus a random disturbance and let to evolve until a statistically steady
regime is obtained. Discarding this initial transient phase, statistics are recorded on
the integration points of the mesh using the method described in Chapter 4. Since the
problem is statistically homogeneous, statistics can be obtained by ensemble-averaging
data on planes corresponding to the same wall distance. This averaging of spatial
and time data is known as Reynolds averaging in the context of turbulence modeling.
We denote the (Reynolds) average value of a quantity u as 〈u〉 and the fluctuation as
u′ = u − 〈u〉. A snapshot of the obtained instantaneous streamwise velocity and the
distribution of the elements close to the wall can be observed in Fig. 2.2 for a tetrahedral
mesh and in Fig. 2.3 for a hexahedral mesh.

(a) Instantaneous streamwise velocity. (b) Detail of the mesh.

Figure 2.2: Channel flow – Solution and mesh for the 6× 643 tetrahedra simulation.

We have measured both average velocities and velocity correlations, all of which can
be compared to the DNS data of [81]. Note that the velocity fluctuation correlations
can be identified with the turbulence kinetic energy, defined as

k =
1

2
(〈u′u′〉+ 〈v′v′〉+ 〈w′w′〉)
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(a) Instantaneous streamwise velocity. (b) Detail of the mesh.

Figure 2.3: Channel flow – Solution and mesh for the 643 hexahedra simulation.

The first set of results has been obtained using the Q-ASGS formulation and the
different meshes. The obtained average is compared to the reference data in Fig. 2.4,
while the velocity variances are presented in Fig. 2.5. Note that the results are expressed
in terms of the dimensionless distance to the wall y+ = (δ − |y|) uτ/ν, which is the
common practice for this problem. In this notation, y+ = 0 corresponds to the wall,
while the channel center line is close to y+ = 400.
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Figure 2.4: Channel flow – average stream-wise velocity profile obtained for the Q-ASGS
formulation, using different meshes.

Not surprisingly, there is a noticeable change of behavior depending on the element
type, with tetrahedra producing generally poorer results for a given mesh size than
hexahedra. In particular, it can be observed that the results obtained using 6 × 643

tetrahedra are similar to those obtained 323 hexahedra, which suggests that an order of
magnitude more tetrahedra are required in this case to obtain a solution comparable to
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(a) Turbulence kinetic energy.
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(b) Stream-wise velocity fluctuations 〈u′u′〉.
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(c) Wall-normal velocity fluctuations 〈v′v′〉.
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(d) Cross-stream velocity fluctuations 〈w′w′〉.

Figure 2.5: Channel flow – velocity variances obtained for the Q-ASGS formulation,
using different meshes.

hexahedra.

We can see that we generally overpredict the average streamwise velocity profile,
which suggests that we are not dissipating enough linear momentum and stronger veloc-
ity gradients are required to achieve an equilibrium solution. Observing the measured
velocity variances in Fig. 2.5, we can see that there are larger than expected veloc-
ity fluctuations on the streamwise direction. The dynamic evolution of the solution
presents larger divergences from the average value than expected, which again suggests
that we are slightly underestimating the dissipation. This situation is reversed on the
wall-normal and cross-flow directions, where the obtained dissipation is generally under
the DNS measurements.
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2.7.2 Influence of the small scale model

The next set of tests is designed to evaluate the effect of the small scale model on the
solution. We have chosen the 323 hexahedra mesh and used it to simulate the same
case using the different models presented in Section 2.3. Based on the results presented
in [32], we have chosen to neglect the pressure small scale for this set of tests, which
corresponds to setting τp = 0, as this was found to result in a better fit to DNS data in
that reference. Note that the quasi-static results presented were calculated using only
the large scale part of the solution in the convection term, while the full velocity uh+us

was used for dynamic models.

The average stream-wise velocity profiles for this set of tests are presented Fig. 2.6,
while the measured velocity variances are shown in Fig. 2.7. The results are in general
comparable to those obtained for the same mesh in the previous set of tests and, while
the qualitative behavior of the solution is properly captured, the average velocity is
slightly overpredicted.
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Figure 2.6: Channel flow – average stream-wise velocity profile obtained on the 323

hexahedra mesh using different small scale models.

From the obtained results, we can see that the choice of small scale model has an
impact on the solution. However, we see that, in our case, the result that produces
a closer approximation to the DNS stream-wise velocity profile is the Q-ASGS model,
which is the most simplified one from the theoretical point of view.

In terms of the velocity variances, the points made for the previous set of tests
still stand. The stream-wise velocity variances are generally overestimated compared to
the expected results, while the fluctuations on the other directions are underestimated.
Again, the different models introduce some differences in the final solution, with the
Q-ASGS and D-OSS variants providing the closest match to DNS data.
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(a) Turbulence kinetic energy.
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(b) Stream-wise velocity fluctuations 〈u′u′〉.
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(c) Wall-normal velocity fluctuations 〈v′v′〉.
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(d) Cross-stream velocity fluctuations 〈w′w′〉.

Figure 2.7: Channel flow – velocity variances obtained for the Q-ASGS formulation,
using different meshes.

2.7.3 Turbulence kinetic energy balance

To obtain a deeper understanding of the results we measured the turbulence kinetic
energy balance for the problem. A balance statement for the turbulence kinetic energy
can be obtained using a procedure analogous to what presented in Section 2.4 for the
residual energy kr, using Reynolds averaging in place of filtering. Only the final expres-
sion is presented here, but the interested reader is directed to [101, 120] for detailed
proof.

∂tk + 〈uj〉
∂k

∂xj
︸ ︷︷ ︸

I

= −
〈
u′
iu

′
j

〉 ∂ 〈ui〉
∂xj

︸ ︷︷ ︸

II

−
〈
u′
jk
〉

∂xj
︸ ︷︷ ︸

III

− 1

ρ

∂ 〈u′
ip

′〉
∂xi

︸ ︷︷ ︸

IV

+ ν
∂2k

∂x2
j

︸ ︷︷ ︸

V

− ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉

︸ ︷︷ ︸

V I

(2.166)

where the terms represent, respectively:
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I. Material variation (storage and advection) of turbulence kinetic energy;

II. production due to mean velocity shears;

III. turbulent diffusion: transport due to small eddies;

IV. pressure diffusion: redistribution due to local pressure gradients;

V. viscous diffusion and

VI. viscous dissipation.

For the turbulent channel flow, we have that the average velocity is exclusively in the
streamwise (x) direction and that the flow is homogeneous in the streamwise and cross-
stream directions. As a result, all terms involving either 〈v〉, 〈w〉 or spatial derivatives
along the x or z directions can be can be neglected from Eq. (2.166), resulting in the
simplified expression

∂tk
︸︷︷︸

I

= −〈u′v′〉 ∂ 〈u〉
∂y

︸ ︷︷ ︸

II

− 〈v′k〉
∂y
︸ ︷︷ ︸

III

− 1

ρ

∂ 〈v′p′〉
∂y

︸ ︷︷ ︸

IV

+ ν
∂2k

∂y2
︸ ︷︷ ︸

V

− ν

〈
∂u′

i

∂y

∂u′
i

∂y

〉

︸ ︷︷ ︸

V I

(2.167)

where the numbered terms have the same interpretation as the corresponding term in
Eq. (2.166). Note that, once a statistically steady state has been reached, the storage
term in Eq. (2.167) will also be zero, as in equilibrium the power introduced in the
system by the external pressure gradient is exactly balanced by wall friction.

The different terms in Eq. (2.167) have been measured in the course of the simulations
presented in the previous pages and are presented in graphical form in Figs. 2.8 to 2.17,
again compared to DNS measurements from [81]. Note that in this case we are only
presenting the part of the solution closer to the wall, y+ ∈ [0, 200], as energy transfer
phenomena are mostly localized close to the wall for this problem.

The values for term II in Eq. (2.167), turbulence kinetic energy production, are
plotted in Fig. 2.8 for the different meshes and in Fig. 2.9 for the different small scale
models. The production term measures the generation of small scale motions due to the
shear of the average flow and, for this example, is expected to be positive throughout
the domain, reaching a peak close to the wall, near y+ = 10. As an aside, the fact that
this term is positive means that there is no backscatter in this problem.

We observe that our results are in qualitative agreement with DNS data, but tend to
predict a peak in production at larger y+ (farther from the wall) than expected. This
is most marked for the coarser tetrahedral mesh in Fig. 2.8(a), while hexahedral meshes
predict the peak closer to the expected position in general. It is worth noting that the
curves obtained from our simulation have a jagged appearance when compared to DNS
data. This is due to the choice of linear interpolation functions, which means that the
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Figure 2.8: Channel flow – turbulence kinetic energy production for the Q-ASGS
method.
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Figure 2.9: Channel flow – turbulence kinetic energy production in the 323 hexahedra
case for the different small scale models.

simulated velocity gradient is constant within each finite element. This will also happen
in any other results involving spatial gradients of finite element variables.

In terms of the different small scale models tested, we see that the dynamic models
in Fig. 2.9(b) provide a better match to DNS data than the quasi-static models in
Fig. 2.9(a), suggesting that dynamic models do in fact provide a better description of
turbulent phenomena compared to the simpler quasi-static models.

As a final remark, note that the 323 hexahedra, Q-ASGS curve in Fig. 2.8(b) does
not coincide with the Q-ASGS curve in Fig. 2.9(a). The difference between the two
curves is due to the pressure small scale, which was considered in the first case and
neglected in the latter. It is interesting to observe that retaining it results in a better
prediction of the production term, despite the fact that we saw in the previous pages
that neglecting the pressure small scale results in a closer approximation of the average
stream-wise velocity.

Term III of Eq. (2.167), which corresponds to turbulent diffusion, is presented in
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Fig. 2.10 for the different meshes. Turbulent diffusion is expected to transfer energy from
the intermediate region of the channel towards the wall, which means that it will act as
a source of turbulence kinetic energy (positive values) close to the wall and as a drain
(negative values) at large y+. We see that our results follow the expected distribution
of values, closer when using hexahedral meshes. However, it is interesting to note that
the positive peak, near y+ = 10, is underestimated in the finer simulations.

0 50 100 150 200

y+

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

MKM t-diff

6× 323 tetrahedra

6× 643 tetrahedra

0 50 100 150 200

y+

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

MKM t-diff

323 hexahedra

643 hexahedra

Figure 2.10: Channel flow – turbulent diffusion for the Q-ASGS method.
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Figure 2.11: Channel flow – turbulent diffusion in the 323 hexahedra case for the different
small scale models.

The measured turbulent diffusion for the different small scale models is presented
in Fig. 2.11 and shows the same type of dependence on the model that we observed
for the production term. Again, dynamic subscales provide a better approximation to
DNS data than quasi-static ones and, comparing Fig. 2.10(b) to Fig. 2.11(a), using the
pressure small scale in the Q-ASGS case provides a closer match than neglecting it.

Turning our attention to term IV , which represents pressure diffusion, we provide
the results corresponding to different meshes in Fig. 2.12 and to the different small scale
models in Fig. 2.13. This term corresponds to the relation between local pressure and
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velocity fluctuations and it has a qualitative behavior that is similar to that of turbulent
diffusion, transporting energy closer to the wall, but a smaller magnitude in general. As
in the previous term, we can observe that the obtained results tend to underestimate
sharp peaks. However, in this case, we detect an unexpected behavior close to the wall
for the finest hexahedral mesh, as can be seen in Fig. 2.12(b), where the 643 hexahedra
curve shows a negative peak close to the wall. As a possible interpretation of this result,
we note that elements are highly stretched in that region and that we are using an
average element size to define our stabilization parameter. This could have unexpected
effects on the consistency of the stabilization terms and might be adding some error in
our calculations.
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Figure 2.12: Channel flow – pressure diffusion for the Q-ASGS method.
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Figure 2.13: Channel flow – pressure diffusion in the 323 hexahedra case for the different
small scale models.

The results obtained for term V , representing viscous diffusion, are presented in
Fig. 2.14 for the different meshes used and in Fig. 2.15 for the different small scale
models. As the other two diffusive terms, viscous diffusion transports energy towards
the wall but, compared to the the previous terms, it acts closer to the wall in general.



2.7. Application to the turbulent channel flow 55

This is consistent with the fact that viscous effects are predominant only in the smallest
motions, which, for the turbulent channel flow, are significant only at a very close
distance from the wall.
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Figure 2.14: Channel flow – viscous diffusion for the Q-ASGS method.
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Figure 2.15: Channel flow – viscous diffusion in the 323 hexahedra case for the different
small scale models.

The final term in Eq. (2.167), term V I, corresponds to viscous dissipation of turbu-
lence kinetic energy. This term should be negative throughout the domain, as viscous
dissipation is the only energy sink available in the problem, which can be verified in
Fig. 2.16 for the different meshes and Fig. 2.17 for the different small scale models.

Viscous dissipation should predominantly occur close to the wall, where the smallest
motions are concentrated, and we notice that our results follow this general trend, in
agreement with DNS data. However, all our curves indicate a smaller (closer to zero)
dissipation for any given distance to the wall, which seems to be generally in line with
our interpretation of the average velocity results, indicating that dissipation is generally
lower than expected.
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In terms of the comparison between the different methods, the results obtained for
dissipation are in agreement with the general trend observed for the previous terms. We
notice that dynamic models, as shown in Fig. 2.17(b), provide results that are slightly
closer to DNS measurements than quasi-static models, which in this case is clear in the
small step displayed by the different curves close to the wall, and that the Q-ASGS
results in Fig. 2.16(b), obtained using the pressure subscale, are slightly better than
those in Fig 2.17(a), obtained by neglecting it.
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Figure 2.16: Channel flow – turbulence kinetic energy dissipation for the Q-ASGS
method.
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Figure 2.17: Channel flow – turbulence kinetic energy dissipation in the 323 hexahedra
case for the different small scale models.

2.7.4 Effect of the proposed pressure subscale model

As a final test, we simulated the same problem using the alternative model for the
pressure subscale proposed in Section 2.6 and the coarser tetrahedral grid, comprising
6× 323 tetrahedra. We present the results in terms of the average stream-wise velocity
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(d) Wall-normal velocity fluctuations 〈v′v′〉.
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Figure 2.18: Channel flow – stream-wise velocity average and velocity variances obtained
using the proposed pressure small scale model and a 6× 323 tetrahedra mesh.
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profile and velocity variances in Fig. 2.18, where we compare them to DNS data and
to the regular Q-ASGS formulation, either retaining (τp > 0) or neglecting (τp = 0)
the pressure small scale. We observe that both neglecting the pressure small scale and
using the proposed model result in a much closer agreement to DNS data compared to
retaining τp. This allows us to obtain results that are much closer to those obtained
using 323 hexahedra, which were presented in Fig. 2.4, while using a tetrahedral mesh.

2.8 Concluding remarks

We devoted the present chapter to introduce VMS stabilized formulations for the in-
compressible Navier-Stokes equations and to expose the arguments that have been used
to relate them to LES methods for turbulence modeling. Besides the classical VMS
approach, we have discussed dynamic subscale models and the possibility of using the
last known value of the complete velocity u

n+1,i
h + un+1,i

s as the linearized advective
velocity on the convective term. These two modifications to the basic formulation allow
us to provide a stronger theoretical justification to the use of VMS methods as a type
of turbulence modeling, similar to LES but using a projection to the mesh instead of
spatial filtering to introduce scale separation. We have implemented a finite element
solver based on dynamic subscale formulations and used it to simulate the well-known
benchmark of the turbulent channel flow at Reτ = 395.

We have investigated the effect of using either tetrahedral or hexahedral meshes for
the simulation and the use of different small scale models. Motivated by results found
on the literature, we decided to neglect the pressure subscale in some of the tests, in the
hope of obtaining more accurate solutions. While it is true that neglecting the small
scale pressure results in a better agreement to DNS data in terms of the average stream-
wise velocity in the single direct comparison we have for this (the Q-ASGS model), we
have also found that this choice results in a poorer prediction of the turbulence kinetic
energy balance. We do not have a definitive answer to this apparent contradiction, but
one possible explanation could be that the small scale pressure introduces an unexpected
energy transfer mechanism, which we do not detect in our balance, since we are only
measuring the (large scale part of) the terms in Eq. (2.167). Obviously, more tests
are required before a definitive answer can be provided, and the first step would be
repeating the analysis presented in Section 2.7 but now without neglecting the pressure
subscale and measuring not only the large scale part of the energy balance, but also the
contributions of the small scale velocities to the terms in Eq. (2.167).

This dependence of the results on the pressure small scale also motivated us to
propose a new model for the pressure small scales, which we based on strengthening
the enforcement of the incompressibility of the velocity solution via the use of an ap-
proximate interpolation space for the small scale pressure. While this new formulation
produces improved results when compared to the classical approach on a tetrahedral
mesh, we want to remark that the effect of the pressure small scale term seems to be
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problem-dependent (this can be seen for example in [32]), which means that this should
be understood as the starting point of a wider investigation and not a definitive result.

In the same sense, in proposing the formulation we have made some arbitrary deci-
sions, such as the choice of a discontinuous linear interpolation space or the zero-average
condition used to invert the Laplacian in Eq. (2.160). These are by no means the only
possibilities, and it would be interesting to know the impact of this choice compared to
other alternatives.





Chapter 3
A Finite Calculus stabilized finite element

formulation for turbulent flows

3.1 Introduction

In the present chapter we introduce a new stabilized finite element formulation for
the simulation of incompressible flow problems based on the Finite Calculus (FIC)
approach [86, 87]. FIC is a general framework for the development of stabilized for-
mulations, based on writing the balance equations of the problem for an arbitrarily
small domain, instead of the usual point-wise partial differential equation (PDE). This
results in a modified strong-form equation with additional terms that, once the prob-
lem is rewritten as a variational equation, have a stabilizing effect on the numerical
formulation.

The FIC approach has been applied to incompressible flows at a range of Reynolds
numbers in the past [91–93], but in the present document we intend to investigate the
behavior of the formulation as an alternative to large eddy simulation (LES) in a finite
element context, as we did for Variational Multiscale (VMS) based formulations in the
previous chapter.

The main new feature of the FIC formulation presented here, compared to previous
approaches, is the addition of a new dissipative term based on the velocity gradients.
This term has an effect on the total dissipation introduced by the numerical formulation
and will be shown to improve the accuracy of the solution for the turbulent flow examples
considered.

We will start by presenting the general FIC approach in Section 3.2. This approach
will be used to obtain a stabilized expression for the linear momentum balance in Sec-
tion 3.3 and a stabilized continuity equation in Section 3.4. These two expressions will
be combined to obtain a discrete formulation in Section 3.5. The presented formulation
will then be used to simulate a turbulent channel in Section 3.6, the flow past a cylinder
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in Section 3.7 and a solar collector in Section 3.8. Finally, some concluding remarks are
presented in Section 3.9.

3.2 FIC formulation

Although our end goal is to apply the FIC formulation to the full Navier-Stokes equa-
tions, it is convenient to introduce it first on a simpler problem. We present the first
order FIC balance following the approach of [88], by applying it to the 1D advection-
diffusion equation.

qA
qB

A BC

L

LBLA

Figure 3.1: Fluxes in a 1D domain.

Consider a scalar quantity φ advected with a velocity u through the 1D domain
shown in Fig. 3.1. The domain has a total length L = xB−xA and diffusivity coefficient
κ. The distribution of φ will be the solution of the convection-diffusion equation

− u
dφ

dx
+ κ

d2φ

dx2
= 0 inΩ = [xA, xB] (3.1)

Furthermore, we can define the flux passing through a point P on the domain as

qP = −uφ+ κ
dφ

dx
(3.2)

Consider the flux through the boundary of the domain. Given that the fluxes qA, qB
entering and exiting it through its extremes must be in equilibrium, we can write

qB − qA = 0 (3.3)

The basic premise of the FIC approach is to write Eq. (3.3) in terms of the flux through
an arbitrary point C that lies in the interior of the domain. If the fluxes at A and B
are expressed as a Taylor series expansion of the flux at C, we can state

qA = qC + LA
dq

dx
+

L2
A

2

d2q

dx
+O

(
L3
A

)

qB = qC − LB
dq

dx
+

L2
B

2

d2q

dx
+O

(
L3
A

)

If we introduce these definitions in Eq. (3.3) we can rearrange the resulting expression
to obtain

dq

dx
− LB − LA

2

d2q

dx2
= 0 (3.4)
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where we used that L2
B−L2

A = (LB + LA) (LB − LA). In FIC formulations, the quantity
h = LB − LA is defined as the characteristic length of the problem. Introducing the
definition of the flux in Eq. (3.4) and neglecting third order derivatives we recover the
expression

− u
dφ

dx
+

(

κ+
uh

2

)
d2φ

dx2
= 0 (3.5)

where we have neglected the spatial variation of u and κ.

As the position of point C in the balance domain of Fig. 3.1 is arbitrary, Eq. (3.1)
holds for any point within the analysis domain. Comparing Eq. (3.5) to the pointwise
balance equation Eq. (3.1), we see that, by enforcing the balance of fluxes on the finite-
sized domain [xA, xB], we introduce a modified diffusivity, which acts as an additional
source of numerical diffusion as long as the characteristic size is chosen such that uh > 0.
This has a stabilizing effect on the resulting finite element formulation. Note that, in
contrast to most stabilization frameworks (such as the VMS formulation presented in
the previous chapter), the stabilizing terms appear as a result of a modification of the
original PDE and not from a manipulation of the variational form.

The procedure used here to obtain the FIC formulation for the 1D advection-diffusion
equation can be extended to other problems and multiple dimensions, and is known in
the FIC context as first order FIC balance in space. Defining the residual form of our
problem as

r = −u
dφ

dx
+ κ

d2φ

dx2
(3.6)

we can rearrange the terms in Eq. (3.5) as

r − h

2

dr

dx
= 0 (3.7)

where we are once more neglecting the spatial variation of u and κ and all third-order
derivatives.

The same approach can be extended to multiple dimensions [87]. The vector form
of the FIC equation reads

r − hj

2

∂r

∂xj

= 0 j ∈ {1, nd} (3.8)

where hj represents the characteristic length in the j-th coordinate direction. We will use
the notation h to denote the vector of characteristic lengths in the different coordinate
directions.

This procedure can be directly applied to the momentum equation. We will follow
a slightly different approach for the mass conservation equation, originally introduced
in [90], which retains higher order terms in the FIC balance to obtain a second order
expression.
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3.3 Stabilized momentum equation

We present first the FIC stabilized form of the momentum equation. This equation was
already introduced in the previous pages, but is stated in Eq. 3.9 for reference. Note
that, as we did for the VMS formulation in Chapter 2, we follow the approach of [29]
and use the skew-symmetric form of the convective term.

ρ ∂tui + ρ

(
1

2
uk

∂ui

∂xk
+

1

2

∂

∂xk
(uiuk)

)

− ∂σij

∂xj
= fi in Ω× [0, T ) i ∈ {1, nd} (3.9)

For a Newtonian fluid, the stress tensor σ can be expressed in terms of the rate of strain
tensor ε as

σij = 2µ
(

εij −
εkk
3

δij

)

− p δij (3.10)

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

(3.11)

We can follow the procedure outlined in the previous section to develop FIC-based
stabilized form of the momentum equation. We introduce Eq. (3.10) in Eq. (3.9) and
rewrite it in residual form as

rmi = ρ∂tui + ρ

(
1

2
uk

∂ui

∂xk
+

1

2

∂

∂xk
(uiuk)

)

− 2µ
∂

∂xj

(

εij −
εkk
3
δij

)

+
∂p

∂xi
− fi (3.12)

Expressing the balance of linear momentum along each spatial direction i and fol-
lowing the argument of the previous section we can obtain the FIC balance statement
for the momentum equation as

rmi − hj

2

∂rmi
∂xj

= 0 i, j ∈ {1, nd} (3.13)

where hj represents the length used to write the balance along the j-th coordinate
direction. Note that, in principle, a different vector of characteristic lengths h = {hj}
can be used in the balance equation for each momentum component rmi .

