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Abstract. Numerical simulation is used to explore the behavior of concrete beams of
different sizes and different notch lengths, loaded in three-point bending. The entire
range of notch depth is studied. One limit case is type 1 fracture, which occurs when
the notch depth is zero and the crack initiates from a smooth surface (this is the case
of the modulus of rupture test). Another limit is type 2 fracture, which occurs for deep
enough notches. Both cases exhibit very different size effects. The fracture is simulated
numerically with a robust mesolevel lattice-particle model. The results shed light on
the transitional behavior in which the notch depth is non-zero but not deep enough for
developing the the type 2 size effect dominated by energy release from the structure.
In agreement with experimental observations and theoretical predictions, the numerical
results show evidence of a decreasing macroscopic fracture energy as the ligament gets
very short.

1 INTRODUCTION

Modeling of the initiation and propagation of cracks in quasibrittle materials exhibiting
strain softening has been studied for several decades. Although this is a difficult task
complicated by the distributed damage dissipating energy within a fracture process zone
(FPZ) of non-negligible size, realistic results have been achieved by some approaches; see
e.g. [1]. In this contribution, the fracturing in concrete is modelled by the lattice-particle
model developed in [2, 3, 4].

The main goal is to describe the transition between two basic types of failure. In
type 1, a macroscopic crack initiates from a smooth surface and, in type 2, the crack
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initiates from a sufficiently deep notch or preexisting fatigued (stress-free) crack. Simple
laws giving good approximations of test data have been derived for both types. However,
the transition between these two types in the case of very shallow notches remains to be
a challenge.

In type 1, a large zone of distributed fracturing develops at the smooth surface until the
damage localizes into a crack in the statistically weakest place described by the weakest-
link model. In type 2, by contrast, the location of the crack is not random and a much
smaller zone of distributed damage grows at a fixed place, the notch tip, until a state of
critical energy release rate is reached.

As the notch is getting shallower, the size of the damage zone increases and the crack
location gradually develops random scatter. However, up to now there exists no exper-
imental evidence for this transition, and so experiments to characterize it are in prepa-
ration at Northwestern University. The present purpose is to clarify this transition by
numerical simulations, considering geometrically similar three-point bend concrete beams
of constant thickness b, various depths D and various relative notch depths α0.

The present analysis is based on the cohesive crack model [5, 6, 1] (also called fictitious
crack model). In this model, it is assumed that the cohesive stress transmitted across the
crack is released gradually as a decreasing function of the crack opening, called the cohesive
softening curve. Its main characteristic is the total fracture energy, GF – a material
constant representing the area under this curve. For stationary propagation, the J-integral
shows that GF also represents the flux of energy into the FPZ.

The fracture energy dissipation occurs within numerous meso-level microcracks in the
FPZ. The present numerical model will directly simulate the behavior of these microc-
racks on the meso-level of a brittle inhomogeneous material such as concrete. For this
purpose, the present analysis will be based on the discrete lattice-particle developed by
G. Cusatis and coworkers [4], which is an extension of [2, 3]. The meso-level material
fracture properties are in this model characterized by stress-displacement relations at the
interfaces between grains or particles, representing the mineral aggregates in concrete.

2 BRIEF MODEL DESCRIPTION

The material is represented as a discrete three-dimensional assembly of rigid cells.
The cells are created by tessellation according to pseudo-random locations and radii of
computer generated grains/particles. Every cell contains one grain (Fig. 1a,b). On the
level of rigid cell connection, the cohesive crack model is used to represent the cracking in
the matrix between the adjacent grains. The fracture energy is the same for all connections
except that it depends on the direction of straining. The inter-particle fracturing is
assumed to be of damage mechanics type. Thus the plastic frictional slip is not separately
accounted for. But this simplification would matter only for unloading behavior which
is not the objective of the present analysis. For a detailed description of the connection
constitutive law or other model features, see [4]. However, the following minor deviations
from the model in [4] are introduced:
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Figure 1: a) A rigid cell surrounding a particle and b) its section through the particle center; c) specimen
geometry; d) coupling of the lattice-particle model with the standard elastic finite elements; e) example
of pre-peak and post-peak damage pattern for the modulus of rupture test (zero notch depth).

