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Abstract.
 Discrete element methods are important tools for investigating the mechanics of granular 
materials.  In two dimensions, the reliability of these numerical approaches is increasingly 
being challenged, because they cannot take into account all the factors involved in the 
behavior of a granular medium.  
 With new concepts, such as high performance parallel computing and 3D visualization, it 
is now possible to conduct numerical simulations of granular materials made up of several 
thousands of particles, and also to follow the evolution of the various parameters involved in 
the behavior of a granular medium.  Experimental tests have been carried out to validate the 
results obtained by using a virtual laboratory.  This paper presents the earlier results obtained 
in our 3D Virtual Laboratory on the response of specimens of glass beads of uniform size
during shear tests.  Good agreement was achieved between the virtual simulations and the 
experimental tests. 
 This work highlights the possibility of using a new 3D virtual laboratory for dynamic 
simulation. This approach could be of significant value in improving the verification, 
validation, and communication of the simulation results of discrete element methods, which 
can in turn make the simulations more credible and thus useful in decision making.   
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1 INTRODUCTION 
 The direct shear test is widely used to measure the bulk material properties required to 
design many engineering problems, such as foundations, retaining walls, slab bridges, pipes, 
sheet piling, etc.  Several attempts to numerically model this test in 2D have been conducted.  
However, the results obtained to date have often been marred by uncertainty, and so this 2D 
approach is not yet widely used.  In addition, attempts are rarely made to validate the 
experimental results obtained by numerical modeling, and have often not been conclusive 
enough to impress practitioners.  Computer hardware limitations have also slowed its 
widespread acceptance.  In order to overcome these difficulties, a parallel computation 
approach has been used to develop a dynamic 3D numerical code (called SIMSols). The 
OpenCL framework was used in order to achieve a high level of data parallelism on NVIDIA 
Graphics Processing Unit (GPU) based Tesla High Performance Computing (HPC) hardware. 
Using the OpenGL Application Programming Interface (API) and Alioscopy technology, 
autostereoscopic visualization is proposed.  This paper presents the results obtained 
experimentally on a series of shear tests carried out on samples made up of glass beads, which 
helped validate the virtual laboratory results.  

2 DIRECT SHEAR TEST 
 The direct shear test is one of the oldest soil strength tests performed in the laboratory.  
Even though this test has some disadvantages, which are documented in ASTM D 3080 – 98 
[1], this test is routinely used by geotechnical engineers to determine the shear strength 
parameters of soil that are essential for stability assessment.  The first direct shear apparatus 
was built by Alexander Collin in 1846 to measure the strength of a clay soil shear to study the 
stability of slopes [2, 3, 4].  The current version of the direct shear apparatus was designed by 
Casagrande in 1932. 
 A normal load is applied to the specimen and the specimen is sheared across the pre-
determined horizontal plane between the two halves of the shear box. Measurements of shear 
load, shear displacement and normal displacement are recorded.  From the results, the shear 
strength parameters can be determined.  Figure 1 shows a schematic representation of the 
shear box.
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Figure 1:  Schematic representation of a shear box 
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3 DISCRETE ELEMENT METHOD SIMULATIONS 
 The Discrete Element Method (DEM), proposed by Cundall and Strack [5], is a powerful 
tool for numerical modeling of the mechanical behaviour of a large number of particles.  Each 
particle is considered as a rigid body with translational and rotational degrees of freedom 
assigned to their centers of mass.  An explicit time integration scheme, based on Newton’s 
second law, is applied to the equations of motion to keep track of the particle positions and 
velocities.  While moving, some of the particles will come into contact with one another.  To 
address this issue, a contact formulation is required to apply repulsive forces to prevent the 
particles from moving through each other. 
 In spite of the progress made to date, practitioners in fields such as granular materials 
science, geotechnical, mining, the food industry, etc. still lack confidence in this method, and, 
as a result, further development is required. In the geotechnical field, for example, the major 
concern is the prohibitive computational time it requires, and another is the non 
representativeness of the 2D approach in evaluating the various phenomena encountered in 
dense granular materials.  In fact, modeling 2D fails to take into account all of the involved 
parameters. This has been confirmed by several studies, including that of Sallam [6], who 
observed that the dilatancy of the 2D model is greater than that observed experimentally.  
Sallam attributes this difference to the fact that, in 2D simulations, particles cannot benefit 
from the level of freedom that 3D offers.  In terms of the contact between particles, Masson et 
and Martinez [7] simulated granular material confined in a gallery and subjected to a 
horizontal thrust.  Their simulation was conducted in both 2D and 3D.  The results show that 
the 3D model allows a compaction and displays significantly more contacts than a 2D model.  
On the other hand, by comparing experimental results on Daytona Beach sand and on rounded 
materials with those obtained by numerical simulations, Das [8] found that the 2D simulations 
underestimate the results for both materials. The angle of internal friction of Daytona Beach 
sand obtained from 2D simulations was 27o, while that obtained from 3D simulations varies 
from 39 to 43o, which is close to the experimental value of 37.40o.  For rounded materials, the 
angle of internal friction obtained from 2D simulations was 17.2o, while that obtained from 
3D simulations varies from 25o to 26.6o, which is within the internal friction angle range of 
24.4o to 27o, as reported in the literature by O’Sullivan et al. [9] and Phillips et al. [10].
 Finally, while there are numerous publications describing the potential of DEM, only a 
small number of studies in the geotechnical field have been validated by experimental 
results [11].
 A further concern is particle shape.  It is well known that the geometry of real soil particles 
is not adequately represented by spheres, and that samples formed of spherical particles 
cannot represent the complexity of soil behavior.  Attempts to simulate soils with particles of 
simple non spherical form in 2D began to be considered in the last decade [6, 12] and in 
3D [13, 14]. 
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4 THE MOTION AND INTERACTION OF PARTICLES (DEM) 
 The motions of particle i caused by its interactions with neighbouring particles is described 
by the equations: 