We consider different possibilities to design h. The first possibility is to define the
characteristic lengths based on the finite element size along the streamlines of the flow,
which results in a method similar to the SUPG formulation [57]. A second option is
to base the characteristic length on the size of the element along the direction of the
gradient of velocity. This acts as a source of additional diffusion, although the resulting
formulation is not stable by itself. Finally, we consider the possibility of mixing both
approaches by introducing a combination coefficient. Each approach will be presented
in succession in the following pages.



3.3. Stabilized momentum equation 65

3.3.1 Streamline diffusion formulation

Consider a characteristic length vector hu aligned on the direction of the flow velocity

hu = hu
u

‖u‖ (3.14)

where hu is the projected length of a given element along the direction of flow, defined
by the unit vector u/ ‖u‖. Using this expression, we can rewrite Eq. (3.13) as

rmi − hu

2 ‖u‖uj
∂rmi
∂xj

(3.15)

We can use Eq. (3.15) as the starting point to write a stabilized formulation for the
momentum equation. Multiplying by a test function wi and integrating over the fluid
domain we obtain ∫

Ω

wi r
m
i − wi

hu

2 ‖u‖uk
∂rmi
∂xk

dΩ = 0 (3.16)

It is convenient to integrate by parts the second term in Eq. (3.16). Note that, as the
length hu will be defined as a constant quantity on each element, the boundary integral
that appears should be understood as an integral over elemental boundaries.

∫

Ω

wi r
m
i dΩ +

∫

Ω

hu

2 ‖u‖uk
∂wi

∂xk
rmi dΩ−

∑

(e)

∫

Γe

hu

2 ‖u‖wi (uknk) r
m
i dΓ = 0 (3.17)

We have neglected the elemental boundary integrals appearing in Eq. (3.17) in the
present work. In practice, this is similar to consider that the small scales vanish over
element boundaries on VMS formulations. At this point, we introduce the definition of
the residual Eq. (3.12) and its gradient in Eq. (3.17). This gives

∫

Ω

wi ρ

(

∂tui +
1

2
uk

∂ui

∂xk

)

dΩ−
∫

Ω

1

2
uk

∂wi

∂xk

ρui dΩ

+

∫

Ω

2µ
∂wi

∂xj

(

εij −
εkk
3

δij

)

dΩ−
∫

Ω

∂wi

∂xi
p dΩ

+

∫

Ω

hu

2 ‖u‖uk
∂wi

∂xk

(

ρ∂tui + ρ

(
1

2
uk

∂ui

∂xk
+

1

2

∂

∂xk
(uiuk)

))

dΩ

+

∫

Ω

hu

2 ‖u‖uk
∂wi

∂xk

(
∂p

∂xi
− 2µ

∂

∂xj

(

εij −
εkk
3

δij

)

− fi

)

dΩ =

∫

Ω

wi fi dΩ +

∫

ΓN

wi ti dΓ−
∫

ΓN

1

2
ρwi (uknk) ui dΓ

(3.18)

where ti represents the i-th component of the tractions imposed on the Neumann bound-
ary ΓN .
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Although Eq. (3.18) was developed using a FIC based approach, the final expression
is analogous to a SUPG stabilized formulation, with hu/2 ‖u‖ (which has dimensions of
time) playing the role of the SUPG stabilization parameter τ .

3.3.2 Gradient diffusion formulation

An alternate approach to Eq. (3.14) is to measure the characteristic length in the direc-
tion of the gradient of the i-th component of velocity, ∇ui = ∂ui/∂xj , given by

hgi = hgi

∇ui

‖∇ui‖
No sum on i. (3.19)

which, as before, can be used to write a FIC balance statement for each component of
the momentum equation

rmi − hgi

2 ‖∇ui‖
∂ui

∂xj

∂rmi
∂xj

No sum on i. (3.20)

We can obtain a variational form of the FIC momentum balance equation given by
Eq. (3.20) following the same procedure used for the streamline formulation. Multiplying
by a test function wi and integrating over the fluid domain gives

∫

Ω

wi

(

rmi − hgi

2 ‖∇ui‖
∂ui

∂xj

∂rmi
∂xj

)

dΩ = (3.21)

∫

Ω

wi r
m
i dΩ−

∫

Ω

wi
hgi

2 ‖∇ui‖
∂ui

∂xj

∂rmi
∂xj

dΩ = 0 (3.22)

The first integral in Eq. (3.22) is identical to the first term of Eq. (3.17) and can be
developed as in the previous section. We direct our attention towards the second term
in Eq. (3.22), which can be integrated by parts as follows

−
∫

Ω

wi
hgi

2 ‖∇ui‖
∂ui

∂xj

∂rmi
∂xj

dΩ =

∫

Ω

∂

∂xj

(

wi
hgi

2 ‖∇ui‖
∂ui

∂xj

)

rmi −
∫

Ω

∂

∂xj

(

wi
hgi

2 ‖∇ui‖
∂ui

∂xj
rmi

)

dΩ =

∫

Ω

∂wi

∂xj

hgi

2 ‖∇ui‖
∂ui

∂xj
rmi dΩ +

∫

Ω

wi
∂

∂xj

(
hgi

2 ‖∇ui‖
∂ui

∂xj

)

rmi dΩ−
∫

Ω

∂

∂xj

(

wi
hgi

2 ‖∇ui‖
∂ui

∂xj
rmi

)

dΩ

(3.23)

From the three terms in the last equality of Eq. (3.23), only the first one will be kept. The
second one is neglected as it involves either spatial derivatives of the characteristic length
or second derivatives of velocity. The last term can be transformed into a boundary
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integral using the divergence theorem, and is dropped for the same reasons we neglected
the boundary terms in the streamline formulation. Finally, it is convenient to rewrite
the remaining term as

∫

Ω

∂wi

∂xj

(
hgir

m
i

2 ‖∇ui‖
δik

)
∂uk

∂xj
dΩ (3.24)

If we choose the characteristic length such that hgir
m
i > 0, Eq. (3.24) describes the

discrete version of a non-isotropic Laplacian, where the diffusivity for each coordinate
direction is different. The diffusivity coefficient in this case is proportional to the mag-
nitude of the finite element residual on each coordinate direction and exhibits a similar
structure to that of a shock-capturing formulation, such as [24]. The numerical diffusion
added on each direction is defined by the tensor Dg

ij:

Dg
ij =

hgir
m
i

2 ‖∇ui‖
δij No sum on i (3.25)

Going back to Eq. (3.22), the weak form for the gradient diffusion formulation reads

∫

Ω

wi r
m
i dΩ +

∫

Ω

∂wi

∂xj

Dg
ik

∂uk

∂xj

dΩ = 0 (3.26)

It must be noted that the formulation of Eq. (3.26) by itself is not sufficient to sta-
bilize convection-dominated flows in general. Therefore, we consider the possibility of
combining the present approach with the streamline-based characteristic length.

3.3.3 Combined Approach

As a last possibility, we consider a combined approach including both the stabilizing
terms of the streamline-diffusion formulation and the additional diffusion of the gradient
formulation. The FIC expression for this case reads

rmi − β
hu

2 ‖u‖uj
∂rmi
∂xj

− (1− β)
hgi

2 ‖∇ui‖
∂ui

∂xk

∂rmi
∂xk

No sum on i. (3.27)

where β ∈ [0, 1] is a combination parameter.

The development of the combined formulation follows the steps of each of its compo-
nents as shown in the previous pages. Therefore, only the final expression for the weak
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form, obtained by combining Eq. (3.18) and Eq. (3.26), is given here:
∫
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∂wi

∂xj
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ik

∂uk

∂xj

dΩ =

∫

Ω

wi fi dΩ +

∫

ΓN

wi ti dΓ−
∫

ΓN

1

2
ρwi (uknk)ui dΓ

(3.28)

with Dg
ik given by Eq. (3.25).

3.3.4 Definition of the stabilization parameters

Eq. (3.28) represents the basic formulation used for the momentum equation in the
present chapter. To develop it, we introduced five free parameters (in 3D): the velocity
characteristic length hu, one gradient characteristic length hgi along each coordinate
direction i = {1, 2, 3}, and the combination parameter β, which must be defined before
the method can be implemented.

Streamline diffusion characteristic length hu

The characteristic length for the streamline diffusion terms is defined from the size of
the element in the direction of velocity u. Defining the unit vector in the direction of
velocity as eu and representing the element edge joining nodes a and b with the vector
lab, the element length is given by

hu = max
edges

{eu · lab} with eu =
u

‖u‖ (3.29)

This is shown graphically for triangles and quadrilaterals in Fig. 3.2, but the same pro-
cedure can be applied in 3D to define the elemental length using the edges of tetrahedra
and hexahedra.

In practice, Eq. (3.29) is evaluated on the integration points of each element. In the
case that velocity is (close to) zero on a given point for a given time step, eu is undefined
and this expression can not be used. If this happens, an average element length is used
instead. The characteristic length we used in this case will be introduced in Eq. (3.41)
for the stabilization of the mass equation.
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Figure 3.2: Definition of the element lenght hu for triangles and quadrilaterals.

Gradient diffusion characteristic lengths hgi

The characteristic element lengths for the gradient term are defined analogously to
Eq. (3.29), but using the gradient of the i-th component of velocity to define the direction
of projection. The characteristic element length to be used for the i-th coordinate
direction is therefore defined as

hgi = max
edges

{egi · lab} with egi =
∇ui

‖∇ui‖
No sum on i. (3.30)

Combination parameter β

In principle, the combination parameter β could take any value in the range β ∈ [0, 1].
The limit case β = 1 results in the classical FIC formulation for the momentum equation,
used for example in [88] or [93]. This formulation is very close to the SUPG stabilization,
but uses the stabilization parameter of Eq. (3.16), derived from FIC principles. On the
other end of the range, β = 0 implies using the gradient diffusion term exclusively
and results in a formulation that is not numerically stable for convection-dominated
problems. In the present work, we have found that values of β ≥ 0.5 are typically
needed for the problem to be stable for all flow regimes, while values in the range
0.7 ∼ 0.9 typically give the best results.

In addition to defining the value of β as a fixed quantity for the entire simulation, we
have also experimented with the possibility of adjusting β dynamically using the local
features of the flow. In some simulations we have set a local value for β depending on
the directions of velocity and its gradient:

βi = max

{

1− uk (∂ui/∂xk)

‖u‖ ‖∇ui‖
, βm

}

No sum on i. (3.31)

where βm is a minimum value to prevent the loss of stability if the velocity becomes
parallel to ∇ui in some point. Note that the value of β that is obtained using Eq. (3.31)
is different for each coordinate direction i. This means that, if this expression is used,
both the streamline terms and the gradient terms in Eq. (3.28) are non-isotropic.
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3.4 Stabilized mass balance equation

In order to obtain a stabilized formulation for the mass balance equation, the approach
used in [90, 91] will be followed. A similiar approach was also applied in [89] for a
quasi-incompressible fluid. We introduce the following notation for the mass balance
residual:

rc =
∂uk

∂xk

= εkk (3.32)

which can be used to derive the second order FIC balance in space as

rc +
h2
j

12

∂2rc

∂x2
j

= εkk +
h2
j

12

∂2εkk
∂x2

j

= 0 (3.33)

The expression of second order mass balance was originally used to obtain a stabi-
lized formulation for incompressible flows in [90], where it was derived by expressing
the balance of mass within a rectangular domain. In this reference, it is shown that
Eq. (3.33) can be obtained by writing the velocities along the boundaries of the rectan-
gle as a Taylor series expansion of the velocity on its center and retaining terms up to
third order.

Now the problem consists in obtaining an expression for ∂2εkk/∂x
2
j that is useful for

the calculation. To do so, we go back to the momentum balance as stated in Eq. (3.12).
Assuming that we are in equilibrium, and therefore rmi = 0, and using the identity

∂

∂xk
(uiuk) = uk

∂ui

∂xk
+ ui

∂xk

∂xk
= uk

∂ui

∂xk
+ ui εkk (3.34)

we can rearrange the terms in the momentum balance to read

ρ ∂tui + ρ uk
∂ui

∂xk
+

1

2
ρ εkkui − 2µ

∂

∂xj

(

εij −
εkk
3
δij

)

+
∂p

∂xi
− fi = 0 (3.35)

Moving all terms involving εkk to the same side of the equality we obtain

− ρ ui

2
εkk −

2µ

3

∂εkk
∂xi

= ρ ∂tui + ρ uk
∂ui

∂xk
− 2µ

∂εij
∂xj

+
∂p

∂xi
− fi = r̂mi (3.36)

where we introduced the notation of r̂mi for the right hand side of Eq. (3.36) for conve-
nience. At this point it is helpful to write the first order FIC balance for the continuity
equation

εkk −
hi

2

∂εkk
∂xi

= 0 (3.37)

and use it to express εkk in terms of its derivative in Eq. (3.36)

−
(
ρ ujhj

4
+

2µ

3

)
∂εkk
∂xi

= r̂mi (3.38)
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We can introduce Eq. (3.38) in Eq. (3.33) to write

rc +
h2
i

12

∂

∂xi

(
∂εkk
∂xi

)

= rc − h2
i

12

∂

∂xi

((
ρ ujhj

4
+

2µ

3

)−1

r̂mi

)

= 0 (3.39)

Neglecting the spatial variation of the product hjuj, we take the coefficient that multi-
plies r̂mi out of the derivative, obtaining

rc − h2
i

12

(
ρ ujhj

4
+

2µ

3

)−1
∂r̂mi
∂xi

= 0 (3.40)

Eq. (3.40) expresses the basic FIC mass balance statement used in the present work. We
will simplify it slightly by using an average characteristic length as done in [89], which
allows us to combine the two coefficients in Eq. (3.40) in a single isotropic stabilization
parameter τc

τc =

(
3ρ ‖u‖

h
+

8µ

h2

)−1

(3.41)

where we use the norm of the velocity and the average element length h, which is
calculated as the square root of the elemental area in 2D or the cubic root of the
elemental volume in 3D.

Using τc we can write the final FIC balance statement for the incompressibility
equation as

rc − τc
∂r̂mi
∂xi

= 0 (3.42)

We can multiply Eq. (3.42) by a test function q and integrate over the fluid domain
Ω to obtain the weak form of the equation

∫

Ω

q rc dΩ−
∫

Ω

qτc
∂

∂xi

(

ρ∂tui + ρuk
∂ui

∂xk

− 2µ
∂

∂xj

εij +
∂p

∂xi

− fi

)

dΩ = 0 (3.43)

It is convenient to integrate by parts the second integral in Eq. (3.43) to reduce the
order of the derivatives involved. As in the momentum equation, the boundary terms
resulting from this operation are neglected in the present work, obtaining the expression

∫

Ω

q
∂ui

∂xi
dΩ +

∫

Ω

∂q

∂xi
τc

(

ρ∂tui + ρuk
∂ui

∂xk
− 2µ

∂

∂xj
εij +

∂p

∂xi
− fi

)

dΩ = 0 (3.44)

Eq. (3.44) represents a stabilized formulation for the continuity equation, similar to that
obtained in GLS formulations [56]. Note that the stabilization parameter τc, defined in
Eq. (3.41), has the same structure as the classical SUPG or GLS characteristic time τ
and the static version of the parameter τ1 used for the VMS formulation in Chapter 2.
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In addition to the formulation given by Eq. (3.44), we have also tested a variant
involving the projection of r̂mi . Consider the following modified version of Eq. (3.42)

∂ui

∂xi
+ τc

∂

∂xi
(r̂mi − πi) = 0 (3.45)

where π represents the L2 projection onto the finite element grid of r̂m, that is to say,
the solution of ∫

Ω

wiπi dΩ =

∫

Ω

wir̂
m
i dΩ (3.46)

This formulation results in the following weak form, again neglecting boundary terms,
which substitutes Eq. (3.44).

∫

Ω

q
∂ui

∂xi
dΩ +

∫

Ω

∂q

∂xi
τc

(

ρ∂tui + ρuk
∂ui

∂xk
− 2µ

∂

∂xj
εij +

∂p

∂xi
− fi + πi

)

dΩ = 0 (3.47)

We will use Eq. (3.47) as the reference formulation in the following, with the under-
standing that any terms involving πi can be dropped to recover the formulation without
projections.

3.5 Finite element formulation

Combining the stabilized momentum equation given by Eq. (3.28) and that of Eq. (3.47)
for the continuity equation we obtain the complete stabilized weak form of the problem,
which we used to develop a finite element formulation.

In the present work we restrict ourselves to linear finite elements, using triangular and
quadrilateral elements in 2D or tetrahedra and hexahedra in 3D. This means that all
terms involving second derivatives of velocity in Eqs. (3.28) and (3.47) will be neglected,
as they are identically zero when using our interpolation. The full formulation, without
second order terms, is given by

Momentum
∫

Ω

wi ρ

(

∂tui +
1

2
uk

∂ui

∂xk

)

dΩ−
∫

Ω

1

2
uk

∂wi

∂xk
ρui dΩ

+

∫

Ω

2µ
∂wi

∂xj

(

εij −
εkk
3

δij

)

dΩ−
∫

Ω

∂wi

∂xi

p dΩ

+

∫

Ω

β
hu

2 ‖u‖uk
∂wi

∂xk

(

ρ∂tui + ρ

(
1

2
uk

∂ui

∂xk
+

1

2

∂

∂xk
(uiuk)

))

dΩ

+

∫

Ω

β
hu

2 ‖u‖uk
∂wi

∂xk

(
∂p

∂xi

− fi

)

dΩ +

∫

Ω

∂wi

∂xj

(1− β)Dg
ik

∂uk

∂xj

dΩ =

∫

Ω

wi fi dΩ +

∫

ΓN

wi ti dΓ−
∫

ΓN

1

2
ρwi (uknk)ui dΓ

(3.48)
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Mass balance

∫

Ω

q
∂ui

∂xi
dΩ +

∫

Ω

∂q

∂xi
τc

(

ρ∂tui + ρuk
∂ui

∂xk
+

∂p

∂xi
− fi + πi

)

dΩ = 0 (3.49)

with

Dg
ik =

hgir
m
i

2 ‖∇ui‖
δik τc =

(
3ρ ‖u‖

h
+

8µ

h2

)−1

β ∈ [0, 1]

3.5.1 Spatial discretization

We introduce a finite element discretization Ωh of the problem domain Ω. Using this
discrete representation, the problem variables u and p can be represented using a finite
element interpolation as

uh =

nn∑

a

N a (x)ua ph =

nn∑

a

Na (x) pa (3.50)

where nn represents the number of nodes in the finite element mesh, ua and pa are
the variables evaluated at node a, Na (x) is the standard linear finite element function
associated to node a and

N a =





Na 0 0
0 Na 0
0 0 Na





Furthermore, we introduce the notation U , U̇ and P to indicate the vectors of nodal
values for velocity, acceleration and pressure, respectively. Given that the variational
form of the problem, represented by Eqs. (3.48) and (3.49), must hold for all admissible
test functions and that the set of finite element shape functions {Na} constitutes a basis
of the interpolation space, we can obtain a system of equations by imposing that the
variational form of the problem must hold for each basis function Na. This system can
be expressed in matrix form as

[
M +MK 0

MD 0

] [

U̇

0

]

+

[
C +K + SK +DG G+ SG

D + SD L

] [
U

P

]

=

[
F + SF + T

SQ + SΠ

]

(3.51)

The different matrices in Eq. (3.51) represent the discrete form of the terms in Eqs. (3.48)
and (3.49). Each of them can be built by the assembly of elemental contributions. For
an element containing N nodes, an elemental matrix Ae can be defined using N × N
blocks Ae

ab, where a and b are local node indices. The individual blocks for the different
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matrices and vectors can be defined as

M e
ab =

∫

Ωe

ρN T
aN b dΩ (3.52)

Ce
ab =

∫

Ωe

ρ
1

2

(

NT
a uk

∂N b

∂xk

−
(

uk
∂N a

∂xk

)T

N b

)

dΩ (3.53)

Ge
ab i = −

∫

Ωe

(
∂N a

∂xi

)T

Nb dΩ (3.54)

De
ab i =

∫

Ωe

Na
∂N b

∂xi
dΩ = − (Ge

ba i)
T (3.55)

F e
a =

∫

Ωe

NT
a f dΩ (3.56)

T e
a =

∫

ΓN

NT
a

(

t− ρ
1

2
(uknk)N b

)

dΓ (3.57)

Introducing the strain rate-velocity matrix Ba for node a and the constitutive matrix
Cµ

BT
a =












∂Na

∂x
0 0

∂Na

∂y
0

∂Na

∂z

0
∂Na

∂y
0

∂Na

∂x

∂Na

∂z
0

0 0
∂Na

∂z
0

∂Na

∂y

∂Na

∂x












(3.58)

Cµ =











4µ/3 −2µ/3 −2µ/3 0 0 0
−2µ/3 4µ/3 −2µ/3 0 0 0
−2µ/3 −2µ/3 4µ/3 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ











(3.59)

the viscosity term in Eq. (3.48) can be expressed in discrete form as the viscous stress
matrix

Ke
ab =

∫

Ωe

BT
aCµBb dΩ (3.60)
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The stabilization terms in Eq. (3.48) and Eq. (3.49) give rise to the following matrices

M e
K ab =

∫

Ωe

ρβ
hu

2 ‖u‖

(

uk
∂N a

∂xk

)T

N b dΩ (3.61)

M e
D ab i =

∫

Ωe

ρτc

(
∂Na

∂xi

)T

N b dΩ (3.62)

Se
K ab =

∫

Ωe

ρβ
hu

2 ‖u‖

(

uk
∂N a

∂xk

)T (

ul
∂N b

∂xl

)

dΩ (3.63)

Se
Gab i =

∫

Ωe

β
hu

2 ‖u‖

(

uk
∂N a

∂xk

)T
∂Nb

∂xi
dΩ (3.64)

De
Gab =

∫

Ωe

(1− β)

(
∂N a

∂xi

)T

Dg
ik

(
∂N b

∂xk

)

dΩ (3.65)

Se
D ab i =

∫

Ωe

τcNa
∂N b

∂xi

dΩ (3.66)

Le
ab =

∫

Ωe

τc

(
∂Na

∂xk

)T
∂Nb

∂xk

dΩ (3.67)

Se
F a =

∫

Ωe

β
hu

2 ‖u‖

(

uk
∂N a

∂xk

)T

f dΩ (3.68)

Se
Q a =

∫

Ωe

τc
∂Na

∂xi

fi dΩ (3.69)

Se
Π a = −

∫

Ωe

τc
∂Na

∂xi

πi dΩ (3.70)

In the following, Eq. (3.51) will be expressed using the compact notation

M̃

[

U̇

0

]

+ C̃

[
U

P

]

= F̃ (3.71)

If projections are used in the stabilization of the incompressibility equation, an addi-
tional system has to be solved to determine the nodal values of the projection variables π.
The equations for the projection can be obtained from the discrete version of Eq. (3.46),
resulting in

MΠΠ = RΠ (3.72)

where Π is the array of nodal values for the projection variables and

M e
Πab =

∫

Ωe

NT
aN b dΩ (3.73)

Re
Πa =

∫

Ωe

NT
a r̂

m dΩ (3.74)
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Note that the assembly of elemental contributions given by Eq. (3.73) results in a
dense matrix. In practice, the system matrix MΠ in Eq. (3.72) is approximated by a
diagonal mass matrix for efficiency.