• The interparticle connection cohesive law in tension and shear is bilinear instead of
exponential. It is therefore defined by eight constants: i) initial mesolevel fracture
energy in tension and pure shear, Gt and Gs; ii) total mesolevel fracture energy
in tension and pure shear, GT and GS; iii) the mesolevel cohesive tensile and shear
strengths, σt and σs, and iv) the coordinates of the ”knee point”, i.e., the intersection
of the two linear segments considered as 20% of tensile strength σt or shear strength
σs, respectively.

• The notch is represented simply by removing all the connections that cross the
midspan provided that at least one of the centers of the connected particles is closer
to the crack mouth than α0D. The advantage of this approach is that all grain
positions can be completely random, and that the cutting of the notch by a saw
is represented faithfully. The disadvantages are that the notch tip location is not
exact and it is impossible to introduce notches whose depth is less than the minimal
grain radius.

• The confinement effect is neglected, but it was estimated that, in this type of ex-
periment, the confinement does not play any important role.

The mesolevel material properties in this model are deterministic. Randomness is
introduced solely by pseudo-random locations and radii of grains. The effect of spatial
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variability of the material properties, which was found to be very important for capturing
the statistical (Weibull) part of the type 1 size effect [7, 8]), is neglected. Since all the
interparticle connections have identical deterministic fracture energy and tensile strength,
the crack initiation from a smooth surface is preceded by distributed fracturing along the
entire bottom surface. Nevertheless, the localized macroscopic crack always initiates very
close to the midspan (Fig. 1e).

3 SIMULATION OF BEAMS OF VARIOUS SIZES AND NOTCH DEPTHS

Beams geometrically similar in two dimensions, having depths D = 100, 200, 300, 400
and 500 mm and the same thickness of t = 0.04 m, were modelled. The span-depth
ratio was S/D = 2.4, and the maximal aggregate diameter was 9.5 mm. The minimal
grain diameter was chosen as 3 mm. Based on the Fuller curve, particles of radii within
chosen range were generated and pseudo-randomly placed into the specimen domain. The
parameters of the connection constitutive law, which were mostly taken similar to those
in [4], were: Ec = 30 GPa; Ea = 90 GPa; σt = 2.7 MPa; Gt = 15 N/m; GT = 30 N/m;
σs = 3σt = 8.1 MPa; Gs = 215 N/m; GS = 430 N/m; σc = 16σt = 43.2 MPa; Kc =
7.8 GPa; α = 0.15; β = 1; µ = 0.2; nc = 2.

To ensure numerical stability in presence of softening, the simulations were controlled
by prescribing the increase of the crack mouth opening displacement (CMOD) in every
step. For unnotched beams, the location of macrocrack initiation was not known in ad-
vance, and so the controlling displacement was chosen to span several maximum aggregate
sizes along the tensile face of the beam.

To save computer time, the lattice-particle model covered only the region in which
cracking was deemed to be possible. The region in which no damage was expected was
assumed to follow linear elasticity and was modelled by standard 8-node isoparametric
finite elements. The elastic constants for these elements were identified by fitting a dis-
placement field with homogeneous strain to the discrete field of particle displacements
generated at low stress level for a prism of particles subjected to low-level uniaxial com-
pression. The macroscopic Young’s modulus and Poisson ratio were thus found to be
E = 30.3 GPa and ν̄ = 0.225. The finite element mesh was connected to the system
of particles by introducing interface nodes treated as auxiliary zero-diameter particles
(Fig. 1d). Same as the standard particles of the lattice model, these auxiliary particles
had three translational and three rotational degrees of freedom. Each auxiliary particle
lied at the boundary of one finite element. A similar interfacing was used in [3] but here,
in contrast, the FEM nodes were considered to be the masters, and the auxiliary par-
ticle displacements were dictated by the master displacements according to the master
element shape (or interpolation) functions. The rotations of the auxiliary particles were
unconstrained.

