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Abstract. This paper proposes the use of a Case-Based Reasoning (CBR) system 
for the control and the supervision of a real wastewater treatment plant (WWTP). 
A WWTP is a critical system which aims to ensure the quality of the water 
discharged to the receiving bodies, stablished by applicable regulations. At the 
current stage the proposed methodology has been tested off-line on a real system 
for the control of the aeration process in the biological treatment of a WWTP 
within the ambit of Consorci Besòs Tordera (CBT), a local water administration in 
the area of Barcelona. For this purpose, data mining methods are considered to 
extract the available knowledge from historical data to find a useful case base to be 
able to generate set-points for the local controllers in the WWTP. The results 
presented in this work are evaluated taking into account the performance of the 
CBR method e.g. case base size, CBR cycle time or number of cases resolved 
satisfactorily (forthcoming steps will include on-line tests). For this purpose, some 
Key Performance Indicators (KPI) are designed together with the plant manager 
and process experts, in order to monitor key parameters of the WWTP which are 
representative of the performance of the control and supervision system. Hence, 
these KPI are related with water quality regulations —e.g. ammonia concentration 
in the WWTP effluent— and the economic cost efficiency —e.g. electrical 
consumption of the installation. In order to evaluate the results, different flat-based 
memory organizations (i.e. cases are stored sequentially in a list) for the case base 
are considered. First, a unique case base is used. At the current stage and for the 
results shown in this work, this case base is divided in multiple libraries depending 
on a case classification. Finally, the combination of this approach with Rule-Based 
Reasoning (RBR) methods is proposed for the next stages of the work.   

Keywords. Case-Based Reasoning, Intelligent Process Control, Wastewater 
Treatment Plant, Data Mining. 

1. Introduction and context of the work 

Many disciplines take advantage of the use of models of real-world processes in order 
to get useful insight of the corresponding real systems’ behaviour, e.g. Environmental 

 
1 Josep Pascual Pañach, R&D Department, Consorci Besòs Tordera, 241 Sant Julià Avenue, 08103 

Granollers (Barcelona), Spain; E-mail: jpascual@besos-tordera.cat. 



Decision Support Systems (EDSS). Former EDSSs used mechanistic models, but 
increasingly available huge amounts of data gathered from these systems triggered the 
use of new empirical models. Empirical models are based on direct observation, 
measurement and extensive data records. The first empirical models used were 
mathematical and statistical methods e.g. Multiple Linear Regression (MLR) models.  
The success of several inductive machine learning techniques within the Artificial 
Intelligence (AI) area led to their application in EDSSs. Some instances of this usage 
are e.g. the Association Rules (AR) models, Classification Rules (CR) models, 
Decision Tree (DT) models or Bayesian Network (BN) models. Since the 80s, both the 
former mathematical/statistical empirical models and the later machine learning 
empirical models have been named data mining methods, because they result from a 
mining process using these data. With the use of data mining models within the AI 
framework, the EDSS have evolved to Intelligent Environmental Decision Support 
Systems (IEDSSs) [1]. IEDSSs integrate knowledge stored by human experts through 
years of experience in a certain environmental process operation and management. In 
addition, data can be mined through the intelligent analysis of available large databases 
coming from historical operation of this environmental process. Thus, knowledge 
integration and data mining model production, as well as reasoning and interoperation 
among the models produced, are key steps and a challenge to build reliable IEDSSs. 
Moreover, for each different type of Environmental system, the corresponding IEDSS 
is developed in an ad-hoc basis, with no general framework available for the 
automation of their deployment [2].   

On the one hand, Interoperability is defined as “the ability of two or more systems 
or components to exchange information and to use the information that has been 
exchanged” [3]. Regarding this issue, XML (eXtensible Markup Language) is a meta-
language that provides one of the most effective ways to interchange information 
between several software components and share the corresponding information 
semantics. Furthermore, in the field of data mining, the Data Mining Group [4] is an 
independent, vendor led consortium that develops data mining standards, such as the 
Predictive Model Markup (PMML) Language. PMML is a standard for statistical and 
data mining models, supported by over 20 vendors and organizations. PMML uses 
XML to represent data mining models, supporting the most common ones, e.g. 
AssociationModel, RegressionModel, TreeModel, RuleSetModel, NeuralNetwork, 
ClusteringModel. In addition, some work related with model and data integration and 
reuse in EDSS may be found in [5], and an overview of model integration is presented 
in [6].  An interesting work in this area is also presented in [7], where the Drools Rule-
based integration platform is used as a unified data model and execution environment, 
and in [8], where a general framework for the development of interoperable IEDSSs 
was proposed. 

On the other hand, workflows are graphical notations, which were first introduced 
to model and describe Business Processes [9]. The use of Visual workflows can be a 
very helpful tool for specifying the workflow involving all the steps from the raw data 
to the end of the process defined, including the models produced, the model executors 
and other auxiliary processes. The idea of using workflows for the control of a process 
e.g. in organisations, has been pointed in the literature [10].  