3.5.2 Time integration and linearization

To solve the problem described by Eqs. (3.48) and (3.49), we first need introduce a
time discretization to express the nodal accelerations U̇ in terms of the nodal velocities
U . As in Chapter 2, we use the Bossak scheme to obtain the time-discrete problem.
Referring the reader to Section 2.5 for the details on the method, here we present only
the final expression, which can be expressed as
(
1− αB

γN∆t
M̃ + C̃

)[
Un+1

P n+1

]

=

F̃ − 1− αB

γN∆t
M̃

[
Un

0

]

+

{

(1− αB)

(
1

γN
− 1

)

+ αB

}

M̃

[

U̇n

0

] (3.75)

with αB = −0.3, ΓN = 1/2− αB and

U̇n =
1

γN∆t
(Un −Un−1)−

(
1

γN
− 1

)

U̇n−1 (3.76)

The only step left to finalize the finite element solver is to introduce a linearization
for Eq. (3.75). Both the system matrix and the right-hand side term contain sources of
non-linearity in the form of terms that depend on the current values of the variables.
This includes all terms involving the convective term uk∂ui/∂xk, stabilization terms due
to the dependence of the different stabilization coefficients on the local velocity ui and
the gradient diffusion term, which involves both the momentum residual rmi and the
velocity gradients ∇ui.

As in Chapter 2, we rewrite Eq. (3.75) in residual form and introduce a linearization
so that the unknowns can be obtained by iteratively solving a linear system of equations.
Defining the approximation to the value at time step n+ 1 after i non-linear iterations
as U i

n+1, the residual form of Eq. (3.75) is given by

R
(
U i

n+1,P
i
n+1

)
= F̃ − 1− αB

γN∆t
M̃

[
Un

0

]

+

{

(1− αB)

(
1

γN
− 1

)

+ αB

}

M̃

[

U̇n

0

]

−
(
1− αB

γN∆t
M̃ + C̃

)[
U i

n+1

P i
n+1

] (3.77)

Our problem now consists in finding U i+1
n+1, P

i+1
n+1 such that Ri+1

n+1 = 0. As before, using
Picard iterations we obtain the iterative scheme

−
(
1− αB

γN∆t
M̃ + C̃

)[
δU i

δP i

]

= R
(
U i

n+1,P
i
n+1

)
(3.78)
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this problem is solved iteratively until convergence in terms of the increments δU i and
δP i or the residual vector R

(
U i

n+1,P
i
n+1

)
.

3.5.3 Summary of the formulation

Starting from the weak form described by Eq. (3.48) and Eq. (3.49), we have introduced
a finite element discretization in space and a time discretization based on the Bossak
method. Additionally, a Picard linearization has been used to obtain a linear system of
equations to be solved iteratively, given by Eq. (3.78). To summarize, the complete FIC
solution procedure is presented in compact form as Algorithm 3.1.

Algorithm 3.1 FIC incompressible flow solver.

1: for n = 0 nsteps do
2: n = n+ 1,t = t+∆t
3: while

∥
∥Ri

n+1

∥
∥ ≤ tol do

4: i = i+ 1
5: for all elements do
6: if Using dynamic procedure for β then

7: Compute βi according to Eq. (3.31)
8: end if

9: Evaluate local contributions using Eqs. (3.52)–(3.70).
10: Assemble local contributions to the linear system of Eq. (3.78).
11: end for

12: Solve Eq. (3.78) for δU i, δP i.
13: Update variables U i+1

n+1,P
i+1
n+1.

14: if Using projections then
15: for all elements do
16: Assemble projection problem using Eqs. (3.73) and (3.74).
17: end for

18: Obtain new values for the projection by solving Eq. (3.72).
19: end if

20: end while

21: Calculate U̇
i+1

n+1 according to Eq. (3.76).
22: end for

This formulation has been implemented within the Kratos Multiphysics code [34], a
software framework for the development of finite element solvers. The code is prepared
to work in a parallel environment, as will be presented in Chapter 4. This has proved
essential to perform the larger simulations in a reasonable time, which were run using
the Gottfried cluster of the North-German Supercomputing Alliance (HLRN).
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3.6 Turbulent channel flow

The flow in a plane turbulent channel is a classic turbulence benchmark and represents
a challenging problem for LES formulations, due to the dependence of the vortex size to
the distance to the wall [125]. It has been studied for a wide range of Reynolds numbers,
but we direct our attention to the moderate value of Reτ = 395. There is an extensive
bibliography regarding this case, with a comprehensive set of statistical data obtained
from direct numerical simulations by Moser et al. in [81] and different studies in which
the problem was modelled using stabilized VMS-based formulations, both using classical
finite elements such as in [45] or [32] and using isogeometric elements [9] or [3].

This Reynolds number is very convenient because it allows using a mesh size in the
inertial subrange, even close to the wall, while keeping the computational cost under
control. At higher Reynolds numbers, the number of elements required to have a grid size
on the inertial subrange increases prohibitively and some type of wall model is usually
preferred to reduce the required number of elements (see for example [100] or [17]).

The plane turbulent channel problem simulates a flow driven by a fixed pressure
gradient between two parallel infinite walls. Defining the distance between the two
walls as 2δ, the problem is formulated in terms of the wall friction τw and the friction
velocity uτ

τw = −δ
dP

dx
= ρu2

τ ⇒ uτ =

(

−δ

ρ

dP

dx

) 1

2

(3.79)

where dP/dx is the imposed pressure gradient. Using the definitions of Eq. (3.79), the
turbulent channel problem can be characterized by the friction Reynolds number Reτ ,
defined as

Reτ =
uτδ

ν
(3.80)

which is set to Reτ = 395 for the present simulation. The results are presented in terms
of the dimensionless distance to the wall y+ = uτy/ν.

To perform the simulation at the desired Reynolds number, we have selected the
following parameters:

ρ = 1Kg/m3 ν = 1.472× 10−4m2/s δ = 1m
dP

dx
= −3.372040× 10−3N/m2

(3.81)

3.6.1 Problem definition

We model a domain defined by [0, 2π]×[−δ, δ]×[0, 2π/3] in the stream-wise, wall-normal
and cross-stream directions respectively, using the same domain as in [9]. Zero velocity
Dirichlet conditions are assigned on the wall sides and periodic boundary conditions are
used in the remaining directions.
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The problem has been modeled using linear hexahedral and tetrahedral elements. In
the first case, a grid of 643 elements has been used. Mesh nodes were placed regularly
along the stream-wise and cross-stream directions while, in the wall-normal direction, a
weighting function is used to move the nodes closer to the wall. The location yi of the
i-th node in the wall-normal direction is chosen as

yi = δ

tanh

(

w

(
2i

nel
− 1

))

tanh (w)
i ∈ [0, nel] (3.82)

with w = 2.432 for nel = 64 and w = 2.927 for nel = 32, chosen so that the first node in
the mesh is always at a dimensionless distance to the wall y+ = 1. For the tetrahedral
cases, a mesh with the same nodal positions is used, but each hexahedra is split into six
tetrahedra.

The time step for the simulation is chosen as ∆t = 0.04 s which, according to the
analysis in [49], should be sufficient to reproduce the features of the flow. We use the
expected average velocity profile as the initial condition, adding a random fluctuation to
destabilize the solution. Once a fully turbulent flow develops, the flow is left to evolve
until it reaches a statistically homogeneous solution. With this, different averages and
correlations are calculated using the approach presented in Chapter 4. Statistical results
were collected at the integration points of each element, averaging over time and over
planes parallel to the walls.

We have performed multiple simulations using these settings to study the behaviour
of different variants of the FIC formulation presented in the preceding pages. Note that
all turbulent channel flow cases were run using the projections for the mass stabilization
in Eq. (3.47).

3.6.2 Fixed combination parameter

The first simulations were performed using the FIC formulation with a fixed combination
parameter, set to β = 0.8. The average stream-wise velocity 〈u〉, relative to the friction
velocity uτ , is shown in Fig. 3.3, compared to the DNS data of Moser et al. [81] for the
same Reynolds number.

The velocity variances for the same simulation are shown in Fig. 3.4. In addition to
the variances in each coordinate direction we also present the total turbulence kinetic
energy, defined as

k =
1

2
(〈u′u′〉+ 〈v′v′〉+ 〈w′w′〉) (3.83)

Additionally, we measured the dissipation of average stream-wise linear momentum
in the wall-normal direction. We know from studying the RANS momentum equation
that the average shear stress in the xy plane can be written as (see for example [125]
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Figure 3.3: Channel flow – average stream-wise velocity profiles obtained using β = 0.8,
compared to the DNS data of Moser et al. [81].

or [101])

〈τxy〉 = ρ 〈u′v′〉+ µ
∂ 〈u〉
∂y

= τw
y

δ
(3.84)

where the first term of the middle equality represents the Reynolds stresses in the xy
plane and the second the viscous dissipation due to the average velocity. This decom-
position is shown in Fig. 3.5 for the simulation performed using hexahedral elements.
As the addition of the two terms is close to the expected straight line, we consider that
the flow is in statistical equilibrium.

We observe that the results obtained with linear hexahedra are closer to the expected
values than those obtained with linear tetrahedra in all cases. This was to be expected,
as hexahedra use trilinear shape functions, which define a richer interpolation than the
linear functions used in tetrahedra.

In light of the fact that the formulation we are using has a free parameter, β, which
is set a priori, we are interested in studying how the solution is dependent of its value.
To investigate this, we simulated the problem with the same settings, changing only the
value of β. The results obtained using a tetrahedral mesh with 64 divisions along each
coordinate direction are shown in Fig. 3.6, where the statistics obtained with β = 0.8 and
a tetrahedral mesh in the previous test, corresponding to the dashed curve in Fig. 3.3
and Fig. 3.4 are compared to those obtained with the same mesh and different values
of β. It is observed that there is not a large amount of variation between the different
cases, although the β = 0.5 case tends to display a lower level of velocity fluctuations
in all directions. This suggests that small values of β, which give more weight to the
gradient diffusion term, result in a solution that is more diffusive overall.
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(a) Turbulence kinetic energy.
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(b) Stream-wise velocity fluctuations 〈u′u′〉.
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(c) Wall-normal velocity fluctuations 〈v′v′〉.
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(d) Cross-stream velocity fluctuations 〈w′w′〉.

Figure 3.4: Channel flow – turbulence kinetic energy and Reynolds stresses obtained
using β = 0.8, compared to Moser et al. [81].
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Figure 3.5: Channel flow – average stress 〈τxy〉 profile obtained using hexahedra and
fixed β = 0.8.
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(b) Turbulence kinetic energy.
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(c) Stream-wise velocity fluctuations 〈u′u′〉.
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(d) Wall-normal velocity fluctuations 〈v′v′〉.
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(e) Cross-stream velocity fluctuations 〈w′w′〉.

Figure 3.6: Channel flow – velocity average and variances for a range of values of β,
using tetrahedral meshes.
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Figure 3.7: Channel flow – average stream-wise velocity profiles using a fixed or dynamic
combination parameter.

3.6.3 Variable combination parameter

The next set of tests was performed using Eq. (3.31) to assign a value to the combina-
tion parameter β, while keeping the remaining simulation settings as in the fixed beta
case. The minimum value of the coefficient was set to β ≥ 0.8 for the first tests, which
produced the average velocity distribution presented in Fig. 3.7 and the velocity vari-
ances shown in Fig. 3.8, where we compare them to to the results obtained for a fixed
coefficient in previous simulations.

We can see in the figures that the average velocity profiles are generally lower to those
obtained in the fixed β cases and closer to those obtained from DNS data. Conversely,
the velocity fluctuations measured in the stream-wise direction are somewhat lower than
in the fixed β simulations, resulting in a turbulence kinetic energy that is much closer
to that obtained from DNS simulations.

As in the previous case, we are also interested in quantifying the impact that the
choice of a limit value for the combination coefficient has in the obtained solution. To
test its influence, we ran several simulations for tetrahedra (Fig. 3.9) and hexahedra
(Fig. 3.10), changing the limit value for β. We consider that the results show minor
variations depending on the choice of parameter, at least for large values of β.

We also studied the sensitivity of the solution to the choice of mesh size. The results
obtained using a coarser mesh of 323 hexhahedra or 6× 323 tetrahedra are compared in
Fig. 3.11 to those obtained with the meshes used in the previous examples. As before,
there is a clear difference in the behaviour of tetrahedra and hexahedra. In particular,
it seems that the coarser tetrahedral mesh is insufficient to reproduce the features of the
problem, resulting in a significantly larger average velocity.

As a final validation, we compared our results to those obtained using a GLS formu-
lation on the same finite element mesh. The results of this test are shown in Fig. 3.12.
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(a) Turbulence kinetic energy.
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(b) Stream-wise velocity fluctuations 〈u′u′〉.
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(c) Wall-normal velocity fluctuations 〈v′v′〉.
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(d) Cross-stream velocity fluctuations 〈w′w′〉.

Figure 3.8: Channel flow – turbulence kinetic energy and Reynolds stresses using a fixed
or dynamic combination parameter. See legend in Fig. 3.7.
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(b) Turbulence kinetic energy.
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(c) Stream-wise velocity fluctuations 〈u′u′〉.
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(d) Wall-normal velocity fluctuations 〈v′v′〉.
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(e) Cross-stream velocity fluctuations 〈w′w′〉.

Figure 3.9: Channel flow – velocity average and variances obtained using linear tetra-
hedra and different limits for the dynamic combination parameter.
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(b) Turbulence kinetic energy.
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(c) Stream-wise velocity fluctuations 〈u′u′〉.
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(d) Wall-normal velocity fluctuations 〈v′v′〉.

0 50 100 150 200 250 300 350 400

y+

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

〈w
′
w

′
〉1

/
2
/
u
τ

(e) Cross-stream velocity fluctuations 〈w′w′〉.

Figure 3.10: Channel flow – velocity average and variances obtained using linear hexa-
hedra and different limits for the dynamic combination parameter.
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(b) Turbulence kinetic energy.
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(c) Stream-wise velocity fluctuations 〈u′u′〉.
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(d) Wall-normal velocity fluctuations 〈v′v′〉.
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(e) Cross-stream velocity fluctuations 〈w′w′〉.

Figure 3.11: Channel flow – velocity average and variances obtained using different grid
sizes (all results with dynamic β ≥ 0.8).
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(b) Turbulence kinetic energy.
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(c) Stream-wise velocity fluctuations 〈u′u′〉.
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(d) Wall-normal velocity fluctuations 〈v′v′〉.
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(e) Cross-stream velocity fluctuations 〈w′w′〉.

Figure 3.12: Channel flow – velocity average and variances obtained using FIC with a
dynamic combination coefficient β ≥ 0.8 or GLS.
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3.6.4 Summary of the results

To conclude the analysis of the turbulent channel flow at Reτ = 395 test case we
summarize the main results. A first general observation is that hexahedra produce
much more accurate solutions than tetrahedra for a given mesh size. A difference in
accuracy was expected, as the interpolation obtained using hexahedra is richer, but we
have found it to be large in our mesh studies. An observation of Fig. 3.11 suggests
that 6 × 643 tetrahedra are required to obtain results comparable to 323 hexahedra,
which represents 48 times more elements in total. In spite of this, we will continue to
use tetrahedra in the following examples, due to their flexibility in meshing complex
geometries.

As the formulation we are proposing has a free parameter, the combination parameter
β, we wanted to study the sensitivity to its value. In the cases where the parameter
was fixed throughout the simulation, the general trend is to obtain lower variances
the smaller the coefficient, which corresponds to giving more weight to the gradient
diffusion term (see Fig. 3.6). This suggests that the gradient diffusion term introduces
a significant amount of numerical dissipation, producing more homogeneous solutions.
However, it must be noted that the average velocity profile is much less sensitive to the
choice of parameter, producing very similar results in all cases.

If the combination parameter is set on each element according to the local weighting
function of Eq. (3.31), the obtained velocity profiles are generally lower than those
obtained with a fixed parameter and measured variances show a better agreement with
the DNS data, specially in the 〈u′u′〉 correlation, which is the larger contribution to the
total turbulence kinetic energy (see Fig. 3.8). In this case, the only external parameter
is the minimum admissible value of β, but our experiments show that the results are
not very sensitive to this parameter, at least if it is large enough, as can be observed in
Fig. 3.9 for tetrahedra and Fig. 3.10 for hexahedra.

Finally, we compared our approach to using a standard GLS stabilization, which,
for linear elements, is equivalent to the Q-ASGS formulation presented in Chapter 2.
The results, shown in Fig. 3.12, suggest that the formulation we propose results in a
closer approximation to DNS data than the reference for a given mesh size. We propose
two reasons a justification for this result. On one hand, we introduce a new term, the
gradient diffusion, which has been shown to introduce an additional source of dissipation.
On the other, the formulation we propose, unlike GLS, does not include a div-div term,
which was shown in [32] and in our own results in the previous chapter to have a negative
impact in the turbulent channel case.

Based on the results obtained in this set of tests, we conclude that setting the
combination parameter locally, limited to a minimum value of β ≥ 0.8, is the variant that
better approximates the reference solution. As a result, we will adopt this formulation
for the remaining cases.
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3.7 Flow around a cylinder

The flow over a circular cylinder is a classical problem in CFD simulations, which has
been studied extensively, both experimentally and numerically, as can be verified for
example in the review of [82]. Flow over circular cylinders exhibits a variable behavior
depending on the Reynolds number, due to the different vortex shedding mechanisms
that develop on the wake [69]. As a benchmark example for the FIC formulation, we
studied the case corresponding to a Reynolds number Re = 3900 based on the diameter
of the cylinder and the inflow velocity. This case was studied experimentally in [94] and
numerically in [66] or [12]. In this section, we will use a numerical set up similar to that
of [66] and compare our results to those presented in that reference.

We simulated the flow over a cylinder with dimensionless diameter D = 1 using a
domain of 30D × 30D, centered on the cylinder, in the plane normal to the cylinder’s
axis, and W = 3.14D in the span-wise direction. The simulation is run for 160 dimen-
sionless time units (made dimensionless using the inflow velocity U∞ and the diameter
D) with a dimensionless time step δt = 0.1, which should provide sufficient resolution
to capture the main vortex shedding frequency.

The domain for the problem is presented in Figure 3.13. Consider the axes x, y and
z, aligned in the stream-wise, cross-stream and span-wise directions respectively, and
let u, v and w, be the components of the flow velocity in each of the three coordinate
directions. We are interested in measuring the velocity history in selected planes in the
wake of the cylinder, chosen to coincide with those reported in the reference.

Figure 3.13: Flow around a cylinder – simulation domain and measurement planes.

Linear tetrahedral elements have been used to mesh the domain, with sizes ranging
between 0.03D near the cylinder to 0.5D in the far regions. This resulted in a total
of 1.74 million nodes and 10 million elements. The velocity is fixed to a constant
U∞ = 1m/s for the inlet and to zero on the cylinder surface. Periodic boundary
conditions have been used in the span-wise direction, while a no-penetration condition
v = 0 has been imposed in the far sides on the cross-stream direction. The combination
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parameter for the FIC formulation is set locally for each element using the dynamic
formulation, with a limit value of β ≥ 0.8.

The instantaneous stream-wise velocity field on the central x–y plane at the end of the
simulation is shown in Fig. 3.14. The velocities on the x–z plane for the same time instant
are shown in Fig. 3.15. From the stream-wise velocity component u in Fig 3.15(a), the
formation of a recirculation zone just after the cylinder can be observed. Similarly, in
Fig. 3.15(b), which shows the instantaneous cross-stream component of velocity v, the
alternating direction of the velocity suggests the formation of a vortex trail.

Figure 3.14: Flow around a cylinder – instantaneous stream-wise velocity u on the x–y
midplane.

While the instantaneous velocity distributions give us a qualitative idea of the flow,
we are interested in studying the statistics of the cylinder wake, which can give us a more
quantitative idea of the quality of the simulation. We computed the average velocity in
the stream-wise and cross-stream directions on different y–z sections (that is, normal to
the mean flow) on the wake of the cylinder. The results in terms of averages, compared
to those of [66], are shown in Fig. 3.16 for the near wake and in Fig. 3.17 for the far
wake.

Observing the results, we can see that we obtain a close agreement with the reference,
although the formation of the wake is slightly delayed when compared to the reference.
This can be seen by considering that the average velocity defect on the wake should
start as a deep U -shaped trough just behind the cylinder, where the average flow in the
recirculation zone is very small or negative on average, and become wider and shallower
(closer to the inflow velocity U∞) as the wake develops. In general, our profiles are below
the expected curve.

In addition, we have also computed the variance of the stream-wise velocity 〈u′u′〉,
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(a) Stream-wise velocity u.

(b) Cross-stream velocity v.

(c) Span-wise velocity w.

Figure 3.15: Flow around a cylinder – instantaneous velocities on the x–z midplane.
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(a) Stream-wise velocity u.
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(b) Cross-stream velocity v.

Figure 3.16: Flow around a cylinder – average velocities in the near wake. Reference
( ), present work ( ). From top to bottom: x/D = 1.06, x/D = 1.54, x/D =
2.02.
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Figure 3.17: Flow around a cylinder –
average stream-wise velocity u in the far
wake. Reference ( ), present work
( ). From top to bottom: x/D = 6.0,
x/D = 7.0, x/D = 10.0.
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Figure 3.18: Flow around a cylinder –
〈u′u′〉 correlation in the near wake. Ref-
erence ( ), present work ( ). From
top to bottom: x/D = 1.06, x/D = 1.54,
x/D = 2.02.

shown in Fig. 3.19(a) for the near wake and Fig. 3.18 for the far wake. The obtained
variance is smaller in general than expected, which suggests a smoother flow and a more
diffusive solution. The cross-correlation 〈u′v′〉 is shown in Fig. 3.19(b) on the same
planes where it was reported in the reference. This result shows some irregularity, in
our solution as well as in the reference, which might be reduced with a longer simulation
time.

Finally, we have computed the drag coefficient CD and the Strouhal number St,
which represents the dimensionless vortex shedding frequency, as given

CD =
〈Rx〉

1
2
ρU∞DW

St =
f D

U∞

(3.85)

where 〈Rx〉 is the average force applied by the fluid on the surface of the cylinder in
the stream-wise direction and f is the vortex-shedding frequency on the cylinder tail,
which we have calculated from the lift force history Ry (t). The results, compared to
those reported in [66], are reported in Table 3.1.

Analysis CD St

Present simulation 1.09 0.217
Numerical [66] 1.04 0.210

Experimental (reported in [66]) 0.99± 0.05 0.215± 0.005

Table 3.1: Flow around a cylinder – flow parameters.

The results obtained for this case show in general good agreement to reference val-
ues in terms of the average solution. Variances, while in qualitative agreement with
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(a) 〈u′u′〉 correlation.
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(b) 〈u′v′〉 correlation.

Figure 3.19: Flow around a cylinder – velocity correlations in the far wake. Reference
( ), present work ( ). From top to bottom: x/D = 6.0, x/D = 7.0, x/D = 10.0.

the expected results in terms of spatial distribution, tend to be underestimated. This
suggests that the obtained solution has larger dissipation than required, smoothing out
peaks in the fluctuating solution. It would be interesting to repeat the same simulation
with hexahedra or with a finer tetrahedral grid, to see which fraction of this dissipation
is due to mesh resolution or to the formulation itself.

3.8 Flow around a solar collector

As a final example we wanted to test the capabilities of the formulation when applied to
an industrial problem. For this, we simulated the wind flow around a parabolic trough
solar collector and compared it to experimental data. A parabolic trough is an array
of parabolic mirrors that concentrate solar rays in their focus, where the solar energy
is collected and used to operate a steam turbine generator. The mirrors can be large
structures (the one we are studying is a parabola with a 5 meter aperture) and are
susceptible to damage due to strong winds. As such, there is interest in studying the
wind load over the mirror, both numerically and experimentally.

We are using one of such experiments as a reference, where a 1:25 scale model of a
single mirror was placed in a wind tunnel. This experiment was performed for Abengoa
Research, which has given us access to the data, and was reported in [6, 75]. Note that,
as requested by the company, we are providing all our results in scaled form to protect
intellectual property.

Due to the larger scale of the model compared to the previous examples, we will not
attempt to reproduce the full boundary layer and the Werner-Wengle wall model [131]
will be used to introduce the equivalent wall friction close to solid surfaces. Additionally,
as we are trying to reproduce a wind tunnel experiment with a turbulent incoming
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flow, we need to generate a time-dependent inlet condition which bears a statistical
resemblance to a real wind signal (see for example [73] or [107]).