For large specimens and shallow notches, many particles are needed to fill the damage
region. This led to extreme computational time and memory requirements. Therefore,
such simulations were terminated as soon as the load dropped to 90% of the peak force.
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Figure 2: Damage patterns at the maximum load for beams of size D = 300 mm. Thin straight lines
inside specimens show interface between lattice-particle model and finite elements.

The benefit was that there was no need to simulate the crack in the upper part of the
beam, and thus many fewer particles were needed. For unnotched beams or beams with
deep notches, respectively, the simulations were run until the load was reduced to 40% or
5% of the peak load.

Six realizations were computed for unnotched specimens of each size and for relative
notch depth α0 = a/D = 0.5, but only three realizations for other notch depths, i.e., for
α0 ∈ {0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9}.

According to a procedure developed in [4], the depth of specimen was divided into
horizontal strips of width h = 12 mm (Fig. 1c). The average stress σx normal to the
crack plane and the energy gd dissipated per unit area were measured and stored for each
strip and each step. This allowed reconstructing the macroscopic cohesive softening law in
postprocessing. The σx value was obtained as the stress that must be applied on a vertical
section through the center of each cell (Fig. 1b) to ensure equilibrium of both parts [9].

4 OBSERVED NOTCHED-UNNOTCHED TRANSITION

The simulations of beams with no notch (type 1) and deep notch (type 2) behaved as
expected. A large fracturing zone developed before the peak load in the case of initiation
from a smooth surface (type 1) (Fig. 2). For deep notches, the damage was localized
above the notch tip only. For shallow notches, the damage above the tip prevailed but
some mesolevel cracking along the bottom surface took place as well.

A qualitatively different damage pattern at peak load was obtained comparing the
shallowest notch and no notch simulations (Fig. 2 α0 = 0 and 0.01). The smallest size
D = 100 mm and smallest notch α0 = 0.01 (for which the actual notch depth is only
1 mm) was an exception. The procedure used for notch creation did not lead to the
removal of any contact and so no notch was actually introduced. Similarly, a notch of
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Figure 3: Sums of energy per unit area dissipated in strips until stress σx in each strip gets reduced in
post-peak to 75% of the tensile strength σt.

the depth of 2 mm (obtained for D = 100 mm, α0 = 0.02 and D = 200 mm, α0 = 0.01)
was represented poorly because only a few contacts, discontinuous through the specimen
width, were severed. The simulation with mesolevel refinement of the microstructure
does not suffice for capturing the effect of notches smaller than the dominant mesolevel
inhomogeneities. A deeper refinement of microstructure simulation would be needed to
capture the precise notch tip, but it would considerably complicate the programming.

Based on the observed damage patterns at the peak, the type 1–type 2 transition begins
immediately upon introducing any notch exceeding the size of the dominant inhomogene-
ity (> 3 mm). Considering that the pure type 2 behavior is reached when almost no
cracking occurs at the bottom surface, the transition becomes complete when the notch
depth is about 10–15 mm (see Fig. 2 for size D = 300 mm). This is about 1.5 maximum
aggregate size.

The difference between the type 1 and type 2 fracture behaviors can also be seen in
terms of the work of fracture. The work gd done in each strip (per unit ligament area)
until the stress in that strip had been reduced to 0.75σt, was computed for each strip.
However, many simulations (especially those with shallow notches) were terminated soon
after the peak load was reached. In such cases, not many strips achieved the chosen
stress limit of 0.75σt. The gd values from sufficiently damaged strips (averaged over the
computed realizations, separately for each size and notch depth) are plotted in Fig. 3.
The figure shows the crack initiation from a smooth surface to be followed by energy
dissipation much larger than that for notched specimen. The energy comparison reveals
no gradual transition.

It is also interesting to compare the lattice-particle simulations to the standard cohesive
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Figure 4: Comparison of the relative nominal strengths obtained by the lattice-particle model, the cohesive
crack model and the universal size effect law.

crack modeling. The macroscopic cohesive law was obtained from stresses σx and energies
gd measured in strips by the same procedure as introduced in [4]. For each size, a different
macroscopic cohesive law was found by averaging the results from 6 realizations with
α0 = 0.5. These cohesive laws were then approximated by piecewise linear functions. Then
load–CMOD curves were computed for all the notch depths using the pseudo-boundary
integral method [1] and piecewise linear approximations.