( ) fl

k

j
ijdtijctijdnijcni

i
i FFFFFgm

dt
Vd

m
rvrrrr

r

+++++= ∑
=1

,,,,    

( ) fl

k

j
ijij

i
i MMT

dt
d

I
rrrr

++= ∑
=1

ω
      

(1)

where:
mi and Ii are the mass (kg) and moment of inertia (kg.m2) of particle i respectively; 
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where E is Young’s modulus (Pa), ν is the Poisson ratio, Ri is the particle radius (m), and µs,
µr are the sliding and rolling (m) friction coefficients respectively, and ε is the restitution 
coefficient. The determination of interaction forces has been detailed by Lee et al. [15], Zhou 
et al. [16], and Nakashima [17].  

5 EXPERIMENTAL PROCEDURE 
 The experimental shear tests were carried out in a 60.23 x 60.07 mm shear box (Figure 1).  
Samples made up of glass beads of uniform size were placed so as to have the maximum 
number of beads of glass per layer.  However, because of the uniformity of the size of the 
glass beads, it is not always possible to fill the box so that there is no clearance between the 
rows of beads and the ends of the box. That is why, as we see in Figure 2, there is clearance 
between the glass bead row and the box (at the left-hand side and at the top).  The size of this 
gap varies with the size of the beads, and it is distributed along the length and width of the 
sample during placement of the next row or when the load is applied.  As a result, to facilitate 
the numerical modeling of the samples in the virtual laboratory, the glass beads have been 
placed so as to have the same number of glass beads per layer.  Knowing the size of the glass 
beads and the length and width of the box, it is possible to determine the size of the gap 
between the rows of beads and the ends of the box, and thus simulate the arrangement of the 
glass beads during modeling.  A special effort was made to ensure the appropriate placement 
of the glass beads in the shear box model.  The glass bead diameter and the number of rows 
used for each size of glass bead are listed in Table 1.  Table 2 presents the mechanical 
properties of the glass beads used.   

Figure 2:  Photograph of the first layer of glass beads: (a) in the shear box; and  (b) used for modeling 

Table 1:  Glass bead diameter and number of rows 

Test 1 2 3 4 5
Glass bead 
diameter (mm)  

2.38125 3.175 3.96875 4.7625 6.35 

Number of layers 8 6 5 4 4 
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Table 2:  Mechanical properties of the glass beads 

Mechanical properties Value
Young’s Modulus 62.784 GPa 
Poisson Ratio 0.2 
Density 2230 kg/m3

Coefficient of Restitution 0.87 
Sliding Friction 0.02 
Coefficient of Rolling Friction  5.10-5 m 

6 PARALLELIZATION 
 Typically, numerical simulations using DEM are computationally intensive, either because 
they take a long time to complete or because they require access to substantial computing 
resources. In order to keep both simulation time and computational resource requirements to a 
minimum, the model was parallelized using GPU (Graphics Processing Units). Modern GPU 
are massive data parallel processors capable of handling over 500 billion operations per 
second, which makes them well suited to handling data bounded problems such as DEM 
simulations. Initial development was carried out on a 6 GB, 448 core Tesla M2070 GPU from 
Nvidia [18]. This particular card was chosen for its relatively large amount of memory, in 
order to reduce the amount of costly memory movement across the PCIe. For portability, we 
chose the OpenCL (Open Computing Language) framework [19], which offers an abstract 
view of the parallel architecture used. This allowed us to use both the CPU (Central 
Processing Units) and the GPU backend. OpenCL represent the data space as an n 
dimensional NDRange. This space is divided into work groups, which are then subdivided 
into fine grain work items. The Nvidia Fermi architecture divides compute cores among SM 
(Streaming Multiprocessors), which consist of blocks of 32 lock-stepped CUDA cores. Each 
particle interaction calculation was assigned to an OpenCL work item, which was then 
computed on an individual Cuda core. 