The geometry of the collector is shown in Fig. 3.20 at full scale. To reproduce the
different configurations of the collector as it rotates over its axis to follow the sun, the
seven cases shown in Fig. 3.21 modifying the pitch of the mirror in increments of 30◦.
The average wind is always assumed to reach the collector frontally, so that the mirror
presents the maximum possible area to the flow.

L= 7.916 m

H
=

 3
.0

6
 m

W
=

 5
.0

 m

Fx
MyB

Figure 3.20: Parabolic collector dimensions (full scale).

(a) 0◦ (b) 30◦ (c) 60◦ (d) 90◦ (e) 120◦ (f) 150◦ (g) 180◦

Average wind direction

Figure 3.21: Solar collector – pitch angles considered in the simulation. Wind blows
from the left.

We simulated the collector at model scale (1:25), reproducing the wind tunnel ex-
periment. The collector was placed on a fluid domain of 3 × 2 × 1.4m at model scale
in the stream-wise, cross-stream and vertical directions, respectively, at 5W = 1m from
the inlet.

The incoming wind is generated using the model of [73] to follow a Kaimal wind spec-
trum [62] with a reference stream-wise velocity Uref = 6.26m/s at 0.4m (corresponding
to 10m at full scale) and a wall roughness z0 = 0.0012m (z0 = 0.03m at full scale). The
air is assumed to have density ρ = 1.225Kg/m3 and viscosity ν = 1.4604× 10−5m2/s,
resulting on a Reynolds number Re ≈ 85000 calculated using Uref and W .

The calculation was performed with an unstructured tetrahedral mesh, with mesh
sizes ranging from h = W/50 = 0.004m close to the mirror surface to h = 0.32W =
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0.064m on the far regions. This resulted in approximately 1.5× 105 nodes and 8× 105

elements for each simulation.

Instantaneous distributions of velocities and pressures close to the collector are shown
in Fig. 3.22 for the case with pitch angle 60◦ and in Fig. 3.23 for the case of 150◦ as an
example of the results. As can be seen in the figures, a vortex trail develops due to the
presence of the collector.

(a) Velocity vectors. (b) Pressure contours.

Figure 3.22: Solar collector – instantaneous velocity and pressure fields for pitch angle
60◦.

(a) Velocity vectors. (b) Pressure contours.

Figure 3.23: Solar collector – instantaneous velocity and pressure fields for pitch angle
150◦.

The simulation is performed for a sufficiently long time for the flow to become sta-
tistically steady and obtain a data set on this regime so that meaningful statistics can
be obtained. The forces on the mirror are integrated at each time step and recorded
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Figure 3.24: Solar collector – average reactions.
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over time. These results are used to compute the drag and lift coefficients and the mo-
ment MyB, calculated around an axis placed on the base of the structure, as shown in
Fig. 3.20. The reactions are made dimensionless using Uref and the collector dimensions
W , L as follows

CD =
〈Rx〉

0.5ρU2
ref W L

CL =
〈Rz〉

0.5ρU2
ref W L

CM =
〈MyB〉

0.5ρU2
ref W

2 L
(3.86)

the resulting statistics for the different pitch angles considered are compared to the
experiment in Fig. 3.24. The results are presented relative to the maximum value in
each experimental curve as requested by Abengoa.

As was the general trend in the previous example, we achieve good accuracy in terms
of the averages, while the results in terms of fluctuations (the RMS in this case) tend
to be less accurate. In any case, we consider that this case serves as a proof of concept,
showing that the formulation has potential to solve problems of practical interest in
engineering, with complex geometries and variable inlet conditions.

3.9 Summary and conclusions

In the present chapter we have introduced a new FIC-based formulation for incompress-
ible flows. The main features of our method are the presence of a new term on the
momentum equation, which introduces an additional non-isotropic dissipation in the
direction of the velocity gradients, and a stabilized formulation for the mass equation
which is based on a second order FIC balance in space and represents an incompressible
Eulerian version of the method presented for quasi-incompressible flows in [89].

This method has a free parameter in the combination coefficient β that defines the
relative weights of the classical streamline diffusion and the new gradient diffusion term
in the stabilization of the momentum equation. We have proposed a way to define
this coefficient dynamically, with the intent of improving the results and reducing the
dependence of the solution on the free parameter.

We have tested the method with several application examples. The first example
presented is the turbulent channel flow at Reτ = 395, where we have tested the different
variants of the method. The main conclusions we extracted from the simulations can be
summarized as follows:

• Hexahedral meshes provide significantly better results than tetrahedra, with 323

hexahedra producing results of comparable quality to 6× 643 tetrahedra.

• The method is not very sensible to the free parameter β, at least for values of
β ≥ 0.5, for either the fixed or dynamic β variants.

• Using the dynamic formula for the β coefficient results in a better approximation
to the DNS curves, although the problem to be solved becomes more non-linear.
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Finally, the method was then applied to large turbulent flow simulations, first the
flow around a cylinder and then an industrial-scale simulation of the wind flow over
a parabolic solar collector. In this last case, due to the larger Reynolds number, the
method was used in combination with the Werner-Wengle wall model to introduce the
right dissipation on the walls without reproducing the full boundary layer.

The results show that the presented method is capable of reproducing the features
of the flow and shows promise in the application of the method real world examples of
industrial interest.





Chapter 4
Parallel implementation

4.1 Introduction

We have already remarked that one of the reasons why turbulent flow problems are
challenging is that they involve fluid motions with very different characteristic sizes and,
as a result, their numerical simulation requires very fine discretizations, both in space
and in time. Even with the introduction of turbulence modeling, LES simulations for
problems of practical interest in engineering require significant computational resources
and are well beyond the range of what currently can be calculated in a reasonable time
with a desktop computer.

Currently, the overwhelming majority of High Performance Computing (HPC) ma-
chines are distributed memory clusters (see for example the TOP500 list of the most
powerful computer systems [118]), in which many individual processors work in parallel
on different parts of the problem to be solved. Such machines are organized as groups
of interconnected calculation nodes, where each node contains one or several processors
and a block of memory. In this calculation framework, there exists a very clear distinc-
tion between local data, stored in the node’s memory, which is readily available to the
processor, and non-local data, stored in a different node, which has to be requested to
that node requires many more computation cycles to access.

In the context of finite element simulations, large problems can be solved using a
distributed memory approach by dividing the model domain into parallel subdomains,
each containing a fraction of the finite element mesh, and assigning each of them to an
individual processor. This requires careful design of the calculation software to solve
the global problem while minimizing the exchange of information between the individual
subdomains.

In this sense, a part of the programming work presented here represents a contribu-
tion to an ongoing work in our research group to improve the performance of Kratos
Multiphysics in distributed HPC clusters. This chapter will be devoted to presenting
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some of the adaptations required for distributed memory simulations and to test the
parallel performance of the resulting implementation.

We will focus our presentation on some aspects of parallelization that have required
the most attention to achieve the goals of the present work. The first of these is the
division of the original finite element mesh into parallel subdomains and the generation of
a communication strategy to efficiently exchange information between them. To present
this, we briefly describe in Section 4.2 how distributed data is organized in the code and
how it can be shared among processes, while Section 4.3 deals with the generation of
this distributed data from the complete problem.

The second aspect that will be considered is the parallel efficiency of the complete
solver. We describe some details of the assembly and solution of the problem’s lin-
ear system that require attention in a distributed memory context in Section 4.4 and
evaluate the parallel performance of the complete solver in Section 4.5.

Finally, as we have seen in Chapters 2 and 3, in turbulent flow analysis the quantities
of interest are frequently statistical results, obtained from spatial and/or temporal aver-
aging. In the context of large data sets and HPC, the efficient calculation of statistical
results requires careful consideration. This will be discussed in Section 4.6, where the
approach we have followed will be described.

Some final thoughts and future lines of improvement are presented in Section 4.7.

4.2 Distributed memory model

While there are multiple strategies to distribute data for finite element problems, the
approach of Kratos Multiphysics consists in dividing the mesh into discrete subdomains,
such that each individual element is assigned to a given processor, as shown for an
example problem in Fig. 4.1(a). In this approach, some of the mesh nodes will appear
in two or more different subdomains, as they belong to elements assigned to different
partitions. Such nodes will be called interface nodes.

It is critical to the solution of the problem that nodal data for interface nodes is
consistent across the different partitions, which requires its synchronization given points
of the solution procedure. To simplify this exchange of information, we found it con-
venient to also assign nodes to a given partition, which holds the reference values for
nodal data. From the point of view of a calculation process, nodes which belong to
its partition are defined as local nodes, while interface nodes which are known but are
assigned to a different partition are called ghost nodes. An example of such partition is
shown in Fig. 4.1(b), where local nodes are represented with a full circle in the color of
the partition and ghost nodes are represented with empty circles. In the same figure,
dashed lines represent inter-process communications which will be required during the
solution procedure.

In a communication strategy, it is important to define not only which partitions have
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(b) Node partition.

Figure 4.1: Division into subdomains.

to share information with each other but also the order in which such communication
is done. For example, the communication graph for the partition of Fig. 4.1 is shown in
Fig. 4.2(a).

1 4

32

(a) All links.

1 4

32

(b) Optimal.

Figure 4.2: Communication patterns for the partition of Fig. 4.1.

The simplest approach would be transferring data in order, starting from one of
the pairs and exchanging data one by one. This approach would have poor parallel
performance as, while a given pair of processes exchanges information, the others are
idle. Furthermore, the total number of exchanges required grows rapidly as the number
of processes is increased, resulting in a significant fraction of the total calculation time
spent waiting for communication.

A more efficient approach is to try to group communications in a way that processes
are never idle, such as in Fig. 4.2(b), considering one first stage where process 1 commu-
nicates with 2 and 3 with 4, followed by a second phase where process 1 communicates
with 4 and 2 with 3. Reducing the number of total communication stages and, in this
case, keeping all processes busy at all times.

In the case of Kratos Multiphysics, an existing code which had to be adapted for
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parallel simulations, the existing data structure had to be adapted to work in a dis-
tributed memory context. While we won’t go into the details of the Kratos structure
here (the interested reader is directed to [33, 35]), we will just say that all model data is
stored in an entity known as ModelPart, which contains the definition of the mesh and
the associated nodal or elemental data. In a parallel context, each process defines its
own ModelPart, which in this case contains all elements in the subdomain assigned to
that process and all nodes (both local and ghost) required to perform the simulation.

Data transfer across processes was achieved by adding an additional component in
the ModelPart, the Communicator, which handles parallel communication [34]. This
object stores the communication strategy (which process will I communicate with on
each stage) and the lists of local and ghost nodes to be exchanged in each stage. When
data transfer is required, the Communicator collects the nodal data to send on each
stage and exchanges it with the corresponding process using Message Passing Interface
(MPI) calls [74].

One of the advantages of this approach is that it allows to reuse a very significant part
of the code between serial and parallel simulations. To do so, the code is programmed
with the parallel implementation in mind, with all required data transfer performed
through Communicator functions. Then, two different Communicator classes are imple-
mented, one for parallel executions that works as defined above, and another for serial
runs, which does nothing. With this approach, we have been able to significantly reduce
code duplication, minimizing the maintenance problems related to keeping up to date a
serial and a parallel version of the same code.

4.3 Partitioning of input data

Once we have a data structure that can be used to hold and communicate distributed fi-
nite element data we need to be able to, given a simulation domain, generate a partition
in as many subdomains as parallel processes will be used in the simulation and a com-
munication strategy to transfer data between them. In Kratos Multiphysics, the usual
situation is to have a single input file containing the entire simulation mesh, typically
generated with GiD [22]. The partitioning procedure in this case constitutes one last
step of the pre-process of the problem, generating separate inputs for each simulation
domain.

The partitioning process should generate balanced partitions, that is, all partitions
should contain a similar number of elements and nodes, to ensure that the computa-
tional load is homogeneous for the different processors. A poorly balanced partition
means that the processes with lighter work loads have to wait for the other to finish,
resulting in longer total calculation times. In addition, the partition should minimize
the amount of communication required relative to the total calculation time. This is
sometimes expressed by saying that the computational cost of the simulation is propor-
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tional to the number of elements, that is to say, to the volume of the partition, while
the communication costs are proportional to its surface. Therefore, a good partitioning
algorithm should minimize the surface to volume ratio for the partition.

We use a the capabilities provided by the METIS library [63], which generates a
partition using a multi-level approach. Starting from a graph of nodal connectivities,
multi-level methods are based in generating progressively coarser graphs by grouping
close nodes together and generating an optimal partition of the coarsest graph. The
partition is then refined by undoing the coarsening. Such approaches are considered to
provide good quality partitions for unstructured meshes.

As mentioned, the approach of METIS is based on the nodal graph, and provides
a partition of the nodes. While there are some capabilities in METIS to divide the
elements, they work for homogeneous meshes, composed of a single type of element1.
This was insufficient for our needs as, due to the way boundary integrals are implemented
in Kratos Multiphysics, the meshes in the problems we are simulating are typically
heterogeneous. A 3D simulation, for example, may include tetrahedral volume elements,
triangular faces used to apply Neumann boundary terms or wall laws, for example, and
point-to-point links to apply periodic boundary conditions. All of these have to be taken
into account when building the nodal graph and the latter in particular has a significant
impact in the final partition, as it typically indicates a relation between two nodes that
are geometrically far away.

Element partitioning is achieved by following some simple rules. First, if all nodes
in the element belong to the same partition, the element is automatically assigned to
that partition. If its nodes are assigned to different partitions, then the element is
preferentially assigned to the partition that owns most of the nodes, but keeping into
account load balance: if that partition already contains more elements than the others,
the element will be assigned to one of the partitions that own the remaining nodes.

Once this initial distribution in done, partitions are checked again for isolated nodes.
Due to the way the element distribution procedure works, it can happen that some
domain has a node but no elements that contain it. This situation would generate un-
necessary communication, as the partition would have to store and update the reference
data for a node it never uses, so those nodes are reassigned to a partition that needs
them.

With the partition complete, the next step is to generate a communication strategy.
To achieve this, we start by building the domain graph, stored as a matrix where term
aij is non-zero if there is an interface between partitions i and j. For example, the graph
for the domain of Fig. 4.1 is

1More recent versions of METIS do provide the possibility of partitioning heterogeneous meshes,
but at the time of implementation we were limited by the relatively old versions available in the clusters
we had access to.
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A =







0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0







(4.1)

The strategy to organize the communications is known as coloring, as the problem
is equivalent to assigning a color to all edges in the graph such that no two edges of
the same color reach the same node. Once this is done, communication is achieved by
transferring data across all interfaces of the same color at the same time. To perform the
coloring, we use a simple approach, always assigning the first available color as they are
needed, presented as Algorithm 4.1. This has been shown to be sub-optimal, as in the
worst case it can use up to twice as many colors as the number of partitions. However,
in our experience, obtained solutions are not usually as bad. A more concerning issue
is that it is significantly more computationally expensive than an approach such as [76],
which would produce optimal strategies.

Algorithm 4.1 A simple coloring procedure.

1: Set Np to the number of partitions.
2: Initialize matrix of colors C with zeros. ⊲ Maximum size of C is Np × 2Np

3: Set Nc = 0.
4: for i in [1, Np] do
5: for j in [i+ 1, Np] do
6: if aij is not 0 then ⊲ aij as given by Eq. (4.1)
7: for k in [1, 2Np] do
8: if cik is 0 then ⊲ Use first available color
9: cjk = i
10: cik = j
11: if k > Nc then

12: Nc = k
13: end if

14: break ⊲ Once a color is assigned, skip to next communication
15: end if

16: end for

17: end if

18: end for

19: end for

20: return Nc ⊲ Number of colors used

For the partition of Fig. 4.1, this procedure results in the following color matrix,
where each column corresponds to a color and unused columns have been omitted:
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C =







2 4
1 3
4 2
3 1







(4.2)

If we take each row of C as a parallel process and each column as a stage in the
communication procedure, cij indicates which partition we have to communicate with
at a given step. In this case, we recover the communication pattern of Fig. 4.2(b).
Note that, for more complex cases, we may obtain a communication pattern where
some processors are idle for some of the communication steps. If this happens, the
corresponding positions in C contain a −1.

The final step in the procedure is to write each partition and the associated commu-
nication data (local and ghost nodes and the communication strategy) to separate input
files, one for each simulation process. Once this is done, the parallel solution procedure
can start.

Taking into account all steps, the partition procedure can summarized as:

1. Read nodal connectivities and call METIS to partition the node graph.

2. Distribute elements.

3. Check each partition for isolated nodes, and move these to other partitions.

4. Use a coloring procedure to generate a communication strategy.

5. Write partition data to separate input files, one for each parallel process.

4.4 Distributed solution

Once the problem domain is partitioned and a communication strategy has been deter-
mined the model is prepared for a parallel simulation. Compared to a serial solution,
a distributed memory simulation introduces additional complications in the procedure.
First, as the finite element mesh was divided into subdomains, the system matrix will
also be distributed, with the contribution from each individual element being computed
in the process that holds it. More importantly, once the system matrix has been assem-
bled, it has to be solved using a distributed algorithm which can take full advantage of
the parallel environment. In fact, the choice of a scalable parallel solver has a crucial im-
pact on the parallel performance of the code. Finally, once the problem has been solved,
the updated values for the variables are synchronized to ensure that nodal variables are
consistent across the processors.

In terms of the parallel finite element assembly procedure, Kratos Multiphysics relies
on the Trilinos library [52] to construct and manage the system of linear equations that
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has to be solved on each iteration. In particular, Trilinos’ Epetra package provides an
implementation of distributed memory sparse matrices and vectors that can be used to
hold the system data and communicate it to other processes when needed.

Finite element matrices can typically be stored in a sparse format, since most of
the terms in the system matrix are zero. Therefore, just as in the serial case, before
constructing the system matrix and vector we need to determine the sparsity pattern
and allocate the required memory. This is done based on the nodal graph: given that
each matrix row (and column) corresponds to a given degree of freedom in the problem,
an entry will be non-zero only if an element exists in the mesh connecting the nodes
that the row and column degrees of freedom are associated to. Since the matrix im-
plementation in Kratos Multiphysics is row-based, each row is considered local to the
processor that owns the node associated to that row’s degree of freedom. With this
information we can generate the data structure that will hold the system data, which is
ultimately an instance of Trilinos’ Epetra_FECrsMatrix for the system matrix and an
Epetra_FEVector for the right hand side vector.

The construction of the sparse data structure is a relatively time-consuming oper-
ation, but can be done once the first time the matrices have to be constructed and
reused in subsequent iterations, as long as the mesh connectivity pattern is preserved.
Note that this is true for the examples in the present chapter, as well as those in Chap-
ters 2 and 3, but will not be the case for the adaptive mesh refinement simulations of
Chapter 5.

Once the data structure is ready, we iterate over all elements in the model, calculating
the elemental contribution to the problem and assembling it into the system matrix and
vector. However, since each row receives contributions from all elements that contain
the associated node, parallel communication is required to account for contributions
coming from elements associated to a different processor. To minimize the amount of
parallel communication required, the global matrix is assembled locally at first to add the
contributions from all local elements. Once this is done, rows that receive contributions
from multiple subdomains are assembled by adding the contributions from each and
communicating the result to other partitions.

Once the system is solved, we encounter the inverse problem: the new nodal values
have to be communicated from the process that stores that particular row to all processes
that have a copy of the corresponding node. Again, this requires a communication step.

The (efficient and scalable) parallel solution of the system is, by itself, a different
and very challenging problem, which will only be briefly presented here. Given the size
of the systems to be solved, direct methods are not applicable due to their memory
requirements and computational cost. A more adequate choice is to use parallel imple-
mentations of Krylov methods [108], which are very efficient solvers but are not designed
as parallel algorithms and tend to require an increasing number of iterations to converge
as more partitions are introduced. Alternatively, a variety of algorithms designed for
parallelism exist, including Algebraic Multigrid (AMG) algorithms [119, 128], which in-
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troduce a hierarchy of increasingly coarser versions of the original problem and use the
coarser solutions to accelerate the convergence of the finer problem, solution strategies
based on domain decomposition techniques, in which each domain is solved separately
and its effect on its neighbors is felt through boundary terms and deflation techniques,
which combine an aggressive coarsening with domain decomposition.

In Kratos Multiphysics, the usual approach has been to rely on the linear solvers
provided by the Trilinos library, which includes both Krylov solvers on its Aztec pack-
age [129] and Multilevel algorithms through the ML [43] library. This approach was used
for example to simulate the benchmarks presented in [34]. In the following pages we will
use a different linear solver in combination with the incompressible flow formulation pre-
sented in Chapter 2. This solver is provided by the AMGCL library [37, 38], currently
under development, and is based on combining a deflated approach where the coarse
problem is given by the MPI partition with an AMG solver within each subdomain.

4.5 Benchmark cases

To evaluate the performance of the parallel implementation of our solver we have per-
formed some simulations of large test cases. Note that, unlike in the remainder of this
work, here we are more interested in the performance of the algorithm than in the qual-
ity of the solution. Therefore, we simulate very short time spans, mainly to sample the
computational costs associated to the procedure, and the resulting solutions can not be
considered as an accurate representation of the real flow. These examples were simulated
in the Gottfried cluster of the North-German Supercomputing Alliance (HLRN).

4.5.1 Flow around an inflatable structure

The first test case is adapted from a real simulation mesh courtesy of the uLites2 project
team. This project was concerned with the design and construction of inflatable struc-
tures subjected to wind loads and included the comparison of numerical and wind tunnel
experiments on the designed structure. Here we take one of the simulation meshes, rep-
resenting the geometry of a rigid scale model that was used in wind tunnel tests and
simulate the flow around it using the Q-ASGS formulation described in Chapter 2.

The model, presented in Figure 4.3, is composed of four cylindrical tubes with a
diameter of 0.05m folded into a semicircle with a radius of 0.2m, measured from the
tube centerline. The simulation domain, shown in Figure 4.4, measures 2.6×1.4×1m in
the streamwise, cross-stream and vertical directions, respectively, and the inlet is placed
at 0.8m of the axis of the module.

2Ultra-lightweight structures with integrated photovoltaic solar cells: design, analysis, testing and
application to an emergency shelter prototype. EC project within the Seventh Framework Programme,
Grant No. 314891.
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The incoming flow is modeled as air with density ρ = 1.25Kg/m3 and viscosity
µ = 1.875× 10−5 Pa · s flowing at 5.5m/s, which corresponds to a Reynolds number of
approximately 7.3 × 104 relative to the radius of the module. Velocity is fixed to zero
on the floor and the surface of the module, while a no-penetration condition is used on
the sides of the calculation domain. Note that, given the mesh resolution, a wall law
would be a more adequate boundary condition for the solid boundaries, but we will not
use it here in order to concentrate our attention on the fluid solver.

0.45 m

0.2 m

(a) Top view.

0.2 m

0.05 m

(b) Side view.

Figure 4.3: Inflatable structure model – geometry of the module.

0.8 m

1 m

2.6 m

1.4 m

Figure 4.4: Inflatable structure model – dimensions of the simulation domain.

We define two different simulation meshes. The first is an unstructured tetrahe-
dral composed of around 760000 nodes and 4 million elements, with sizes ranging from
0.0021m close to the surface of the module to 0.067m in the far regions. The second
is obtained by the bisection of the element edges of the first, obtaining 8 elements from
each original tetrahedron, and contains a total of 5.8 million nodes and 35 million tetra-
hedra. The flow is simulated for five time steps, using a step size δt = 0.001 s for the 4
element mesh and δt = 0.0005 s for the 35 million element case, halved to maintain the
same Courant-Friedrichs-Lewy (CFL) number.

The time required to perform different parts of the procedure for the coarser mesh
is summarized in Table 4.1. The solution of five complete time steps required a total of
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between 32 and 36 system solutions, which took between 530.2 and 82.88 seconds of wall
clock time when going from 96 to 768 parallel processes. We notice that the simulation
time is dominated by the solve phase, which is more expensive than the finite element
assembly in all cases.