Until now, in most cases the interoperability of the models is achieved by ad-hoc 
interactions, which may be considerably improved. Despite there are some architecture 
proposals in the literature to solve the interoperation of different models, there is no 



common framework to implement Interoperable IEDSS, which would allow an easy 
integration and (re)use of different AI or statistical/numerical models in a whole IEDSS.  

2. Control and Supervision Approach 

This works proposes an alternative to avoid ad-hoc approaches for the design of control 
and supervision schemes of sanitation systems, particularly WWTPs. The design of the 
control and supervision tool depends not only on the available processes in the WWTP 
–e.g. organic matter removal, phosphorus removal–, but also on the plant design –e.g. 
treatment capacity, plant type, available sensors and actuators. Hence, huge amounts of 
time and resources are invested in different stages of the development, from design, 
implementation and start-up to maintenance.  

The approach presented here aims to reduce the implementation time of the 
WWTP control and supervision strategy. Traditionally, these are based on non-
graphical programming environments, which are not especially suited for model-based 
design and which are challenging to implement and to maintain, especially for certain 
applications like the one considered here. Alternatively, an IDSS approach based on 
data-models using a visual programming approach is proposed and applied. The 
concept of the proposed architecture and IDSS is described in [2]. Here, we focus on 
the case-based reasoning algorithms proposed to produce the corresponding outputs —
i.e. set-points for the control of the different processes involved— and its 
implementation based on a real WWTP facility.  

2.1. System architecture 

The main goal of the IPCS presented here is to generate the set-points for the local 
controllers and the decision support system. The architecture of the whole system is 
shown in Figure 1. The tool developed here is based on a three-layer architecture 
presented in [2]. The WWTP is controlled and supervised using the process workflow 
layer shown in Figure 2, which is application core, by means of different data-driven 
models. Considering the nature of the real application, the need for complete validated 
and reconstructed datasets is paramount in order to apply further methods using these 
data. This situation is especially challenging in sanitation systems, where sensors and 
corresponding communication systems are exposed to rough conditions —e.g. 
operation in extreme environments with presence of dirtying agents— which seriously 
jeopardize their operation and may produce higher rates of malfunction, leading to 
higher amounts of potentially non-reliable raw data, e.g. outliers or missing values. 
Hence, a data validation and reconciliation stage is paramount to prevent this behavior, 
e.g. the one in [11] or further data mining methods to produce valid data for models 
generation. These models can be e.g. rule models induced from decision trees or case 
databases. All models interoperate in the process control workflow to supervise the 
system by discriminating between abnormal situations and normal operation and to 
control the process by generating actuator set-points based on knowledge obtained 
from data. Rule models can also include rule patterns which may complement the case 
database with valid new cases, when the CBR model is incomplete or distorted by a 
high number of potentially invalid cases —not identified and removed from the case 
database—, which are often challenging to be filtered when working with real 



measured raw data. It may also include human expert knowledge of the system, so it is 
worth to consider an easy user interface to integrate such human-based knowledge. 

 
Figure 1 System architecture 

 
The designed tool implements the classical CBR scheme shown in Figure 3. The 

CBR cycle is implemented using Simulink to comply with the specifications described 
in section 3, the use of visual workflows and programming languages. The result is a 
set of tools that consist on different methods that can be used in different CBR cycle 
stages to create the most appropriate application for each sanitation system. 

 

Figure 2 Process Control workflow 
 

Figure 3 Case-Based Reasoning cycle 
scheme

3. Case study: Granollers WWTP 

3.1. Description 

Consorci Besòs Tordera (CBT) is a local water administration composed of 64 
municipalities in four different regions of Catalonia with a population of about 470.000 
inhabitants. CBT is the responsible for the sanitation facilities from the very beginning 
in project and building stages to the final facilities operation and maintenance —
including 300 km of sewers and 23 WWTPs— with the main objective of preserving 
and improving the good health of the rivers in its area. All WWTPs within CBT ambit 
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are based on the activated sludge process for the wastewater treatment. Plants capacity 
range from 1000 m3/day to over 40000 m3/day, or expressed in other terms, from some 
hundreds of population equivalent (PE) to over 300000 PE. Each WWTP includes 
water and sludge lines, and in some cases, a biogas line. Even though this similar 
layout, there are some particularities that imply a custom-made control system, e.g. 
number and type of actuators and sensors or the influent characteristics.  