The maximum loads obtained by the lattice-particle model are compared to the max-
imum loads from the cohesive crack model in Fig. 4 through relative nominal strength
σN/σt. The nominal strength σN is defined as the maximal elastic stress in a notch-less
beam loaded by peak force Fmax. Our beam geometry gives σN = 90Fmax/D. Assuming
that the transition is a deviation from the cohesive crack model, one can see almost no
transitional regime in this figure.

Thus we see that the cohesive crack model is close to the lattice-particle model for most
of the sizes and notch depths. Only very small sizes and very shallow notches lead to some
deviations. However, as already pointed out, these notches have the depth of roughly the
minimum aggregate radius and are thus poorly represented in the model. What is clear
is that a discrepancy occurs at the zero notch depth, similar to what we concluded from
the energy profiles in Fig. 3.

5 VARIATIONS IN DISSIPATED ENERGY

The energy profiles in Fig. 3 show that the energy dissipated up to the point where the
stress gets reduced to 0.75σt depends on the specimen size. Whereas most simulations
for D = 500 mm give gd ≈ 20 N/m, the smaller specimens give lower values. Another
systematic, though less visible, decrease of gd can be seen for increasing notch depths.
For the beam sizes of 500, 400 and 300 mm, the relative notch lengths α0 = 0.5 and
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Figure 5: Post-peak crack patterns when the load is decreased to 5% of the maximum load.

0.7 give a lower gd than the shallower depths. This seems to be a continuous process
originating from the width variation of the FPZ; i.e., the wider the zone, the more energy
is dissipated.

Visual comparisons of the damaged zone width can be seen in Fig. 5. The smaller
the beam size and the deeper the notch, the narrower is the FPZ. Most of the energy
is released in the middle of the zone and thus the energy profile comparison makes this
dependency less obvious. The size dependence of gd is also projected into the reconstructed
macroscopic cohesive law. The cohesive laws used in the pseudo-boundary integral method
in the previous paragraph (and reconstructed for each size from the simulations with
α0 = 0.5) are different. The larger the specimen size, the larger are the crack openings
for a given cohesive stress.

The conclusions from these numerical simulations broadly agree with experimental
observations [10]. The fact that less energy is dissipated as the fracture process gets
closer to the upper surface has already been pointed out [11]. Further it appears that the
energy dissipation increases as the fracture process gets close to the bottom surface.

6 UNIVERSAL SIZE EFFECT LAW

To describe the dependence of the nominal strength on both i) the relative notch depth
α0 and ii) the structure size, D, asymptotic matching is useful. The resulting formula,
known as the universal size effect law, contained a discontinuity of slope [12, 13, 14, 15].
Here we consider an improved version from which the discontinuity has been removed
[16, 17]; it reads:

σN =

(

E ′Gf

g′0cf + g0D

)1/2
(

1−
rc2fg

′′
0e

−kα2
0

4(lp +D)(g′0cf + g0D)

)1/r

(1)

where g0, g
′
0, g

′′
0 = values of the dimensionless LEFM energy release function evaluated at

α = α0; g(α0) = square of dimensionless stress intensity factor and its derivative at α0; E
′
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Figure 6: Dependence of nominal strength σN on relative notch depth α0 and specimen size D obtained
by a) lattice-particle simulations and b) analytical formula Eq. (1).

= effective Young’s modulus; r and k = empirical positive parameters; lp = approximate
width of the FPZ; cf = material constant, such that a = a0 + cf = effective crack length
at the peak load. Unlike the present model, which uses a deterministic material strength,
the formula can also incorporate the effect of spatial variability of material strength which
is the source of the statistical size effect.

To determine the optimal parameters for the type 2 fracture, the Levenberg-Marquardt
nonlinear optimization algorithm was used for least-square fitting of the average nominal
strength values. Based only on the first part of Eq. (1) and on the nominal strength
values for the relative notch depths larger than 0.05, the macroscopic initial fracture
energy Gf = 30.3 N/m and cf = 19.3 mm was found. The value of Gf corresponds to
the initial fracture energy from the reconstructed cohesive law. The value of cf seems
to be rather small, only 0.15lch, where lch = E ′Gf/σ

2
t is Irwin’s characteristic length.