MPI processes 96 192 384 768

Simulation time
Assembly time (s) 40.6 21.75 12.13 17.67
Solution time (s) 530.2 191.47 96.83 82.88
Num. of iterations 36 36 33 32

First iteration

Assembly time (s) 1.88 2.23 3.05 12.94
Assembly speedup 1 0.84 0.62 0.15
Solution time (s) 15.02 5.87 3.29 2.89
Solution speedup 1 2.56 4.57 5.2

Average iteration

Assembly time (s) 1.11 0.56 0.28 0.15
Assembly speedup 1 1.98 3.9 7.25
Solution time (s) 14.72 5.3 2.92 2.58
Solution speedup 1 2.78 5.04 5.7

Last time step

Solution time (s) 41.3 13.06 7.39 6.57
Num of iterations 3 3 3 3

Average solution (s) 13.77 4.35 2.46 2.19
Solution speedup 1 3.16 5.59 6.29

Global speedup 1 3.03 5.41 6.35

Table 4.1: Inflatable structure test – measured times and parallel speedup for the 4
million element mesh.

We also observe that the first iteration of the finite element assembly procedure takes
more time than subsequent iterations, since it includes the calculation of the sparsity
pattern for the system matrix and the allocation of the required memory. We notice
that, far from showing parallel scalability, the time spent in the first iteration is in fact
increased as more processors are used. We consider this to be consistent with the fact
that the set-up phase requires abundant parallel communication to determine the shape
and ownership of each matrix row, which takes more time as more processes are involved.
In any case, we have not considered the time of the first iteration in calculating averages,
since it involves more operations than the rest.

Finally, we remark that we have considered the last time step separately from the
rest. The cause for this is that, for some of the cases, the first few system solutions
stop due to the solver reaching the maximum allowed iterations instead of fulfilling the
convergence requirements. This is due to the initial condition being a bad first guess
of an equilibrium solution, which means that in the first few iterations the system is
harder to solve and the algorithm fails to achieve the desired error tolerance.
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We feel that comparing converged and non-converged iterations skews the scalabil-
ity results, since we want to measure the time required to achieve a solution of a given
quality, not the time it takes to perform an arbitrary number of iterations. For this
reason we measured the time required to solve the last time step, where all system solu-
tions converged in all cases, and present it separately for the different cases. Likewise,
the values given as global speedup in the results have been computed considering one
average system assembly plus the average time taken in solving a single linear system
on the last time step.

The times measured for the finer test case, using a 35 million element mesh, are
presented in Table 4.2. The behavior of the method is qualitatively the same, and the
same remarks about the additional cost of the first iteration are applicable.

MPI processes 96 192 384 768 1536

Simulation time
Assembly time (s) 250.04 109.6 59.5 31.7 30.55
Solution time (s) 7962.48 2304.2 1217.11 555.29 418.51
Num. of iterations 22 22 21 20 20

First iteration

Assembly time (s) 69.53 19.32 15.53 10.45 19.18
Assembly speedup 1 3.6 4.48 6.65 3.63
Solution time (s) 363.24 113.85 61.39 31.47 26.4
Solution speedup 1 3.19 5.92 11.54 13.76

Average iteration

Assembly time (s) 8.6 4.3 2.2 1.12 0.6
Assembly speedup 1 2 3.91 7.69 14.36
Solution time (s) 361.87 104.3 57.79 27.57 20.64
Solution speedup 1 3.47 6.26 13.13 17.53

Last time step

Solution time (s) 1084.26 264.21 160.62 70.57 52.37
Num of iterations 3 3 3 3 3
Avg. solution (s) 361.42 88.07 53.54 23.52 17.46
Solution speedup 1 4.1 6.75 15.36 20.7

Global speedup 1 4.01 6.64 15.02 20.49

Table 4.2: Inflatable structure test – measured times and parallel speedup for the 35
million element mesh.

The time costs of a single solution iteration are represented graphically in Fig. 4.5,
where the first iteration is compared to a typical iteration, calculated using the average
time for the build phase and the last time step average for the solve phase. Here again we
see a different behavior for the first and a typical iteration, due to the cost of determining
the structure of the system matrix and allocating the required memory. Once this is
done, in subsequent iterations the computational cost is driven by the system solution,
which takes considerably more time in all cases.
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Figure 4.5: Inflatable structure test – time costs of a single iteration.

To measure the parallel performance of the procedure we have measured the strong
scalability of the algorithm, that is, we have compared the required taken to solve the
same problem with an increasing number of processors. This is presented graphically
in Fig. 4.6 for the 4 million element case. We can observe that the scalability behavior
is basically driven by the system solution, which dominates the solution cost. The
parallel efficiency of the finite element assembly is close to linear, taking 7.25 times less
time when using eight times more processors, although parallel performance degrades
when the number of elements per processor is low. This is to be expected, since the
communication cost increases when using more processors while the individual work
loads decrease as the number of elements per processor is reduced, which means that
the total cost for large enough numbers of processors is dictated by communication
operations.
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Figure 4.6: Inflatable structure test – parallel speedup for the 4 million elements.

The behavior of the solution phase is possibly more unexpected. The costs reported
in Table 4.1 correspond to a better than linear scaling, which is a consequence of the
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design of the AMGCL solver, which requires less iterations for larger numbers of pro-
cessors. In any case, we observe that parallel performance is good for smaller numbers
of processors but stops being worthwhile for the last test, since doubling the number of
processors from 384 to 768 only produces a modest reduction in calculation costs. Again,
this is consistent with communication dominating the total cost of the procedure.

The same strong scalability study can be done for the 35 million elements grid, pro-
ducing the results presented in Fig. 4.7, and yields results that are qualitatively similar
to those obtained for the 4 million element case. Here, however, the larger problem size
means that we can use more processes before communication costs dominate, obtaining
better scalability results for a given number of processors.
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Figure 4.7: Inflatable structure test – parallel speedup for the 35 million elements.

Finally, we can use the results we have to estimate the weak scalability of the algo-
rithm. Weak scalability is calculated by comparing the cost of solving a problem with
a given number of processors to that of solving a larger problem with a proportionally
larger number of processors. In our case, the cost of assembly is proportional to the
number of elements while the cost of the system solution is proportional of the number
of degrees of freedom and therefore to the number of nodes. Refining the problem, we
obtained a mesh that contains exactly 8 times more elements while multiplying the num-
ber of nodes by approximately 7.6. We used this fact to estimate the weak scalability by
comparing the time used to solve the 4 million element problem with the time required
to perform the same operation using 8 times more processors in the 35 million element
mesh. This is presented in Table 4.3, where we can see that, while the build phase does
scale weakly, the fine problem takes up to four times as long to solve for the fine mesh.

Time ratio (fine problem/coarse problem) t768/t96 t1536/t192

Average assembly time ratio 1.01 1.072
Typical solution time ratio 1.709 4.01

Table 4.3: Inflatable structure test – weak scalability estimate.
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4.5.2 Flow around a race car

The second example we used to benchmark the solver is the flow around a race car,
using the geometry shown in Fig. 4.8, adapted from [31]. The car is 5m long, 1.8m
wide and 1m high and it is placed within a fluid domain measuring 13.2 × 6 × 3.1m
in the streamwise, cross-stream and vertical directions respectively. The problem being
simulated consists in a flow of air (ρ = 1.25Kg/m3, µ = 1.875 × 10−5Pa · s) at 1m/s,
which corresponds to a Reynolds number of 1.67× 105.

Figure 4.8: Race car test – geometrical model.

As in the previous case, the mesh is not designed for high-quality simulation (this
would require a boundary layer mesh or at least a wall law) but to test the parallel
capabilities of the solver. We test two different meshes: the first one contains 2.3 million
nodes and 12.7 million tetrahedral elements with sizes ranging between 20mm close to
the surface of the car and 0.9m in the far regions, while the second one is obtained by
the edge refinement of the first, which is composed of 17.7 million nodes and 102 million
elements. Some details of the finest mesh used in the tests can be observed in Fig. 4.9.

Again, five time steps are simulated, using a time step of δt = 10−4 s. Between
192 and 3072 processes were used for the tests. A summary of the times and iteration
counts measured is presented in Table 4.4 for the 12 million element mesh. As in the
previous case, we observe a different behavior for the first iteration, due to the fact that it
includes the time required to build and allocate the data structure of the system matrix
and vector. In this case, the solution required less iterations to converge to the desired
tolerance and, unlike in the previous case, no convergence problems were detected in
the solution of the linear system. As a result, no distinction will be made between the
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Figure 4.9: Race car test – details of the finer mesh.

results on the last time step and those on the previous ones. However, we do note that
the first iteration requires significantly more time to solve the system than subsequent
ones, specially for low process counts. As before, we consider this a consequence of the
fact that the initial condition used is a bad approximation to an equilibrium solution.

MPI processes 192 384 768 1536 3072

Simulation time
Assembly time (s) 22.06 9.55 18.19 40.53 3.56
Solution time (s) 258.86 103.65 38.8 33.43 66.05
Num. of iterations 12 12 12 12 12

First iteration

Assembly time (s) 6.9 1.93 14.15 38.46 1.49
Assembly speedup 1 3.58 0.49 0.18 4.63
Solution time (s) 52.07 23.91 4.4 3.57 6.28
Solution speedup 1 2.18 11.83 14.59 8.29

Average iteration

Assembly time (s) 1.38 0.69 0.37 0.19 0.19
Assembly speedup 1 1.99 3.75 7.32 7.32
Solution time (s) 18.8 7.25 3.13 2.71 5.43
Solution speedup 1 2.59 6.01 6.93 3.46

Global speedup 1 2.54 5.77 6.95 3.59

Table 4.4: Race car test – measured times and parallel speedup for the 12 million element
mesh.

The parallel efficiency, in terms of strong scalability, is presented in graphical form
in Fig. 4.10. The finite element procedure shows good scalability up to 1536 processors,
where increasing 8 times the number of processors reduces the assembly time by a
factor of 7.32. This simulation, which corresponds to around 8 thousand elements per
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process, gives us an upper limit to the scalability of the current implementation since,
from this point on, increasing the number of processes does not result in a reduction of
the assembly time. The system solution follows a similar trend, since in this case the
solution time is actually increased when the number of processors is doubled from 1536
to 3072.
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Figure 4.10: Race car test – parallel speedup for the 12 million elements.

The same test was simulated using the 102 million element mesh and the measured
times are reported in Table 4.5. Some snapshots of the obtained velocity field are shown
in Fig. 4.11, to provide an idea of the mesh resolution and the nature of the solution
after five time steps. We observe that, with a larger model, we do not reach the limit of
the parallel implementation as in the previous case, although the parallel performance
does drop slightly for the cases with more processors.

Figure 4.11: Race car test – details of the velocity solution on the finer mesh.

The relative costs of the finite element assembly and solution phases are shown in
Fig. 4.12. As in the inflatable structure test, we see that the solution represents takes
the lion’s share of the computational time and will have the most impact on the overall
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MPI processes 192 384 768 1536 3072

Simulation time
Assembly time (s) 250.13 128.56 50.13 51.84 41.92
Solution time (s) 8047.23 2745.18 972.09 476.86 298.76
Num. of iterations 14 14 14 14 14

First iteration

Assembly time (s) 120.5 63 15.28 33.97 31.32
Assembly speedup 1 1.91 7.89 3.55 3.85
Solution time (s) 686.76 255.24 101.17 52.25 35
Solution speedup 1 2.69 6.79 13.14 19.62

Average iteration

Assembly time (s) 9.97 5.04 2.68 1.37 0.82
Assembly speedup 1 1.98 3.72 7.25 12.23
Solution time (s) 566.19 191.53 67.99 32.66 20.29
Solution speedup 1 2.96 8.33 17.33 27.91

Global speedup 1 2.93 8.15 16.93 27.3

Table 4.5: Race car test – measured times and parallel speedup for the 102 million
element mesh.

performance of the code. Again, we see that the first solution step has a significantly
increased cost due to the additional operations and poor scalability, although the drop
in parallel performance is not so severe as in the previous example.
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Figure 4.12: Race car test – time costs of a single iteration.

The strong scalability results of the 102 million element case are presented in graph-
ical form in Fig. 4.13. As was already mentioned, we do not observe the same drop in
parallel performance as in the smaller model, due to the fact that here we have 8 times
more elements per process. The assembly phase shows good performance up to the
largest test, where the reduction in time is less than would correspond to the increase in
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processors, but the overall performance continues to be dictated by the system solution
costs. The system solution shows good parallel performance in all cases.
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Figure 4.13: Race car test – parallel speedup for the 102 million elements.

We also estimated the weak scalability in this case, keeping in mind that it is an
optimistic estimate for the solve phase, since the increase in the number of processors
is slightly larger than the increase in the number of nodes (which changes by a factor
of 7.7 in this case). The results are presented in Table 4.6 and coincide qualitatively
with what was observed for the inflatable structure case. The build phase shows good
weak scalability, close to one (although it drops somewhat in the 384 vs. 3072 process
comparison), while the solver has a poorer performance.

Time ratio (fine problem/coarse problem) t1536/t192 t3072/t384

Average assembly time ratio 0.997 1.177
Typical solution time ratio 1.737 2.799

Table 4.6: Race car test – weak scalability estimate.

4.6 Computation of statistical data on a parallel en-

vironment

In the present work it has often been necessary to record statistics of turbulent flows.
Sometimes this has been challenging, due to the amount of data to be analysed and
to the parallel environment in which the simulations have been run, which has made
necessary the synchronization of data across processes.

To understand the problems posed by the calculation of statistical results, consider
for example the unbiased estimator of the variance σ2 of a random variable x obtained
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using n samples, given by

σ2
n =

1

n− 1

n∑

k

(xk − µn)
2 (4.3)

where µn is the estimate of the mean of x obtained using n samples,

µn =
1

n

n∑

k

xk (4.4)

The naive approach to the computation of the variance of x involves two loops over
the data series: a first one using Eq. (4.4) to obtain µn and a second one to evaluate
Eq. (4.3). To do so, one should store the entire dataset and analyse it as a post-process.
Take as an example the turbulent channel flow simulations using linear hexahedral
elements. To record statistical data on this problem, the different values of interest were
sampled on the integration points of the mesh. Using second order Gaussian integration
we have 8 Gauss points per element. With up to 643 hexahedra, we obtain 221 ≈ 2.1×106

samples per variable and time step. Keeping in mind that we want to calculate statistics
involving all three velocity components, pressures and their gradients, storing the entire
data set soon becomes very expensive in terms of memory.

Even if that data was effectively collected, consider that we used it to compute plane
averages. In a parallel environment, the integration points on a given plane will likely
lie on multiple processes, so the entire data set for the plane has to be gathered on a
single process in order to evaluate Eq. (4.3).

When calculating the variance, one might compute it without storing the entire data
series by manipulating Eq. (4.3) to obtain

σ2
n =

n

n− 1

(

1

n

n∑

k

x2
k − µ2

n

)

(4.5)

which can be calculated in a single pass, thus avoiding the need to store the data series.
Unfortunately, this expression runs into numerical roundoff errors if σ2

n ≪ µ2
n. This is

easy to see if one considers that in this case, xk − µn can be expected to be a small
number for each individual term in the summation of Eq. (4.3), while both

∑n
k x

2
k and µ2

n

will be large positive numbers, so their difference might have too few significant digits3.

Instead, we have followed the approach of [130], which provided formulas to compute
the mean and variance of a data set given the means and variances of two sub-sets of the
data. A similar procedure is presented for third and fourth order moments in [126] and
generalized to arbitrary order moments in [97]. These formulas allowed us to calculate
statistical results in a single pass, storing (and communicating across processes when
needed) only a partial result for each statistic.

3There are ways around this issue. For example, one could use an auxiliary variable x̂k = xk − µ̂,
where µ̂ is a crude approximation of the mean, to reduce roundoff error.
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4.6.1 Mean and variance

Consider a set of n samples Sn divided into two arbitrary subsets Sa, Sb, containing na

and nb elements respectively, such that Sn = Sa

⋃Sb and Sa

⋂Sb = ∅. The means of
Sn, Sa and Sb are related by

n∑

k

xk =
na∑

i

xi +

nb∑

j

xj

nµn = naµa + nbµb

nµn = (n− nb)µa + nbµb = nµa + nb (µb − µa)

defining δba = µb − µa we can write

µn = µa +
nb

n
δba (4.6)

Eq. (4.6) can be introduced in Eq. (4.3) to obtain a single pass formula for variances.
Introducing the intermediate result M2,n = (n− 1)σ2

n,

M2,n =

n∑

k

(xk − µn)
2 =

na∑

k

(xk − µn)
2 +

b∑
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2
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(
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nb
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+
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(
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n
δab

)2

(4.7)

Now we can develop the first term on the last line

na∑

k

(

(xk − µa)
2 +

(nb

n
δba

)2

− 2 (xk − µa)
nb
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δba
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=
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= M2,na
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(nb

n
δba

)2

where we have used the definition of µa to say
∑na

k (xk − µa) = 0 in the last step. The
same reasoning can be used on the second term on the last line of Eq. (4.7) to obtain

b∑
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(

xk − µb +
na

n
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)2

= M2,nb
+ nb

(na
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)2

Going back to Eq. (4.7), we can use the fact that δ2ab = δ2ba to write

M2,n = M2,na
+ na

(nb

n
δba

)2

+M2,nb
+ nb

(na

n
δab

)2

M2,na
+M2,nb

+ (na + nb)
nanb

n2
δ2ba
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from here we can obtain the desired expression, given in [19], which is

M2,n = M2,na
+M2,nb

+
nanb

n
δ2ba (4.8)

In practice, it is convenient to store the sum of all terms as an intermediate result instead
of the mean. Defining M1,n = nµn =

∑n
k xk, Eq. (4.8) can be rewritten as

M1,n = M1,na
+M1,nb

(4.9)

M2,n = M2,na
+M2,nb

+
1

nanbn
(naM1,nb

− nbM1,na
)2 (4.10)

It is useful to particularize this expression for the case na = n, nb = 1, which
corresponds to adding a new measurement, xn+1, to the data set

M1,n+1 = M1,n + xn+1 (4.11)

M2,n+1 = M2,n +
1

n(n+ 1)
(nxn+1 −M1,n)

2 (4.12)

We can keep track of as many partial results as needed by storing n, M1,n and M2,n

for each subset and using Eqs. (4.11) and (4.12) to update them. Once the calculation
is finished and, for parallel simulations, any distributed data is gathered, the partial
results can be combined using Eqs. (4.9) and (4.10) and the mean and variance of the
complete record is recovered by

µn =
1

n
M1,n σ2

n =
1

n− 1
M2,n (4.13)

4.6.2 Covariances

The present approach was extended to covariances in [97]. The covariance of two random
variables x, y with means µx, µy can be estimated from n realizations of (x, y) as

cxyn =
1

n− 1

n∑

k

(xk − µx
n) (yk − µy

n) (4.14)

which again requires a previous estimate of the mean of each variable.

We can obtain a single pass formula for the covariance using a similar procedure to
that followed for variances in the previous section. We define the intermediate result
Cxy

2,n = (n− 1) cxyn and use Eq. (4.6) to write µx
n and µy

n in terms of the partial results in
Eq. (4.14). After rearranging the resulting expression, we obtain

Cxy
2,n = Cxy
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2,nb
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naM

x
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1,na
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naM
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)
(4.15)

which can be particularized for the case where na = n, nb = 1 as

Cxy
2,n+1 = Cxy

2,n +
1

n(n+ 1)

(
nxn+1 −Mx

1,n

) (
nyn+1 −My

1,n

)
(4.16)
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4.6.3 Third order statistics

The third order central moment of a distribution can be estimated from n samples as

sx =
1

n

n∑

k

(xk − µn)
3 (4.17)

It can also be calculated in a single pass by means of the following formula, taken
from [126]:

M3,n = M3,na
+M3,nb

+
nanb (na − nb)

n2
δ3ba +

3

n
(naM2,nb

− nbM2,na
) δba (4.18)

In the present work, we have not used third order central moments, but the turbu-
lence energy budget involves correlations between three different variables (two velocity
fluctuations and a gradient). Triple correlations can be estimated using the general
expression

cxyzn =
1

n

n∑

k

(xk − µx
n) (yk − µy

n) (zk − µz
n) (4.19)

which again can be transformed into a single-pass formula by using Eq. (4.6) to write
the different means that appear in Eq. (4.19) in terms of the partial means in each
subset. Rearranging the terms and introducing the partial result Cxyz

3,n = ncxyzn produces
the final expression
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Using Eq. (4.20), we can evaluate any triple correlation in a single pass, provided that
we also keep track of the pairwise covariances and individual averages of each variable
involved in the calculation. Fortunately, in the present work we were already interested
in these quantities, as they appear in other terms of the turbulence energy budget, and
this did not suppose an additional cost.

Finally, the particular case na = n, nb = 1 results in the following simplified expres-
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4.7 Concluding remarks and future work

The parallelization of an existing code is a challenging task and requires significant ef-
forts, some of which we presented here. As a general remark, it is important to design
the code to be parallel from the start, choosing algorithms that require a minimum
amount of parallel communication by design, rather than just parallelizing existing al-
gorithms. This is particularly important in the choice of linear solvers, both because
of the large impact the solution has in the total cost of the problem and because tradi-
tional approaches such as direct or Krylov solvers tend to parallelize poorly due to their
communication requirements. We saw another example of this in the techniques for the
calculation of flow statistics the algorithms of Section 4.6, where a specially designed
technique is much more appropriate than the naive approach.

From the point of view of the parallel design of the code, Kratos Multiphysics cur-
rently uses blocking communication operations, in which execution of the code stops
while data is being transferred between processors. Newer versions of MPI allow non-
blocking communication, in which the data to be sent is defined and calculations can
continue while communication goes on in the background. This could allow significant
time savings for all calculations that can be written in a way where sent data is not
immediately required in the receiving process.

Another addition that is being considered is the use of hybrid parallelization, based
on combining a distributed approach such as the one presented here with a shared
memory implementation. This could be potentially useful in machines such as the
Gottfried cluster we used for our tests, where each calculation node contains multiple
processors with a shared memory. In this situation, hybrid parallelization would allow
us to use MPI for inter-node communication and simpler shared memory parallelization
for the processors within the node.

Finally, we have devoted some time to describe our approach to partitioning the
calculation mesh in Section 4.3. While this effort is essential for the initial subdivision
of the domain, it is not sufficient when the calculation mesh changes during the problem,
something that will happen in Chapter 5. When this happens, an approach for dynamic
re-balancing of the problem would be required, reassigning nodes and elements to ensure
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that the computational load on each process remains homogeneous during the entire
simulation.

We want to remark that the techniques and results presented in this chapter repre-
sent some recent developments in the parallelization of the Kratos Multiphysics FEM
framework and are a part of an ongoing work. In this sense, they should be understood
as a snapshot of some recent developments rather than a finished result. This is par-
ticularly true for the numerical results presented in Section 4.5 as AMGCL, the solver
library we are using, is still under active development.





Chapter 5
Adaptive mesh refinement for turbulent and

viscoplastic flows

5.1 Introduction

One of the main advantages of finite elements is the possibility of using unstructured
meshes, adapting the element size to the features of the problem and using finer reso-
lutions near regions of interest. This requires a certain degree of familiarity with the
problem being solved, as an insufficient mesh resolution can lead to missing important
features such as boundary layers or sharp changes in the solution. In this sense, it would
be desirable to have the ability to adaptively modify the mesh during the simulation,
ensuring that its resolution is sufficient to represent the solution with a given accuracy
at all times.

The first problem related to this strategy is how to quantify the error in the solution.
One popular approach to this question are a posteriori error estimation techniques (see
for example [1, 2, 61, 96]), where the computed solution itself is used to assess its accu-
racy. We explore one of such methods, closely related to the VMS stabilized formulations
introduced in Chapter 2, which was originally presented in [50] for convection-diffusion
problems and has been applied to the Navier-Stokes equations in [51, 106].