7 VISUALIZATION 
 The visualization of large scale particle-to-particle interaction simulations poses multiple 
challenges. The sheer volume of data imposes either multiple static representations or a 
dynamic view, in order to permit observation of the entire system. In order to circumvent the 
problem of occluded particles, a dynamic 3D view of the model was chosen. Both classic 2D 
projection with transparency and the glass free autostereoscopic visualization approach were 
implemented. Using Alioscopy technology, we were able to project eight different 
perspectives on a screen covered by a lenticular array, resulting is seven simultaneously 
observable angles of vision. This technology allows multiple observers to interact with a 
simulation, and permits more complex systems to be viewed. The OpenGL (Open Graphics 
Library) API (Application Programming Interface) [20] was used to compute both the flat 
projection, as well as the different views required by the Alioscopy technology in a portable 
manner. GLSL (Graphics Library Shading Language) shaders were used to combine the 
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views into a single image projected on the screen, which is then redecomposed into individual 
images by the lenticular lens. OpenCL-OpenGL integration allows the reuse of particles from 
within the model without having to transfer data back to main memory.  
 The visualization plays an important role in the validation of numerical algorithms.  It can 
help verify the correctness of the physical ideas used in the numerical modeling.  It can also 
can show paths that could not otherwise be considered, given the large datasets created during 
a computer simulation. 

8 TEST RESULTS 
 A total of 20 shear tests were performed under vertical loads of 50 kPa, 160 kPa, 280 kPa, 
and 400 kPa on spherical glass beads of uniform size to validate the virtual laboratory results.  
In an attempt to verify the predictive capability of the DEM, closely matching 3D discrete 
element simulations of the shear tests were performed and compared with the experimental 
observations.  Figures 3 to 7 show the results obtained, and the ability of the numerical 
simulation to capture the macroscopic response of the sample’s behaviour during the tests.  
However, the post peak response reveals differences, which can be attributed to the chaotic 
movement of the glass beads during testing.
 These differences may be caused by one or more of the following uncertainties associated 
with the DEM hypothesis and with the experimental testing that are not accounted for in the 
model:

The non sphericity of the glass beads that are assumed to be perfect spheres.  The spheres 
used in the numerical modeling are perfect; 
The location of individual glass beads.  To reproduce the exact location of every bead, a 
photograph of each layer was taken to reproduce that location precisely in the simulations.  
However, given that there is a clearance between the row of glass beads and the walls of 
the shear box, it is impossible to know the movement of every glass bead precisely when 
loads are applied; 
The small bead fragments resulting from breakage at the surface of the glass beads can 
influence their macroscopic behaviour.  We can observe (Figure 8) the surface conditions 
before and after the tests; 
The large degree of uncertainty in the mechanical properties of the bead system; 
The contact formulation; 
The simulated particles are allowed to virtually overlap one another at contact points, as 
they are regarded as rigid bodies whereas in reality the particles deforms on contact; 
The main input parameters in the numerical model (i.e. normal and tangential stiffness, 
and a damping coefficient).  

In terms of visualization possibilities, figure 9 shows four different shearing steps, and figure 
10 depicts the intensity of the forces of contact between the particles.   
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Figure 3:  Experimental and numerical results on samples made up of glass beads 2.38125 mm diameter 
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Figure 4: Experimental and numerical results on samples made up of glass beads 3.175 mm diameter 
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Figure 5:  Experimental and numerical results on samples made up of glass beads 3.96875 mm diameter 
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Figure 6:  Experimental and numerical results on samples made up of glass beads 4.7625 mm diameter 
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Figure 7:  Experimental and numerical results on samples made up of glass beads 6.35 mm diameter 

                 

Figure 8:  A closer view of a glass bead surface: (a) before and (b) after the shear tests 
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9  FUTURE WORK 
A number of research projects are planned with the aim of developing our 3D Virtual 
Laboratory. Some of the topics of these projects are the following:

Validation of the numerical results obtained by our 3D Virtual Laboratory for 
experimental shear tests carried out without clearance between the shear box and the 
glass beads; 
Validation of the numerical results obtained by our 3D Virtual Laboratory for various 
experimental tests on samples with the same grain size as they have in reality;
Improvement of the capacity of our 3D Virtual Laboratory to understand the various 
phenomena encountered in the geotechnical field at the particle scale; 
Optimization of the various algorithms used in our 3D Virtual Laboratory, in order to 
reduce calculation times; 
Study of the sensitivity of the coefficients used in numerical simulations; 
Study of the effects of scale; 
Study of the influence on macroscopic behaviour of the water menisci between 
neighboring grains. 

(1) (2)

(3) (4)

Figure 9:  Example of the 3D visualization of four shearing steps (Glass bead diameter = 2.38125 mm) 
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Figure 10:  3D visualization of the contact force between particles 

10 CONCLUSION 
 The earlier work performed in our 3D Virtual Laboratory is presented in this paper.  This 
laboratory was developed to meet needs encountered in the geotechnical field.  The example 
presented in this article concerns only direct shear testing.  The experimental and numerical 
results are in good agreement.  Several factors explain the small differences, among them the 
locations of the glass beads during the trials and the inaccuracy of the coefficients used. 
 Our 3D Virtual Laboratory has the capacity to reproduce the shear tests on samples made 
up of glass beads, but also enables visualization of particle behaviour at macroscopic and 
particle level in 3D.  This makes 3D simulation very practical from a quantitative standpoint. 
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