According to [1], cf should be about π/24lch for rectangular softening and 0.419lch for
linear softening.

The remaining parameters lp, k and r were found by including the shallower notches
and the second part of Eq. (1). But a second least-square fitting yielded unrealistically
small values of r and lp (both were virtually zero). As another approach, it was tried to
use realistically chosen values lp = 0.01 m, k = 300 and r = 1/2. But neither approach
was able to fit the nominal strengths provided by the lattice-particle model for zero notch
depth. A better agreement for zero notch depth was obtained by considering the entire
surface and optimizing all the five parameters (Gf , cf , lp , k , r) simultaneously. But such
improvement of the fit for a zero notch depth leads to disagreement for the intermediate
notch depths; i.e., incorrect Gf and cf is found.

The two-parameter surface σN(D,α0), obtained by averaging the nominal strength
values from simulations with the lattice-particle model, is shown in Fig. 6a, whereas the
surface given by Eq. (1) for optimized parameter values is shown in Fig. 6b. The averaged
simulated nominal strengths are reported in Tab. 1.

The fit by Eq. (1) is also added to Fig. 4. Note that the σN values from the universal
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Table 1: Average values of nominal strength σN (in MPa) for all specimen sizes and notch depths.

D\α0 0.00 0.01 0.02 0.03 0.05 0.10 0.20
100 5.205 5.258 4.931 4.526 3.955 3.257 2.619
200 4.971 4.702 3.848 3.511 3.335 2.803 2.173
300 4.962 4.005 3.531 3.286 3.067 2.582 2.031
400 4.746 3.633 3.374 3.019 2.822 2.537 1.832
500 4.717 3.538 3.227 3.096 2.781 2.268 1.804

D\α0 0.30 0.40 0.50 0.60 0.70 0.80 0.90
100 2.072 1.457 1.055 0.691 0.387 0.185 0.059
200 1.638 1.302 0.903 0.598 0.349 0.166 0.047
300 1.549 1.165 0.822 0.541 0.321 0.153 0.043
400 1.477 1.055 0.767 0.499 0.304 0.144 0.041
500 1.374 1.024 0.720 0.474 0.283 0.136 0.040

size effect law and from the cohesive crack model are very similar, for the present size
range. One can also see that Eq. (1) overestimates the nominal strength for small sizes
but underestimates it for large sizes. This is because the macroscopic initial fracture
energy Gf is constant in Eq. (1) whereas the lattice-particle model indicates it should be
size dependent.

7 CONCLUSIONS

A robust and realistic lattice-particle model for concrete fracturing has been employed
to replace the missing experimental evidence on the dependence of peak loads on both
the relative notch depth and the beam size.

• Almost no transitional regime between type 1 fracture (in which the crack initiates
from a smooth surface) and type 2 fracture (in which the crack initiates from deep
notch) has been found. The results generally agree with the cohesive crack model
but substantially deviate from it for vanishing notch depth.

• The initial macroscopic fracture energy (characterizing the initial slope of the co-
hesive law) has been found to depend on the specimen size and the relative notch
depth.

• This dependence closely resembles the previously proposed universal size effect law.
However, a close match of this law by the present simulations has not been achieved.

The range of sizes used in the simulations has been quite limited. Because of enormous
computational demands, it is difficult to extend the simulations to large beams. Likewise,
because of insufficiency of the mesolevel resolution, it is difficult to simulate smaller beams
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with very small relative notch depths, for which a regime of gradual transition might be
expected.

The present conclusions should be confirmed by experimental observations. Since any
experiments are affected by spatial variability of the local material strength, this variabil-
ity would have to be incorporated into the present model. This would have to be done in
the form of an autocorrelated random field.
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[17] Bažant, Z.P. and Yu, Q. Universal Size Effect Law and Effect of Crack Depth on
Quasi-Brittle Structure Strength. J. of Engrg. Mechanics ASCE (2009) 135:78–84.
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