Once we are able to estimate the error and its distribution across the domain, we
can modify the calculation grid to increase the overall accuracy. Many different mesh
modification strategies have been proposed since the pioneering work in the late eight-
ies [70, 98, 110], involving for example local mesh modifications [133], movement of mesh
nodes through the solution of an auxiliary elasticity problem [20], mesh morphing tech-
niques [112] or edge stretching [48]. However, mesh refinement, and meshing in general,
is a particularly challenging problem in a distributed memory setting, as maintaining
mesh quality over the entire domain and ensuring that the mesh is conforming is a very
non-local problem, requiring communication across the different parallel subdomains.
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We propose a mesh refinement algorithm based on edge division that was designed with
parallel performance as its main goal, requiring as little information that is not local to
each element as possible.

Our mesh refinement strategy was originally conceived as a complement to the in-
compressible fluid solver of Chapter 2, with the goal of increasing the reliability of the
solution and optimizing the number of elements for the simulation of large turbulent
flow problems with meshes in the LES range. However, during the development of the
present work, an opportunity appeared to use the same approach in the simulation of
viscoplastic fluids.

Viscoplastic fluids are a class of non-Newtonian fluids that are rigid unless the applied
shear stress is larger than a threshold, known as the yield stress. We concentrate our
attention on Bingham fluids in which, once the material starts to flow, shear stress varies
linearly with strain rate increments. Adaptive mesh refinement techniques, involving full
remeshing of the domain, have been used in the past to simulate plane and axisymmetric
Bingahm fows [104, 105, 109] and also to simulate depth-integrated 3D free surface flows
using a shallow water approximation [13]. We will apply our approach to the simulation
of both plane and fully tri-dimensional cases.

The present chapter is organized as follows: first, the complete refinement procedure
and its parallel implementation are presented in Section 5.2, followed by their application
to incompressible flows in Section 5.3. Section 5.4 introduces the solver used for the
simulation of non-Newtonian flows, which is applied to the simulation of Bingham fluids
in Section 5.5. Some final remarks and conclusions are given in Section 5.6.

5.2 Adaptive refinement strategy

The refinement procedure we use is based on creating new elements by edge division.
New nodes are inserted on edge mid-points of elements where the solution is considered
to have a too large error. Once the new nodes have been added, the mesh is adapted to
include the new nodes by subdivision of the existing elements. This approach involves
several clearly differentiated components, acting in succession:

• An a posteriori error estimator to identify regions of the model that require re-
finement.

• A global refinement procedure that identifies the elemental edges to be divided
and creates the new nodes.

• A local refinement technique to divide existing elements according to the patterns
defined by the new edges and nodes.

In some examples we have considered one additional step, using local mesh improvement
techniques to minimize the distortion of the elements in the new mesh.
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It is important to note that the error estimation and the mesh refinement technique
are independent of each other. This would allow us to combine the error estimator we
present with a completely different refinement strategy, such as a full remeshing using
Delaunay triangulation. Conversely, the only input required by the mesh refinement
strategy is knowing which elements must be divided. This means that it could be used in
combination with a different error estimator. For example, by choosing an estimator not
tied to VMS stabilization, we could use the same refinement technique in combination
with the FIC solver presented in Chapter 3.

5.2.1 Error estimation

The error estimator we use is based on the ideas presented by Hauke et al. in [50]
for fluid transport problems. The same approach was applied to the Navier-Stokes
equations in [51] and in [106], where part of the material that constitutes this chapter
was originally presented. This estimator is motivated by the scale separation introduced
in VMS formulations, which we presented in Chapter 2 for Newtonian flows and will be
used again in Section 5.5 to stabilize viscoplastic flows.

Considering that the large scale variables represent the part of the solution repro-
duced by the finite element mesh, and small scale variables represent the part that is
not resolved, the later can be understood as a measure of the local error in the solution.
Once the large scale flow has been solved, the small scale can be evaluated on chosen
points in the domain and its magnitude can be used as an a posteriori error estimator,
identifying regions where the mesh is too coarse.

Following this argument, we define the following estimate of the error in element e,
to be used in VMS stabilized formulations

I (e) = ‖us‖Ωe
=

(∫

Ωe

us · us dΩ

) 1

2

(5.1)

In the present chapter we are mainly concerned with the static versions of the ASGS
and OSS methods, which will be briefly recalled. The small scale model for the static
ASGS formulation was defined in Chapter 2 as

us = τ1R
m (uh, ph)

= τ1

(

f − ρ∂tuh − ρ
1

2
(uh · ∇uh +∇ · (uh ⊗ uh))−∇ · 2µ∇suh −∇ph

)
(5.2)

while the corresponding model for the static OSS method was introduced as
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us = τ1 (R
m (uh, ph)−Πm)

= τ1

(

f − ρ∂tuh − ρ
1

2
(uh · ∇uh +∇ · (uh ⊗ uh))−∇ · 2µ∇suh −∇ph −Πm

)

(5.3)

Replacing the small scale velocities in Eq. (5.1) by their definition we obtain the final
expression for the estimator. Using Eq. (5.3), the OSS estimator can be expressed as

I (e) =

(∫

Ωe

τ 21 ‖Rm −Πm‖2 dΩ

) 1

2

(5.4)

On the other hand, for the ASGS formulation, we use the definition for the small
scales given by Eq. (5.2). This leads to an expression that is equivalent to dropping the
projection Πm from Eq. (5.3).

To perform a refinement step we evaluate the error estimate I(e) on each element and
identify those elements where the estimate is larger than a pre-defined tolerance. These
elements are then split according to the algorithm described in the following section.

It is worth noting that multiple variants of a subscale based error estimator were
presented in [50]. The version presented here corresponds to the case where no elemental
boundary integrals are included in the indicator. We chose to do so to keep consistency
with the actual small scale model we use in the calculations. The boundary terms in
question appear when keeping the elemental boundary integrals in the derivation of the
stabilized VMS formulation. Since we neglected these terms in our derivation (as was
shown in Chapter 2), we will not take them into account here.

5.2.2 Mesh refinement strategy

The mesh refinement strategy we use is based on the local subdivision of existing tri-
angles or tetrahedra by edge division. The procedure was designed to require only a
minimal amount of information that is not local to the elements to be refined, in order
to simplify its implementation in a distributed memory environment. The main idea of
the refinement algorithm is that, once an element has been identified as a candidate for
refinement, it is divided into new elements created by splitting the edges of the orig-
inal element in half. Neighboring elements are then refined by splitting some of their
edges as required to maintain consistency. The main steps of this procedure are shown
graphically in Figure 5.1 and can be described as follows:

1. Iterate over mesh elements, evaluating the error estimator of Eq. (5.1).

2. If the error estimate is larger than a predefined tolerance in a given element, mark
it and its edges as needing refinement (Fig. 5.1(a)).
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(a) (b)

(c) (d)

Figure 5.1: Refinement procedure: (a) identify elements to refine; (b) divide edges and
insert new nodes; (c) remove all elements with split edges; (d) create new elements to
recover a conforming mesh.

3. A new node is created in the mid-point of all edges that have been identified as
needing refinement. All nodal data (and in particular initial guesses for velocity
and pressure) is interpolated from the nodes that define the edge (Fig. 5.1(b)).

4. All elements with refined edges are deleted. Note that this includes elements where
the error estimator was not larger than the tolerance (Fig. 5.1(c)).

5. New elements are created using predefined patterns (Fig. 5.1(d)).

Regarding the last step, the creation of new elements is done according to predefined
subdivision patterns, based on which and how many edges of each triangle or tetrahedra
were subdivided in Step 2.

5.2.3 Local refinement of triangles and tetrahedra

The mesh refinement strategy described in the previous section is based on inserting
nodes on edge midpoints and subdividing existing elements to include the new nodes.
Unfortunately, knowing only which edges to split in each tetrahedron is not enough to en-
sure that the resulting mesh will be conforming. Consider for example the two elements
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in Fig. 5.2, where two new nodes are inserted. There are two possible ways in which
the common face can be divided, corresponding to the two tetrahedra in Fig. 5.2(c).
To obtain a conforming mesh, the splitting strategy has to be designed in a way that
ensures that the division of each element results in conforming faces.

(a) Original elements.

(b) Conforming division. (c) Non-conforming division.

Figure 5.2: Division of tetrahedra based on edge splitting.

This restriction is problematic in a distributed memory environment, as the elements
involved might belong to different partitions. In such situation, obtaining information
from the neighbor element is not straightforward and involves communication between
the partitions.

To solve this issue, we use an approach that is based exclusively in the numbering
of the existing nodes, which is both available locally in the partition and known to be
identical across partitions, avoiding all parallel communication. We start by assuming
that all the edges of the element are split by their midpoints, resulting in four smaller
elements in the case of a triangle or eight in a tetrahedra. If a given edge is not divided,
at least one of the new elements touching that edge is eliminated. An example of this
operation, which we call a collapse, is presented in Fig. 5.3, in which the four potential
elements obtained by the full refinement of a triangle are reduced to three.

To choose between the two possible outcomes of the collapse, the global node indexes
of nodes a and b are compared. The partitioning in Fig. 5.3(b) is adopted if the index of
node a is smaller and the division of Fig. 5.3(c) is used otherwise. When subdividing two
tetrahedra that share a face, using this criterion ensures that the subdivisions obtained
from each element will be conforming. It must be noted that this approach has the
obvious drawback of not taking the quality of the refined elements into account, but on
the other hand it is purely local and therefore easily parallelizable.

Using this strategy we can determine the shape of the refined triangles or, in the
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a b

c

(a)

a b

c

(b)

a b

c

(c)

Figure 5.3: Collapse operations on a triangle: (a) no collapse; (b) edge collapsed towards
node a or (c) collapsed towards node b.

case of a tetrahedron, the way in which its faces will be refined. For tetrahedra, the
volume is then divided according to predefined patterns, depending on the shape of its
faces.

The splitting operation defines three possible situations on each edge of the tetra-
hedron, corresponding to the three cases in Fig. 5.3. Given that there are six edges
on each tetrahedron, up to 36 = 729 potential face patterns can be defined. Each of
those is matched to a division pattern using an utility1 distributed within Kratos Mul-
tiphyisics [34] which implements the local refinement operations. This tool, given an
array containing the global indices for the nodes involved in the subdivision, divides
the faces according to the collapse criterion and produces the connectivities for the new
elements to be created. Note that, for some division patterns, a new node is added on
the element’s center of mass to improve the quality of the resulting elements.

A very important point to be made here is to consider how this procedure affects
mesh quality. If all edges of an element are divided, the refinement procedure ensures
that its quality is preserved, as all new elements have the same angles as the original
in this case. Unfortunately, this is not the case for elements where only some of the
edges are refined, and mesh quality can be significantly degraded if this kind of partial
refinement is performed repeatedly over the same patch of elements.

To alleviate the problem, we improve the quality of the resulting mesh using local
mesh improvement techniques. For 2D simulations, we used the algorithm presented
in [42], which is based on reconnecting the nodes of adjacent elements. For 3D cases,
we used the procedure presented in [36], which consists in analyzing clusters of adjacent
elements and changing the local topology, adding or deleting nodes and reconnecting
elements to improve mesh quality within the cluster. As these techniques were incor-
porated in the code on a late stage in the presented work, they were not used for the
turbulent flow cases. However, we took full advantage of them to simulate the Bingham
flow cases presented in Section 5.5.

1The source code that provides this functionality can be found in the address https://

kratos.cimne.upc.es/projects/kratos/repository/changes/kratos/kratos/utilities/

split_tetrahedra.h (retrieved on July 22, 2015).

https://kratos.cimne.upc.es/projects/kratos/repository/changes/kratos/kratos/utilities/split_tetrahedra.h
https://kratos.cimne.upc.es/projects/kratos/repository/changes/kratos/kratos/utilities/split_tetrahedra.h
https://kratos.cimne.upc.es/projects/kratos/repository/changes/kratos/kratos/utilities/split_tetrahedra.h
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5.2.4 Parallel implementation

The proposed mesh refinement strategy has been implemented for a distributed memory
environment within the Kratos Multiphysics framework. This means that the domain
partitioning model introduced in Chapter 4 is also used here. Individual elements are
assigned to a single parallel subdomain and are completely unknown by the others.
Nodes are also assigned to a subdomain, which holds the reference values for all data
associated to that node, but might be also needed in neighboring domains if they are
connected to elements lying on different partitions. When this happens, other partitions
store a copy of the nodal data, which has to be updated at different points during the
simulation. From the point of view of a given subdomain, nodes are said to be local
nodes when that subdomain holds the reference values for their data or ghost nodes
otherwise.

Our implementation of the refinement strategy relies on an auxiliary sparse matrix
that reproduces the edge connectivity pattern of the mesh. As in Chapter 4, we rely
on the implementation of sparse distributed memory matrices provided by the Trilinos
library [52] to define and store it.

We consider a simplified scenario to clarify the presentation of the algorithm. Con-
sider an initial finite element mesh containing N nodes and M elements divided in K
subdomains. The nodes are numbered consecutively in the range 0 ≤ i < N and or-
dered by subdomains, such that, if a node is local to subdomain k, its index will be in
the range nk ≤ i < nk+1. We remark that this is done to simplify the notation used
to describe the implementation, but it does not represent a restriction on the actual
implementation. In practice we only assume that the nodes are numbered sequentially
as a whole, even if consecutive nodes are not in the same partition. Additionally, we
denote the edges of finite elements in the mesh as pairs of node indices (i, j), with i < j.

We define a sparse matrixE of size N×N representing the edge connectivity pattern.
Position Eij can only be different from zero if there is some elemental edge (i, j) joining
nodes i and j. Note that, using our definition of the edge, E only contains terms above
its diagonal. Matrix E is stored using compact storage by rows (CSR) notation and
distributed, meaning that each parallel process k stores non-zero terms for rows in the
range nk ≤ i < nk+1. Note that the process will sometimes need to access rows outside
this range, corresponding to ghost nodes in the partition, an operation that requires
parallel communication. In the following we refer to the set including all local and ghost
nodes known to partition k as Sk.

The implementation of the refinement algorithm involves multiple tasks that can be
grouped into the following steps:

1. Build a sparse matrix of edge connectivities E, where position Eij of the matrix
only exists if there is an element edge joining nodes i and j in the mesh. Posi-
tions corresponding to an edge are initialized to the arbitrary value -1. This is
represented in pseudo-code in Algorithm 5.1. Note that, as the matrix is defined
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as upper-triangular only the positions where i < j are considered.

Algorithm 5.1 Initialization of the matrix of edge connectivities E.

1: Initialize empty sparse matrix E

2: for all Elements do
3: for all Edges (i, j), with i < j do

4: E (i, j) = −1
5: end for

6: end for

2. Iterate over the elements, checking if they should be refined. If an element is
identified as needing refinement, set the positions corresponding to its edges in
E to -2 (Algorithm 5.2). Note that this step requires parallel communication to
ensure that edge data is consistent on all subdomains.

Algorithm 5.2 Identification of edges to refine.

1: for all Elements do
2: if Refinement needed then

3: for all Edges i, j, with i < j do

4: if E (i, j) is not −2 then

5: E (i, j) = −2
6: Synchronize E (i, j)
7: end if

8: end for

9: end if

10: end for

3. The number of new nodes t to be added in each subdomain is equal to the number
of -2 entries in all known rows of E. Use this information to assign a range of
temporary node indices rk, rk+1 to each process (Algorithm 5.3). Some new nodes
will be counted twice, as they are known by multiple domains.

4. Each process claims ownership of known new nodes by assigning it node index in
its range. Note that this process will sometimes produce clashes, as nodes in the
interface between subdomains are known by multiple processes (Algorithm 5.4).
We decided to allow overwriting node indices set by other processes, so that the
last process to assign an index will own the node.
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Algorithm 5.3 Definition of temporary node ranges for process k.

1: t = 0
2: for all i ∈ Sk do

3: for all j in non-zero columns of row i do
4: if E (i, j) is −2 then

5: t = t+ 1
6: end if

7: end for

8: end for

9: Gather P as the sum of new nodes for all processes p < k
10: Set rk = N + P and rk+1 = N + P + t

Algorithm 5.4 Definition of node ownership.

1: m = rk
2: for all i ∈ Sk do

3: for all j in non-zero columns of row i do
4: if E (i, j) is not −1 then

5: E (i, j) = m
6: Communicate change in E to other processes if needed.
7: m = m+ 1
8: end if

9: end for

10: end for

5. Each process creates new nodes locally on edge midpoints (Algorithm 5.5). Nodal
data is initialized by averaging the values stored by the nodes on both ends of the
edge. The new node must be created on all partitions that know it, independently
of which process owns the node, as node ownership only determines which process
holds the reference data during synchronization.

6. Create new elements locally using the subdivision procedure described in Sec-
tion 5.2.3 (Algorithm 5.6). Note that all elements with one or more refined edges
must be subdivided, not just those identified using the refinement criteria. Recall
that, in 3D, new nodes can be created at the element center in some cases, to
avoid creating highly distorted elements. If this happens, the node is created as
local to the partition that owns the element and its nodal data is interpolated
from the nodes of the original tetrahedron.
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Algorithm 5.5 Creation of new nodes.

1: for all i ∈ Sk do

2: for all j in non-zero columns of row i do
3: if E (i, j) > 0 then

4: k = E (i, j)
5: Create node with index k.
6: Initialize node k using data from nodes i and j.
7: end if

8: end for

9: end for

Algorithm 5.6 Creation of new elements.

1: for all Elements do
2: if Some edge refined then

3: Divide element
4: if New nodes created then

5: Interpolate data for new node using existing element’s nodes.
6: end if

7: end if

8: end for

7. The procedure used to assign new nodes, combined with the fact that new nodes
can be unexpectedly created during elemental subdivision, means that the final
node numbering might not be consecutive or, worse, contain duplicate indices.
This is also an issue with elements: as original elements are erased there will be
gaps on the element numbering. Renumber nodes and elements across processes
so that indices are unique and consecutive again.

8. If desired, the local mesh improvement procedure mentioned in Section 5.2.2 can
be used as a post-process to increase mesh quality at this point.

9. Finally, the communication strategy used to synchronize nodal data must be re-
defined to account for new nodes created on interface edges. This is done using
the coloring procedure described in Chapter 4.

5.2.5 Scalability test

As a first test of the refinement algorithm and its parallel implementation we refined
a tetrahedral mesh homogeneously. We define a cubic domain given by its corners
(−1,−1,−1) and (1, 1, 1) and generate an initial mesh composed of slightly over one
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million tetrahedra. This mesh, as all initial meshes used in later examples, has been
generated using the pre-processing module of GiD [22]. The domain is fully refined in
two passes, first splitting all elements to obtain about 8 million tetrahedra and again
for a total of 64 million elements. The local mesh improvement strategy is not used in
this case, as we are interested in testing the implementation of the refinement algorithm
and its performance.

Times required to complete this operation using different amounts of parallel pro-
cesses is recorded in Table 5.1. Reported times were obtained using up to three Intel
Xeon E5645 processors, each consisting in two six-core CPU at 2.40GHz connected to
48 GB RAM each. Communication between processors was done through an Infiniband
connection. The results are also presented in graphical form in Fig. 5.4.

First step Second step

Num. procs. Wall time (s) Speedup Wall time (s) Speedup

4 21.16 1.0 170.74 1.0
8 10.57 2.0 88.09 1.9
16 5.71 3.7 48.99 3.5
32 3.25 6.5 24.99 6.8

Table 5.1: Homogeneous refinement test – wall times and parallel speedup.
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Figure 5.4: Homogeneous refinement test – parallel performance.

While the test results show good parallel performance, it must be remarked that
this experiment does not take into account an important aspect in practice: when
refinement is not homogeneous, the number of elements in each subdomain changes
and, without a load balancing strategy, parallel performance may degrade as different
processors can have very different loads if refinement is concentrated on a few of the
original subdomains.
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5.3 Application to laminar and turbulent flows

We simulated a first set of cases combining the incompressible fluid solver presented in
Chapter 2 with the refinement algorithm introduced in the previous pages. All simula-
tions were performed with the static OSS method, coupled with the corresponding error
estimator, given by Eq. (5.4). With these tests, our aim was to test the applicability of
our refinement strategy on distributed memory simulations, rather than obtaining high
quality solutions.

5.3.1 Flow around a cylinder at Re = 100

As a relatively simple, small scale application we simulate the two-dimensional flow
around a cylinder using static OSS stabilization. The set up of the problem, taken
from [28], consists in a cylindrical obstacle of diameter D = 1m centered on the origin of
a domain defined by the range [−4D, 12D]×[−4D, 4D]. A horizontal velocity U = 1m/s
is imposed on the left side of the domain, while a no-penetration condition is set on the
top and bottom edges. The velocity is fixed to zero on the cylinder. The fluid properties
are defined as ρ = 1Kg/m3 and µ = 0.01 Pa · s, such that the Reynolds number in terms
of the diameter is Re = 100.

Starting from a uniform structured mesh containing 3984 linear triangles, 60 seconds
of flow are simulated using a time step of 0.1 seconds. In this case, the refinement
strategy is used after a starting phase to allow the simulation to transition from the
initial condition to a dynamic solution. The refinement procedure is then used every 20
solution steps, resulting in a total of 40 refinement passes. The maximum number of
refinements over a single original element is limited to 3 to preserve mesh quality and
prevent excessive refinement on localized areas.

Although the problem is small enough to be run on a desktop computer, the sim-
ulation was performed in a distributed memory machine, using 8 processes to test the
parallel implementation. The initial mesh and the partition into parallel subdomains
are shown in Fig. 5.5.

At the end of the simulation the mesh had been refined to contain a total of 11666
elements, as shown in Fig. 5.6. The total number of elements per subdomain at the
begining and the end of the simulation is shown in Table 5.2. Observing the velocity
isolines in Fig. 5.6(b), it can be seen that the zones that have been refined generally
coincide with high velocity gradient zones in the front of the cylinder and the vortex
tail that forms after it.

From the point of view of load balancing, the element counts in Table 5.2 show that
refinement is not homogeneous across subdomains and, at the end of the simulation,
the largest domain has close to three times more elements than the smallest one. This
suggests that the practical applicability of the method in a parallel context would be
much greater if it included a dynamic load balancing strategy so that elements are
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(a) Initial mesh. (b) Parallel subdomains.

Figure 5.5: Cylinder test – initial mesh and parallel partition.

(a) Final mesh. (b) Isolines of velocity magnitude.

Figure 5.6: Cylinder test – final mesh and velocity isolines.

always distributed evenly across subdomains.

Process 0 1 2 3 4 5 6 7 Total

Initial 496 510 501 493 494 490 505 495 3984
Final 1056 1871 836 740 1884 1694 1542 2043 11666

Table 5.2: Cylinder test – distribution of elements per partition.

5.3.2 Flow around a 6 meter cube

Additionally, we studied a realistic three-dimensional case in order to test the refinement
strategy on a tetrahedral mesh. We chose to simulate the flow around the Silsoe cube,
a benchmark problem for the flow over bluff bodies. This test case reproduces an
experiment performed at the Silsoe Research Institute [103] in which a cube with 6
meter sides was placed under incoming wind.

We simulate the configuration where the average wind direction is perpendicular to
one of the cube faces. The cube is placed at a distance of 60m from the inlet, while the
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incoming wind is defined according to the logarithmic wind profile of Eq. (5.5) (see for
example [101]).

ux (z)

uτ

=
1

κ
log
(z uτ

ν

)

+B (5.5)

For the present simulation, we define uτ = 0.272m/s as the friction velocity, a
kinematic viscosity of ν = 1.51 × 10−5m2/s, corresponding to air, a value of κ = 0.41
for Von Kármán’s constant and B = 5.2. An air density ρ = 1.225Kg/m3 is assumed.
We simulate a flow time of 6 seconds, using a time step of 0.1 seconds.

The simulation domain has a total length of 108m in the direction of the mean flow
(x), 48m in the cross-wind direction (y) and a total height of 30m in the z direction.
The refinement algorithm is used for the first time after 20 solution steps of the flow
problem and every 10 steps from then on, for a total of five refinement iterations. In
this case, the tolerance for the error indicator is set relative to the average velocity of
the flow, so elements are refined if the magnitude of the small scale on the center of the
element is larger than 5% of the average large-scale velocity. To preserve mesh quality,
only two refinements are allowed over a single original element.

The initial mesh is composed of 1.6 million tetrahedral elements, refined to a total of
5.3 million elements at the end of the simulation. The instantaneous pressure contours
on the central x–z plane obtained for time 1 s, along with the original mesh, are shown in
Fig. 5.7(a). The same contours for time 6 s and the final mesh are shown in Fig. 5.7(b).

(a) Pressure distribution at t = 1 s, original mesh (b) Pressure distribution at t = 6 s, refined mesh

Figure 5.7: Silsoe cube – pressure results on the central plane and simulation meshes.

We observe that the refined elements are concentrated near the cube and its imme-
diate wake. In the front of the cube, they are roughly placed along the area where the
flow starts to deviate due to the obstacle. Experimental results show that a horseshoe
vortex should develop close to the ground in that zone, and the distribution of elements
seems to follow it. On the wake region, the refined area develops progressively as vortices
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detach from the cube and travel downstream. If the simulation was run for a longer
period, it should be expected that the refined area would advance towards the exit to
obtain a fully refined wake, as happened previously in the cylinder example.

Finally, we want to remark that this simulation was performed to test the refinement
algorithm in a realistic setting and not to obtain precise results. The Silsoe cube prob-
lem was analyzed using the same solver (without adaptive mesh refinement) in [117],
obtaining good agreement with the benchmark solutions.

5.4 A FEM solver with adaptive mesh refinement

for viscoplastic flows

The adaptive mesh refinement procedure presented in Section 5.2 can also be applied
to the simulation of viscoplastic flows. For this we use a modified version of the VMS
based solver presented in Chapter 2, adapted to the solution of the steady Navier-Stokes
equations with non-Newtonian constitutive relations, which will be introduced here.

5.4.1 Model equations

Defining the fluid’s velocity u and density ρ, the stress tensor σ and the external forces
f , the conservation of linear momentum can be stated as

ρu · ∇u−∇ · σ = f (5.6)

and the conservation of mass implies that, for an incompressible fluid,

∇ · u = 0 (5.7)

The definition of the problem is completed by introducing a model domain Ω with
boundary ∂Ω = ΓD ∪ ΓN and appropriate boundary conditions

u = u0 on ΓD (5.8)

σ · n = t on ΓN (5.9)

where u0 is the imposed velocity on the Dirichlet boundary ΓD, n is the outwards
unit normal on the Neumann boundary ΓN and t are the imposed tractions.

The stress tensor of Eq. (5.6) can be decomposed into a volumetric part involving
the pressure p and a deviatoric stress tensor τ :

σ = −p I + τ (5.10)

where I is the second order identity tensor.



5.4. A FEM solver with adaptive mesh refinement for viscoplastic flows 143

A constitutive model is required to close the formulation, giving an expression for
the deviatoric stresses τ . A broad class of fluid materials follow a generalized Newtonian
law given by

τ = 2ηS (5.11)

where the apparent viscosity η is, in general, a variable that depends on the charac-
teristics of the flow and S is the strain rate tensor, defined as

S = ∇su =
1

2

(

∇u+ (∇u)T
)

(5.12)

Additionally, it is convenient to introduce the following tensor invariants to measure
the magnitude of the strain rate and deviatoric stresses

γ̇ =
√
2S : S ‖τ‖ =

√

1

2
τ : τ (5.13)

In the present work, a regularized Bingham model will be used. A Bingham fluid [14,
85] is a material that remains rigid while the applied shear stress is lower than its yield
stress τ0. Once this limit is reached, the material starts flowing with a constant viscosity
µp, the plastic viscosity. This can be expressed using the notation of Eq. (5.11) if the
apparent viscosity is defined as:

η = ∞ if ‖τ‖ < τ0

η = µp +
τ0
γ̇

if ‖τ‖ ≥ τ0
(5.14)

Unfortunately, the discontinuous nature of the Bingham model introduces numerical
difficulties, as the apparent viscosity η is infinite for small strain rates that don’t produce
flow. As a way to prevent this issue, we have adopted the regularized equation proposed
by Papanastasiou [95], replacing Eq. (5.14) with

η = µp +
τ0
γ̇

(
1− e−mγ̇

)
(5.15)

where m is a regularization coefficient with units of time. Using this regularized expres-
sion, it can be shown that η → µp+mτ0 when γ̇ → 0 and the apparent viscosity is never
infinite.

The regularized law of Eq. (5.15), which tends to the original Bingham model of
Eq. (5.14) as m increases, is compared to an ideal Bingham fluid in Fig. 5.8. Note
this is not the only choice for a regularized formulation, other alternatives have been
presented in [77, 115, 121].
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Figure 5.8: Bingham model.

5.4.2 Stabilized formulation

To introduce the variational form of the problem we define spaces V and Q containing
the exact values u and p, respectively, of the solution of the problem in Ω. Additionally,
we define the test functions w ∈ V0, q ∈ Q, where V0 is defined as V restricted to the
zero Dirichlet condition w = 0 on ΓD.

The variational form of the problem can be obtained by multiplying Eqs. (5.6)
and (5.7) by test functions w, q and integrating over the simulation domain Ω:

∫

Ω

w ρu · ∇u dΩ +

∫

Ω

2η∇sw : ∇su dΩ

−
∫

Ω

∇ ·w p dΩ =

∫

Ω

wf dΩ +

∫

ΓN

wt dΓ
(5.16)

∫

Ω

q∇ · udΩ =0 (5.17)

where some terms have been integrated by parts.

As seen in the previous chapters, the Galerkin weak form of the Navier-Stokes equa-
tions suffers from stability issues. In this case, we used the static versions of both the
ASGS and OSS formulations to stabilize it. The choice of using a VMS based for-
mulation has an added benefit: it allows us to use the error estimator presented in
Section 5.2.1 without modification.

We introduce the discrete solution as uh ∈ Vh, ph ∈ Qh, where Vh ⊂ V and Qh ⊂ Q
are the discrete spaces defined by the finite element interpolation. Given these defini-
tions, the VMS approach is based in decomposing the problem variables into a large
scale part, identified with the finite element solution, and a small scale part:

u = uh + us p = ph + ps (5.18)

where the small scale variables us, ps represent the part of the continuous solution that
is not resolved with the discrete interpolation.
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Next we introduce the scale separation of Eq. (5.18) in the variational problem given
by Eqs. (5.16) and (5.17). Using test functions belonging to the discrete space wh ∈ Vh,
qh ∈ Qh, we obtain

∫

Ω

wh ρuh · ∇uh dΩ +

∫

Ω

2η∇swh : ∇suh dΩ

−
∫

Ω

∇ ·wh ph dΩ−
∑

e

∫

Ωe

∇ · (2η∇swh)us dΩ

−
∑

e

∫

Ωe

ρuh · ∇whus dΩ−
∑

e

∫

Ωe

∇ ·wh ps dΩ =

∫

Ω

whf dΩ +

∫

ΓN

wht dΓ

(5.19)

∫

Ω

qh∇ · u =
∑

e

∫

Ωe

∇qhus dΩ (5.20)

where Ωe represents a single element. Note that, to obtain this expression, we integrated
by parts over individual finite element domains to ensure that the equations only involve
the small scale values and not their spatial derivatives. In doing so, we neglected all
integrals over element boundaries.

Using ASGS stabilization, the model for the small scales is defined as

us = τ1R
m (uh, ph) = τ1 (f − ρuh · ∇uh +∇ · 2η∇suh −∇ph) (5.21)

ps = τ2R
c (uh) = τ2 (−∇ · uh) (5.22)

whereRm (uh, ph) andRc (uh) represent the residuals of Eqs. (5.6) and (5.7) respectively,
evaluated using only the large scale part of the solution uh, ph. The stabilization
parameters τ1, τ2 are defined in terms of a characteristic element length h as:

τ1 =

(
2ρ ‖uh‖

h
+

4η

h2

)−1

τ2 = η +
ρ ‖uh‖h

2
(5.23)

When using OSS stabilization, only the part of the residuals Rm (uh, ph) and Rc (uh)
that is orthogonal to the finite element space is used to stabilize the solution. This results
in the following modified model for the small scales:

us = τ1 (f − ρuh · ∇uh +∇ · 2η∇suh −∇ph −Πm) (5.24)

ps = τ2 (−∇ · uh −Πc) (5.25)

where Πm (uh, ph) and Πc (uh) are the L2 projections of the residuals onto the finite
element space, that is, the solution of the auxiliary projection problem

∫

Ω

whΠ
m dΩ =

∫

Ω

wh (f − ρuh · ∇uh +∇ · 2η∇suh −∇ph) dΩ (5.26)
∫

Ω

qhΠ
c dΩ =−

∫

Ω

qh∇ · uh dΩ (5.27)
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It is worth mentioning that the viscous term ∇ · 2η∇suh in Eqs. (5.21) and (5.24),
as well as in the momentum projection in Eq. (5.26), cannot be evaluated using linear
finite elements, as is the case of the formulation used in the present work. This is due
to the fact that second order derivatives of velocity shape functions are identically zero
within the elements. Therefore, this term will be neglected in the following.

Introducing the OSS small scale model into the variational form of Eqs. (5.19)
and (5.20), the following stabilized formulation is obtained:

∫

Ω

ρwh uh∇uh dΩ +

∫

Ω

2η∇swh : ∇suh dΩ−
∫

Ω

∇ ·wh ph dΩ

+
∑

e

∫

Ωe

ρuh∇whτ1 (ρuh · ∇uh +∇ph) dΩ−
∑

e

∫

Ωe

∇ ·whτ2 (−∇ · uh − Πc) dΩ =

∫

Ω

whf dΩ +

∫

ΓN

wht dΓ +
∑

e

∫

Ωe

ρuh∇whτ1 (f −Πm) dΩ

(5.28)

∫

Ω

qh∇ · u+
∑

e

∫

Ωe

∇qhτ1 (ρuh∇uh +∇ph) dΩ =
∑

e

∫

Ωe

∇qhτ1 (f −Πm) dΩ (5.29)

Analogously, the ASGS stabilized formulation can be recovered by dropping all terms
involving Πm and Πc in Eqs. (5.28) and (5.29).

5.4.3 Matrix formulation

At this point we can use the standard linear finite element functions to interpolate the
large scale velocity and pressure solutions using nodal shape functions Na:

uh ≈
nn∑

a

N aua ph ≈
nn∑

a

Napa (5.30)

where a is the node index and nn the total number of nodes, Na represents the standard
finite element functions for scalar variables and N a its matrix equivalent for vectorial
quantities.

Introducing the interpolation of Eq. (5.30) into Eqs. (5.28) and (5.29) and succes-
sively using the shape functions of each node as test functions wh, ph, we obtain the
following system of equations

[
C +K + SK G+ SG

D + SD L

] [
U

P

]

=

[
F + SM

SC

]

(5.31)

where U and P represent the vectors of nodal values for velocity and pressure, respec-
tively. The blocks that appear in the system matrix and the right hand side vector of
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Eq. (5.31) are obtained from the finite element assembly of the different integrals that
appeared in the stabilized equations. If a and b represent node indices, the Galerkin
terms in Eqs. (5.28) and (5.29) give rise to the following local matrices:

Ce
ab =

∫

Ωe

NT
a ρuh · ∇N b dΩ

Ke
ab =

∫

Ωe

2η (γ̇)∇NT
a∇sN b dΩ

Ge
ab = −

∫

Ωe

NT
a∇Nb dΩ

De
ab =

∫

Ωe

∇NT
b N a dΩ = − (Ge

ba)
T

F e
a =

∫

Ωe

NT
a f dΩ +

∫

ΓN

NT
a f dΓ

(5.32)

Analogously, the discretization of the stabilization terms allows us to write

Se
K ab =

∫

Ωe

(ρuh · ∇N a)
T τ1ρuh · ∇N b dΩ +

∫

Ωe

(∇ ·N a)
T τ2∇ ·N b dΩ

Se
Gab =

∫

Ωe

(ρuh · ∇N a)
T τ1∇Nb dΩ

Se
D ab = (Se

G ba)
T

Le
ab =

∫

Ωe

(∇Na)
T τ1∇Nb dΩ

Se
M ab =

∫

Ωe

(ρuh · ∇N a)
T τ1 (f −Πm) dΩ−

∫

Ωe

(∇ ·N a)
T τ2Π

c dΩ

Se
C ab =

∫

Ωe

(∇Na)
T τ1 (f −Πm) dΩ

(5.33)

The system in Eq. (5.31) contains multiple non-linear terms: the convective term is
non-linear in the velocity, as are all terms involving either the apparent viscosity η, the
stabilization parameters τ1, τ2 and, in the OSS formulation, the projections. To linearize
it we use Picard iterations, evaluating all terms in the local contributions using the last
known values of the variables and solving the system iteratively.

In the case of OSS stabilization, an associated problem has to be solve to calculate
the projections, given by the discrete form of Eqs. (5.26) and (5.27):

[
MM 0

0 MC

] [
ΠM

ΠC

]

=

[
RM

RC

]

(5.34)

where ΠM and ΠC represent the vectors of nodal values for the momentum and mass
projections, respectively, and the different terms in the matrix and right hand side vector
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can be obtained by the finite element assembly of the following local contributions:

M e
M ab =

∫

Ωe

(N a)
T
N b dΩ

M e
C ab =

∫

Ωe

NaNb dΩ

Re
M ab =

∫

Ωe

(N a)
T (f − ρuh · ∇uh −∇ph) dΩ

Re
C ab =

∫

Ωe

Na (−∇ · uh) dΩ

(5.35)

Note that, as was done in previous chapters, we use the fact that the projection
matrices MM and MC have the structure of a mass matrix to approximate them by
the corresponding diagonal mass matrix. This avoids the solution of the linear system
which would otherwise be required to obtain the projections.

5.5 Application to Bingham fluids

The formulation introduced in the previous section can be combined with the adaptive
mesh refinement procedure by introducing the small scale model of Eq. (5.21) for ASGS
simulations, or Eq. (5.24) for OSS, in the error estimator of Eq. (5.1). We have used
it to simulate several classical examples of Bingham flow problems. As in the previous
examples, GiD is used to generate the initial mesh. Here all examples considered are
small enough to be computed in a desktop computer and, as a result, the distributed
memory capabilities are not relevant. In all examples but the Poiseuille flow, local mesh
improvement is used to correct the refined mesh.

5.5.1 Poiseuille flow

The first test case is a simple Poiseuille flow under an imposed pressure gradient. We
define a 6 × 1m plane channel and prescribe a pressure variation ∆p = −2 × 103Pa
between its extremes as shown in Fig. 5.9. A no-slip condition is imposed along the
edges of the channel. The fluid density is set to ρ = 1Kg/m3 while the plastic viscosity
takes a value of µp = 10Pa · s and the regularization coefficient is set to m = 103 s. We
consider two cases: a Bingham flow with yield stress τ0 = 100Pa and a Newtonian case
with viscosity µ = µp.

We start the simulation using the unstructured mesh shown in Fig. 5.10, containing
66 nodes and 92 triangular elements, which corresponds to three elements along the
channel width. The problem is solved iteratively: the solution of the flow is followed
by the mesh refinement algorithm, repeating the procedure until the error estimator is
smaller than a fixed tolerance for every element in the mesh.
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6 m 

1 m

solid wall

solid wall

Figure 5.9: Poiseuille flow – geometry and boundary conditions.

Figure 5.10: Poiseuille flow – initial mesh.

To study the sensitivity of the proposed approach with respect to the maximum
admissible value for the error indicator, we simulated a series of cases with estimator
tolerances in the range 10−3–10−6. The number of elements obtained in each case for
the different stabilized formulations is shown in Fig. 5.11. The velocity profiles on the
central transversal section of the domain for some values of the tolerance are shown in
Fig. 5.12.

Analyzing the results, we observe a different behavior for the two cases considered.
In the Newtonian case, the number of elements in the final grid increases uniformly
as the tolerance is reduced. This is in agreement with the expected behavior of the
estimator used: consider the that analytical solution of the Newtonian Poiseuille flow is
a parabolic velocity profile given by the expression

u (y) =
1

2µ

(

−∆p

∆x

)

y (H − y) uy = 0 (5.36)

where H is the channel width and y is the vertical distance to the lower wall.

Consider the solution obtained using the ASGS stabilization. Assuming we obtained
a nodally exact solution, the momentum error would be

Rm
x = µ

∂2u

∂y2
− ∂p

∂x
Rm

y = 0 (5.37)

as the velocity is only different from zero in the streamwise direction and the velocity
gradient is orthogonal to the velocity, cancelling the convective term. If Eq. (5.37) is
evaluated using the exact solution, it can be seen to be identically zero, as ∂2u/∂y2 =
1/µ∆p/∆x. However, Eq. (5.37) can never evaluate to zero numerically in our case,
not even with a nodally exact solution, as second derivatives are zero when using linear
finite elements.

In practice, the ASGS error estimator of Eq. 5.1 will evaluate to
√
Aτ1∆p/∆x, where

A is the area of the element. This explains its behavior and the large number of elements
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(a) Newtonian fluid.
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(b) Bingham fluid.

Figure 5.11: Poiseuille flow – number of elements at the end of the simulation for different
tolerances.
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(a) Newtonian fluid (ASGS).
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(b) Newtonian fluid (OSS).
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(c) Bingham fluid (ASGS).
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(d) Bingham fluid (OSS).

Figure 5.12: Poiseuille flow – streamwise velocity profiles.
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that it introduces for all tolerances, even when the solution is already properly repre-
sented with a lower number of elements. This can be seen, for example, in Fig. 5.12(a),
where the solution for the larger tolerance simulation is practically identical to the finer
solution.

This effect is mitigated by the use of OSS stabilization and the corresponding error
estimator which, as can be seen in Fig. 5.11(a), results in roughly five times less elements
than the ASGS case for a given tolerance. When using OSS, we are missing the second
derivatives both in the model for the small scales, given by Eq. (5.24), and in the
calculation of the nodal projections in Eq. (5.26). As the second derivatives and the
projection terms have opposite signs in Eq. (5.24), the total error in the estimation of
the momentum residual is reduced.

As can be seen in Fig. 5.11, the total number of elements at the end of the simulation
is larger for the Newtonian flow in all cases. This is due to the spatial distribution of the
refinement, as can be observed in Fig. 5.13, and is related to the shape of the solution.
For the Newtonian case, the parabolic velocity profile of the solution results in the error
estimate of Eq. (5.37), which is independent of the position. As a result, the entire
domain is refined homogeneously.

(a) Initial mesh. (b) Newtonian fluid. (c) Bingham fluid.

Figure 5.13: Poiseuille flow – detail of the final meshes for the OSS case with tolerance
10−6.

On the other hand, in the Bingham case the profile has an unyielded central area
that moves as a block and two yielded regions close to the wall with a parabolic velocity
profile. The central area, with constant velocity, can be solved with practically no error
with a coarse mesh size, and most of the new elements are placed in the yielded regions.
As the refinement is more localized, the overall number of elements is smaller.
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As a final remark, we can observe that, for small tolerances, the refinement fails to
start if the mesh is too coarse to properly represent the flow. This can be seen in in
Fig. 5.11(b) for the ASGS simulation with a tolerance of 10−3 and for the OSS cases
with tolerances 10−3 and 10−4, where no new elements are added. These cases produce
a solution where the yielded regions do not develop and the velocity is practically zero
everywhere.

5.5.2 Plane extrusion

We simulated the plane extrusion of a Bingham fluid through a die with a 3 to 1 reduction
of the cross-section. This problem, presented in [99], was also solved in [67], using a
fixed fluid mesh and an ASGS-based solver similar to that of Section 5.4, and in [80],
using OSS stabilization.

As can be seen in Fig. 5.14, we use symmetry to simulate only one half of the domain.
The walls are assumed to be smooth, and only the wall-normal component of velocity is
restricted. The flow is driven by a ram pressure applied on the left side of the domain,
which introduces a pressure gradient. The fluid parameters are reported in Table 5.3.

6 m 6 m 

3 m

1 m
symmetry

slip  wall

slip  wallA

Figure 5.14: Plane extrusion – geometry and boundary conditions.

Parameter Value

Fluid density ρ = 100Kg/m3

Yield stress τ0 = 1000Pa
Fluid viscosity µp = 10−6Pa · s

Regularization coefficient m = 1000 s

Table 5.3: Plane extrusion – flow parameters for the problem.

As discussed in [99], using the present settings, with smooth walls and a very small
plastic viscosity, the problem is analogue to a perfect plasticity problem. An exact
solution for the plasticity problem, obtained using slip line theory, is reported by Lubliner
in [72]. This solution predicts the formation of slip lines once the applied pressure reaches
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p =
4

3

(

1 +
π

2

)

τy ≈ 3427 Pa (5.38)

An increasing normal pressure is applied on the left end in steps of 2 Pa, starting
from 0 to a maximum value of pmax = 5000Pa. After each step, the mesh refinement
algorithm is used to improve mesh resolution, with a tolerance of 10−6 for the error
indicator. In this case we applied additional controls to prevent an excessive refinement
in specific zones. The minimum allowed area for refined elements is set to 10−4m2. The
domain is initially discretized with an unstructured mesh composed of 102 nodes and
152 linear triangles.

The evolution of the strain rate and the refined mesh for different values of ram
pressure is shown in Fig. 5.15 for the ASGS formulation and in Fig. 5.16 for the OSS
method. Both simulations show the same qualitative behavior: as the ram pressure
increases, a yielded region characterized by high strain rates develops, matching the slip
line mechanism. The finite element mesh is refined accordingly, following the distribution
of high strain rates. The ASGS solution seems to be slightly advanced in this case,
producing larger strain rates for a given ram pressure.

The evolution of mesh during the simulation is shown in Fig. 5.17. The number
of elements required to solve the problem remains relatively constant for low values of
the ram pressure until the yielded zone starts to develop. At this point, the number
of elements increases rapidly as the material starts to flow. The new elements are
concentrated at the fluidified regions, as can be observed in Figs. 5.15 and 5.16, and the
refinement process continues as the yielded region expands and moves downstream. The
mesh at the end of the simulation, corresponding to an external pressure of 5000 Pa,
contains 15173 nodes and 30166 elements in the ASGS case and 14466 nodes and 28756
elements in the OSS case.

The velocity of the fluid on the left boundary (measured on point A in Fig. 5.14)
is related to the ram pressure in Fig. 5.18. We can observe that velocity is very low
until the pressure reaches about 3460 Pa, when the material starts to flow, accelerating
rapidly. Again, the change in behavior corresponds to the formation of a yielded zone
just before the extrusion section. This is found to be in agreement with the expected
behavior, although the material starts flowing at slightly higher pressures than expected
from perfect plasticity theory, which is indicated in Fig. 5.18 using a dotted line.

We can also observe in Fig. 5.18 that the OSS simulation predicts a slightly later
plastification, corresponding to higher ram pressures, when compared to the ASGS
method, while the latter is closer to the plasticity theory result. A possible explanation
for this could be that the ASGS estimator produces a larger number of elements overall,
as can be seen in Fig. 5.17, which provides a slightly better accuracy in the solution.

As an attempt to quantify the effectiveness of the refinement procedure, we also
simulated the problem using OSS and a uniform mesh containing 28072 elements, a
similar amount as in the finest mesh obtained during the refinement, to use as a reference
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Figure 5.15: Plane extrusion (ASGS) – evolution of strain rate (left) and mesh (right).
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Figure 5.16: Plane extrusion (OSS) – evolution of strain rate (left) and mesh (right).
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Figure 5.17: Plane extrusion – evolution of the simulation mesh.
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Figure 5.18: Plane extrusion – applied pressure vs. inlet velocity.

solution. The velocity–pressure relation for this simulation is also plotted in Fig. 5.18 and
shows a delayed formation of the yielded region, which appears at higher ram pressures
than expected. While using a uniform mesh would be a very naive approach in this case,
the results show that the use of a refinement procedure results in an improved solution
for a given number of elements in the mesh.

5.5.3 Cavity flow

The next example we considered is the 2D cavity flow of a Bingham fluid. The problem
uses the same settings as Mitsoulis and Zisis in [79]. Defining a square domain Ω =
(0, H)× (0, H), we impose a horizontal velocity U = 1m/s on the y = H side and zero
velocity on the remaining sides. We simulate a leaky cavity, the top left and top right
corner nodes have a fixed horizontal velocity. This condition is re-imposed after each
refinement step, so that the wall node immediately next to the corner always has zero
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velocity, as shown in Fig. 5.19, even if this node didn’t exist in previous iterations.

u � � m��� v � 0

u � 0

v � 0

u � 0

v � 0

u � � m��� v � 0

Figure 5.19: 2D cavity flow – boundary conditions.

The fluid density is set to ρ = 1Kg/m3 and the dynamic viscosity for the yielded
region is set to µp = 1Pa · s. We will simulate multiple cases with different yield stresses
to test a range of values of the Bingham number, defined as

Bn =
τ0H

µp U
(5.39)

The regularization coefficient is set to m = 300 s. In this case, all simulations were
performed using OSS stabilization. As in the previous test, we start from a relatively
coarse uniform mesh composed of 2900 nodes and 5600 triangular elements and we
solve the problem iteratively, with a mesh refinement phase after each solution. The
refinement algorithm is set to a tolerance of 10−6 and to a maximum of 10 refinement
steps over the same original element. This is important in this case, as a concentration of
pressure can be expected to appear in the corners of the cavity and the mesh refinement
could potentially continue indefinitely on these points. The final distribution of yielded
and unyielded regions and the corresponding velocity streamlines are shown in Fig. 5.20
for the different simulations.

The vertical position of the vortex center for each case is compared to the results
reported in [79] in Fig. 5.21. The results are in agreement with the reference, although
we obtain a slightly higher position for the center in the higher Bingham numbers.

Fig. 5.22 displays the evolution of the number of elements during the simulation,
which can be seen to increase quickly during the first steps, until the error estimator
complies with the imposed tolerance in most of the domain.

Although the cavity flow is essentially a 2D problem for the range of values we are
testing, we also simulated a 3D case in order to validate our approach for tetrahedra.
The geometry of the problem is shown in Fig. 5.23 and follows the definition of Elias et
al. in [40]. The domain is a cube of side H = 1m, where velocity is fixed to (U, 0, 0) on
the top side. Taking Y to be the vertical axis, the velocity is set to zero on the bottom
and on the sides of the cube normal to the flow. On the remaining sides, parallel to the
flow on the top, only the normal (Z) component of velocity is restricted.
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(a) Bn = 2. (b) Bn = 5.

(c) Bn = 20. (d) Bn = 50.

(e) Bn = 200. (f) Bn = 500.

Figure 5.20: 2D cavity flow – velocity streamlines and distribution of yielded (light) and
unyielded (dark) regions.
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Figure 5.21: 2D cavity flow – vertical position of the vortex center, compared to the
results of [79].
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Figure 5.22: 2D cavity flow – evolution of the number of elements.

We solve the flow for a Reynolds number Re = 1 and a Bingham number Bn = 5.
All fluid parameters are defined as in the 2D case, setting the top velocity to U = 1m/s
and the yield stress is τ0 = 5Pa. The regularization coefficient is set to m = 1000 s.

The flow is simulated in 10 solution steps, refining after each solution. Starting from
a uniform tetrahedral mesh with 30 divisions along each edge, containing approximately
51 thousand nodes and 277 thousand elements, a final mesh with 113 thousand nodes
and 612 thousand elements is obtained. The final distribution of yielded and unyielded
regions and velocity streamlines is shown in Fig. 5.24. The vortex center in this case is
placed at a vertical position y/H = 0.848, in agreement with the 2D results shown in
Fig. 5.21.
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Figure 5.23: 3D cavity flow – geometry
and velocity boundary conditions.

Figure 5.24: 3D cavity flow – velocity
streamlines and distribution of yielded
(light) and unyielded (dark) regions.

5.5.4 Flow through a sudden expansion

As a final test case we have simulated the 3D flow through a square sudden expansion.
This problem was studied in [4, 18] for Herschel-Bulkley fluids and represents a three-
dimensional version of the more common planar or axisymmetric expansions (see for
example [5, 78, 111]). The cross section of the problem is shown in Fig. 5.25. We modeled
the flow through expansions with 1 to 2 and 1 to 4 width ratios, which correspond to
W/H = 2 and W/H = 4 using the notation of Fig. 5.25.

5� 15�

2� 2W
symmetry

solid wall

solid wall

Figure 5.25: Sudden expansion – geometry.

Using symmetry, only one fourth of the domain is simulated, resulting in the calcu-
lation geometries shown in Fig. 5.26. No-slip boundary conditions are used to model
the solid walls, while a no-penetration conditions is set for the symmetry planes. The
flow is driven by a pressure applied on the narrow side of the domain.

The problem is solved for the case where both the Reynolds and Bingham numbers
equal to one, calculated using H as the reference length and a reference velocity U0

defined in [18] as

U0 =
1

µp

(

H

∣
∣
∣
∣

∆p

∆x

∣
∣
∣
∣
− τ0

)

H (5.40)
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Figure 5.26: Sudden expansion – simulation domains.

where ∆p/∆x is the pressure gradient that drives the flow.

We apply the external pressure in 10 incremental load steps, refining after each
iteration. Once the loading process is finished, we simulate 5 extra steps under full load
to ensure that the final solution does not require additional refinement. The distribution
of yielded and unyielded regions on different sections can be observed in Fig. 5.27 for
the W/H = 2 expansion and in Fig. 5.28 for the W/H = 4 case.

A
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B

B'

C

C'

(a) Side view.

(b) A–A′ (c) B–B′ (d) C–C′

Figure 5.27: W/H = 2 expansion – yielded (dark) and unyielded (light) regions.

Both simulations exhibit a qualitatively similar behavior, in agreement with the
results obtained in the references. Far from the expansion, we can differentiate a yielded
region close to the wall, due to the shear produced by wall friction, and a central core of
unyielded material. Close to the expansion, high velocity gradients develop as the flow
adapts to the change in cross section and the central region is completely fluidified. Just
after the expansion, on the wide side, a region of stationary unyielded material appears,
unaffected by the main flow, which can be understood as equivalent to the recirculation
zones for a Newtonian fluid.

As in the previous cases, the simulation begins with a uniform tetrahedral mesh,
composed of approximately 5000 nodes and 22000 elements for the W/H = 2 case or
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Figure 5.28: W/H = 4 expansion – yielded (dark) and unyielded (light) regions.

10000 nodes and 53000 elements for the W/H = 4 case. The evolution of the number
elements during the solution is shown in Fig. 5.29. The number of elements grows as
the applied pressure gradient increases and stabilizes once the loading process finishes,
resulting in a final grid of 106000 nodes and 596000 elements for the W/H = 2 case and
123000 nodes and 694000 elements for the W/H = 4 expansion.
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Figure 5.29: Sudden expansion – evolution of the number of elements during the simu-
lation.

The initial and final meshes are shown in Fig. 5.30 for the W/H = 2 test and
Fig. 5.31 for the W/H = 4 case. It can be observed that refined areas coincide with
yielded regions, where higher velocity gradients are generally found: close to the solid
walls and just after the expansion section.



5.6. Summary and conclusions 163

(a) Initial mesh. (b) Final mesh.

Figure 5.30: W/H = 2 expansion – side view of the calculation meshes.

(a) Initial mesh. (b) Final mesh.

Figure 5.31: W/H = 4 expansion – side view of the calculation meshes.

5.6 Summary and conclusions

In the previous pages we have presented an adaptive mesh refinement technique that
combines an a posteriori error estimator based on the VMS scale separation and a
mesh refinement strategy based on edge division, designed and implemented to work
in a distributed memory parallel environment. This approach has been applied to the
simulation of turbulent and viscoplastic flows, improving the resolution of triangular
meshes in 2D and tetrahedral meshes in 3D. To conclude the presentation, we will give
some final thoughts on the method and propose future lines of improvement.

We have shown that our approach to mesh refinement is parallel by design and its
distributed memory implementation shows good parallel performance. This is achieved
through the use of a very simple refinement procedure, based only on data that is local
to the element. In fact, the division procedure presented in Section 5.2.3 is based only
on the nodal numbering.

The drawback of this approach is that the quality of the resulting refined mesh is
not taken into account when dividing elements, which can result in a sub-optimal mesh
quality. A local division strategy that took into account the shape of the element and
its neighbors when refining could allow us to chose a more convenient division pattern
in many cases, resulting in better mesh quality. This suggests a first venue for future
improvement, for example devising an improved approach that incorporates the ideas
of the local mesh improvement techniques we now use as a post-process to choose an
optimal refined configuration, but always keeping in mind that the parallelization of
such approach would have to be carefully considered.

A second possibility for improvement of the mesh refinement strategy is the treat-
ment of curved surfaces. While this has not been significant in the examples presented
here (only the cylinder example included curved edges), a drawback of our refinement
algorithm is that, when working with curved surfaces, the quality of their representation
is given by the coarsest mesh used during the process. This issue is shown graphically
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in Fig. 5.32, and would likely be problematic in cases where a precise description of
the geometry is required, such as flows around wing profiles or wind turbine blades,
regardless of the final mesh size. A starting point to solve this issue could be storing
the original geometry using, for example, a NURBS-based description and using this
information to correct the position of new nodes, placing them closer to the original
surface instead of on the edge midpoint.

(a) Original domain. (b) Coarse mesh. (c) Refined mesh.

Figure 5.32: Refinement of curved edges.

The incompressible flow examples presented in Section 5.3 allow us to say that our
approach correctly identifies the zones where refinement is required. However, regarding
the parallel efficiency of the method, we found that dynamic load balancing is necessary
to solve large scale examples efficiently, as local refinement can quickly unbalance the
original partitioning of the model. Additionally, mesh coarsening would be a welcome
addition to solve dynamic problems as, in our experience, the regions with larger error
tend to follow moving vortices and this currently results in a complete refinement of
turbulent wakes.

Although our adaptive refinement strategy was originally designed to simulate tur-
bulent flows, we found that it is also suited to the simulation of viscoplastic fluids. The
fact that many problems of interest in this field are generally static and have sharp
interfaces between yielded and unyielded regions plays to the strengths of our approach,
as coarsening is rarely required. We found that our method was able to identify the re-
gions where fluidification occurs even when starting from a uniform initial mesh. While
the capabilities of the method have been demonstrated by the test cases presented in
Section 5.5, there are some questions that could be addressed in the future. For exam-
ple, how should the tolerance for the error estimator be set? Is it problem dependent?
In our experience, the solution is sensitive to the tolerance set for the error estimator: a
small tolerance produces very fine meshes, while a large tolerance can even prevent the
refinement from starting if the original mesh is too coarse. This was shown to be the
case in some of the Poiseuille flow examples presented in Section 5.5.1.

Going back to turbulent flow, there is one interesting question regarding the chosen
estimator. According to the arguments presented in Chapter 2, the small scale part of the
solution can be understood as the basic ingredient of a VMS-based turbulence modeling.
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In this sense, imposing a restriction on its magnitude seems to be contradictory with
our goal in previous chapters, which was to perform a LES-like simulation thanks to the
contribution of the small scale terms, and seems to push the mesh size towards DNS
simulations, which we discarded as prohibitively expensive for problems of engineering
interest.





Chapter 6
Conclusions

6.1 Summary and main results

In the present work we have explored the capabilities of stabilized finite element formula-
tions for the solution of turbulent flow problems. To achieve this goal, we have studied
two families of methods: VMS and FIC formulations, applying them to the solution
of different benchmark problems. In addition, we have studied numerical techniques
relevant to the solution of large complex problems, in particular the parallel implemen-
tation of the code and the use of adaptive mesh refinement to improve the quality of
the simulation mesh.

As a general observation for the different stabilized formulations considered, we no-
ticed a notable difference between using linear tetrahedral or hexahedral finite elements
in terms of the quality of the solution. While this was not unexpected, we were able to
quantify the difference for the turbulent channel flow, where we see that, in general, we
need an order of magnitude more tetrahedral elements to achieve the same quality in
the solution as for hexahedra.

For VMS methods we have studied the behavior of classical formulations on the
channel flow problem, in terms of velocity averages and variances and of the turbulence
kinetic energy balance. Additionally, we have presented a new model for the pressure
subscale based on the use of an approximate small scale space, which has been shown to
provide a promising improvement in the quality of the solution for the channel flow test
when compared to the usual approach. However, we want to remark that we consider
this only a starting point, since the effect of the pressure small scale on the solution has
been shown to be problem-dependent in the literature.

Regarding FIC formulations, introduced in Chapter 3, we have presented a new
method that includes a diffusive term based on imposing the FIC balance in the direc-
tion of the gradients of each component of velocity, in addition to the usual streamline
diffusion. Although this term is derived from the FIC balance (as opposed to a tur-



168 Conclusions

bulence modeling argument), we have shown its presence allows us to obtain a more
accurate solution in the turbulent channel flow benchmark. We have also applied the
resulting formulation to more complex geometries, and in particular to the wind flow
around a parabolic solar collector. While the simulation performed represents only a
first approximation to the problem, as more tests and longer simulation times would
be required to obtain a more reliable solution, they are encouraging in terms of the
performance of the method.

In Chapter 4, the parallel performance of the solver was studied. We presented the
measured calculation times in large simulations, measuring the parallel scalability when
using up to 3072 processors. We observed that the solution time is dominated by the
linear system solver, which is significantly more expensive than the finite element assem-
bly procedure. While the parallel solution of linear systems is beyond the scope of the
present work, we have concentrated our efforts in obtaining a good parallel performance
in the parts of the solution where we have direct control, relying on external libraries
for system solution.

Finally, in Chapter 5 we investigated the possibility of using adaptive mesh refine-
ment to optimize the mesh during the simulation, which we applied both to turbulent
and non-Newtonian flow examples. While the results show the potential of the method,
we found that the applicability of our approach to turbulent flow problems is limited by
the lack of a mesh coarsening procedure. Since turbulence is a highly dynamic problem,
regions that required a finer resolution at a given step might be solvable with a much
coarser grid at a later time but, without mesh coarsening, we are stuck with the finer
resolution for all subsequent steps, greatly increasing the total number of elements. A
second issue that was detected, in the case of distributed memory simulations, is that
dynamic load balancing is crucial to maintain a good parallel performance during the
entire solution. In spite of these limitations, the approach was found to be well-suited
to laminar non-Newtonian flows, where finer resolutions are typically required along
localized high-shear regions.

6.2 Research outcomes

Parts of the work presented in this monograph have been published in scientific journals.
In particular, some of the work related to the parallel implementation of the solver was
included in

• P. Dadvand, R. Rossi, M. Gil, X. Martorell, J. Cotela-Dalmau, E. Juanpere, S. R.
Idelsohn, and E. Oñate. Migration of a generic multi-physics framework to HPC
environments. Computers & Fluids, 80:301–309, 2013.

While the work in adaptive mesh refinement has been used to prepare the following
publications
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• R. Rossi, J. Cotela-Dalmau, N. M. Lafontaine, P. Dadvand, and S. R. Idelsohn.
Parallel adaptive mesh refinement for incompressible flow problems. Computers
& Fluids, 80:324–355, 2013.

• J. Cotela-Dalmau, R. Rossi, and A. Larese. Simulation of two and three-dimensio-
nal viscoplastic flows using adaptive mesh refinement. Submitted to International
Journal of Non-Newtonian Fluid Mechanics, 2015.

Articles related to the work contained in Chapters 2 and 3 are planned.

Finally, we want to note that an implementation of all formulations and techniques
presented in this document is available within Kratos Multiphysics. In particular, the
VMS methods introduced in Chapter 2 currently constitute the basis of the CFD module
of Kratos Multiphyisics, both in the monolithic form which has been presented and used
in the present work and as a fractional step implementation of the Q-OSS formulation.
This solver has been used by other researchers, both in collaboration with the authors
and in other groups, and in the elaboration of multiple Master theses, where students
have used it for example to perform studies of the wind flow around bridge sections or
to build an ALE-Chimera solver for CFD problems with moving parts.

6.3 Future lines of research

The results obtained in the course of the present work suggest several possibilities for
future investigation and improvement.

In terms of VMS formulations we are of the opinion that, while using scale separa-
tion and mesh projection is a valid option introduce a LES-like separation between the
resolved and unresolved part of the solution, there is still work to do in understanding
the practical behavior of the resulting method as a turbulence model. In particular,
the behavior of the pressure small scale and its impact on the solution is still poorly
understood. While we were able to compare the results obtained using different formu-
lations, it is not always clear why a particular method provides a more accurate solution
than the other. Additionally, for the proposed pressure subscale model, although the
results in our test are encouraging, there is still work to do in understanding precisely
why we obtained a better approximation and to verify if this result would hold for other
problems.

A similar argument could be made in terms of the new FIC formulation: while the
resulting formulation results in an improved accuracy, we did not provide a justification
of why this happens. In this particular case, it is interesting to note that the gradient
diffusion terms that constitute the main difference to the classical FIC approach have a
similar structure to the family of LES methods known as gradient models such as the
Clark model [23] or Modulated Gradient Diffusion [71]. Exploring its relation to such
models could allow us to obtain a better understanding of the method in terms of its
behavior in turbulent problems and motivate future improvements.
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Regarding the development of parallel capabilities, the immediate work will be cen-
tered on continuing the integration of the AMGCL library as it is developed. Another
possibility that will be explored is the addition of a hybrid implementation, combining
shared and distributed memory capabilities. It could also be worthwhile to work on
improving the partitioning procedure, using a more efficient coloring procedure and,
most importantly, adding dynamic load balancing procedures to adjust the work load
in each processor if the simulation mesh is changed. This would be a welcome addition
in particular for the adaptive mesh refinement procedure presented in Chapter 5, as it
would extend the range of applicability of the method.
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[35] P. Dadvand, R. Rossi, and E. Oñate. An object-oriented environment for devel-
oping finite element codes for multi-disciplinary applications. Archives of Compu-
tational Methods in Engineering, 17:253–297, 2010.
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[119] K. A. Stüben. A review of algebraic multigrid. Journal of Computational and
Applied Mathematics, 128(1–2):281 – 309, 2001. Numerical Analysis 2000. Vol.
VII: Partial Differential Equations.

[120] R. B. Stull. An introduction to boundary layer meteorology. Springer, 1988.

[121] R. I. Tanner and J. F. Milthorpe. Numerical simulation of the flow of fluids with
yield stress. In C. Taylor, J. A. Johnson, and W. R. Smith, editors, Numerical
Methods for Laminar and Turbulent Flow, pages 680–690. Pineridge Press, 1983.
Proceedings of the Third International Conference, Seattle.

[122] C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equations using
the finite element technique. Computers & Fluids, 1(1):73 – 100, 1973.

[123] A. E. Tejada-Mart́ınez and K. E. Jansen. On the interaction between dynamic
model dissipation and numerical dissipation due to streamline upwind/Petrov-
Galerkin stabilization. Computer Methods in Applied Mechanics and Engineering,
194(9-11):1225 – 1248, 2005.

[124] R. Temam. Navier-Stokes Equations: Theory and Numerical Analysis. American
Mathematical Soc., 2001.

[125] H. Tennekes and J. L. Lumley. A first course in turbulence. MIT Press, 1972.

[126] T. P. Terriberry. Computing higher-order moments online. http://people.xiph.
org/~tterribe/notes/homs.html, 2008. Retrieved on October 2015.

[127] A. V. Trofimova, A. E. Tejada-Mart́ınez, K. E. Jansen, and R. T. L. Jr. Direct
numerical simulation of turbulent channel flows using a stabilized finite element
method. Computers & Fluids, 38(4):924 – 938, 2009.

[128] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Academic press,
2000.

[129] R. S. Tuminaro, M. A. Heroux, S. A. Hutchinson, and J. N. Shadid. Official
Aztec users’s guide version 2.1. Technical Report SAND99-8801J, Sandia National
Laboratories, 1999.

[130] B. P. Welford. Note on a method for calculating corrected sums of squares and
products. Technometrics, 4(3):419–420, 1962.

http://www.top500.org
http://www.top500.org
http://people.xiph.org/~tterribe/notes/homs.html
http://people.xiph.org/~tterribe/notes/homs.html


182 BIBLIOGRAPHY

[131] H. Werner and H. Wengle. Large-eddy simulation of turbulent flow over and
around a cube in a plate channel. In F. Durst, R. Friedrich, B. E. Launder,
F. W. Schmidt, U. Schumann, and J. H. Whitelaw, editors, Turbulent Shear Flows
8. Selected Papers from the Eighth International Symposium on Turbulent Shear
Flows, Munich, Germany, September 9-11 1991, pages 155–168. Springer Berlin
Heidelberg, 1993.

[132] D. C. Wilcox. Turbulence Modeling for CFD. DCW industries, 1998.

[133] O. C. Zienkiewicz and J. Wu. Automatic directional refinement in adaptive anal-
ysis of compressible flows. International Journal for Numerical Methods in Engi-
neering, 37(13):2189–2210, 1994.


	Contents
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Turbulence modeling
	Stabilized finite element formulations for turbulent flows

	Objectives and methodology
	Outline of this document

	Variational multiscale stabilization for turbulent flow problems
	Introduction
	Variational form of the Navier-Stokes equations
	Problem statement
	Conservation properties
	Galerkin weak form

	Variational multiscale stabilization
	Scale separation
	Small scale equation
	Quasi-static small scale models
	Dynamic small-scale models
	Complete equations

	VMS methods and Large Eddy Simulation
	The VMS kinetic energy balance

	Discrete problem
	Quasi-static ASGS formulation
	Quasi-static OSS formulation
	Dynamic ASGS formulation
	Dynamic OSS formulation
	Time integration
	Linearization of the large scale problem
	Tracking of dynamic subscales
	Finite element solution algorithm

	A new model for the pressure subscale
	On the design of the stabilization parameters
	Alternative design for the pressure subscale

	Application to the turbulent channel flow
	Effect of the simulation mesh
	Influence of the small scale model
	Turbulence kinetic energy balance
	Effect of the proposed pressure subscale model

	Concluding remarks

	A Finite Calculus stabilized finite element formulation for turbulent flows
	Introduction
	FIC formulation
	Stabilized momentum equation
	Streamline diffusion formulation
	Gradient diffusion formulation
	Combined Approach
	Definition of the stabilization parameters

	Stabilized mass balance equation
	Finite element formulation
	Spatial discretization
	Time integration and linearization
	Summary of the formulation

	Turbulent channel flow
	Problem definition
	Fixed combination parameter
	Variable combination parameter
	Summary of the results

	Flow around a cylinder
	Flow around a solar collector
	Summary and conclusions

	Parallel implementation
	Introduction
	Distributed memory model
	Partitioning of input data
	Distributed solution
	Benchmark cases
	Flow around an inflatable structure
	Flow around a race car

	Computation of statistical data on a parallel environment
	Mean and variance
	Covariances
	Third order statistics

	Concluding remarks and future work

	Adaptive mesh refinement for turbulent and viscoplastic flows
	Introduction
	Adaptive refinement strategy
	Error estimation
	Mesh refinement strategy
	Local refinement of triangles and tetrahedra
	Parallel implementation
	Scalability test

	Application to laminar and turbulent flows
	Flow around a cylinder at Re= 100
	Flow around a 6 meter cube

	A FEM solver with adaptive mesh refinement for viscoplastic flows
	Model equations
	Stabilized formulation
	Matrix formulation

	Application to Bingham fluids
	Poiseuille flow
	Plane extrusion
	Cavity flow
	Flow through a sudden expansion

	Summary and conclusions

	Conclusions
	Summary and main results
	Research outcomes
	Future lines of research

	Bibliography