The aeration of the biological reactor is one of the most important processes to be 
supervised, since is the most critical and resource consuming for the whole WWTP. 
The aim of this process is to remove organic matter (organic carbon) and nutrients 
(nitrogen and phosphorus) from the sewage water. To make this biological process 
feasible oxygen is necessary. Oxygen is usually introduced from the environment to the 
biological reactors by using aeration blowers. The process of removing nutrients and 
organic matter is a two-step process that requires periods with oxygen and periods 
without oxygen, so the adequate management of the aeration blowers is very important. 
In a first stage, nitrogen is oxidized to nitrates in presence of oxygen (nitrification). 
This process is done by some autotroph bacteria, which consume dissolved oxygen. 
Then, in a second stage, nitrates are reduced to gaseous state nitrogen (denitrification) 
by some kind of heterotroph bacteria. In an anoxic situation, these bacteria use nitrates 
instead of dissolved oxygen and consume carbon obtained from organic matter. Other 
controlled processes are e.g. phosphorus removal by chemical dosing or bypass flow in 
case of overload situations. 

Hence, the first pilot considered for the approach presented here has been focused 
on a real WWTP in the Barcelona area (i.e. Granollers WWTP), in order to generate the 
set-points for the local controllers of this process. In this particular case, there are two 
biological reactors working in parallel and sharing the same air distribution system.   

3.2. Available data and preprocessing 

As introduced in Section 2, a basal problem for CBR designing —or any other data-
based method—is the quality of the input data. Generally, process data is stored in the 
local database of the control and supervision system of each WWTP. The available data 
gathered by installed sensors for the case of study considered is listed in Table 1, while 
Table 2 shows the outputs generated by the system presented —i.e. set-points for local 
control loops. All these sensors are measuring online data stored with one minute 
sample time. 
 
Table 1 Available sensors used to generate the case base 

Type of sensor # sensors Units 
Dissolved oxygen 10 mg/l 
Plant Input flow 1 m3/h 
Biological reactor input flow 1 m3/h 
Internal recirculation frequency converter 2 Hz 
External recirculation flow 2 m3/h 
Ammonia concentration 2 mg/l 
Nitrate concentration 2 mg/l 
Suspended Solids concentration in the biological reactor 2 mg/l 
Suspended Solids concentration in the output 1 mg/l 
Phosphorus concentration in the output 1 mg/l 
Aeration valves position 10 % 
Air pressure 1 mbar 



Table 2 CBR system outputs 

Solution # solutions Units 
Oxygen set-points 10 mg/l 
Valves position set-points 10 % 
Pressure set-point 1 mbar 
Biological reactor state (nitrification or denitrification) 2 -

 

The first step is to retrieve historical data from the database. With the main 
objective of considering information representing all the possible process behaviours, 
including for example seasonal behaviours —e.g. temperature changes have important 
impact on the biological process performance—, a recent dataset gathered from the 
year 2018 is considered. The first problem detected is the huge amount of data when 
considering one minute sample time —the number of values gathered by each sensor in 
a one year period are about 500,000—, which could be avoided since generally time 
constants of the processes considered are remarkably higher than one minute. Hence, at 
the current stage of the CBR system design, a sample time of ten minutes is considered. 
Thus, for one year period the number of values gathered per sensor is reduced by a rate 
of 90 % of the original dataset, i.e. 50,000 values per sensor, without losing relevant 
information. Second, as commented previously, the quality of these data is often low 
due to different causes, namely missing values, inconsistency between values with the 
same time stamp, out of range values or abnormal behaviours caused by faulty sensors 
or maintenance operations. These behaviours suggest the use of a data validation and 
reconciliation stage in order to provide reliable and complete datasets. After detecting 
problems in data there are two options to deal with them: the most radical one is to 
delete those cases that are not valid because of its quality; the second one is trying to 
replace wrong values with possible valid values using auxiliary information from, for 
example, other sensors or other techniques like the ones described in [11]. In a first 
version of the case base to be tested with the real process the most radical option is 
used: all cases with low quality are deleted and only when the inconsistency problems 
can be solved with the use of other reliable signals, wrong values are corrected. For 
example, pressure values can be crossed with blower state (switched on or switched 
off) and electrical consumption signals; or valves position can be crossed with the 
corresponding measured flow.  

After the data pre-processing process described above, the production of a valid set 
of data is assumed. Then, considering the knowledge of the plant manager and experts 
on the process other auxiliary features are calculated, e.g. trends of some of the sensors 
described in Table 1 or moving averages. Finally, a case base with 58 features in the 
descriptive part and about 19,000 cases is obtained (the 65% of the cases available 
before the data pre-processing have been deleted).  

3.3. Case-based reasoning system design 

The case base obtained from historical data after the pre-processing steps is firstly 
organized in a flat memory, in a unique case base. Later, in an improved version is 
organized as a multiple case bases depending on the biological reactors state in order to 
reduce the execution time and to be more accurate in the retrieval process. The 
biological reactor state —nitrification or denitrification—does not always depend on 
the plant situation. The main feature to take into account to determine in which phase 
has to be operated the process is the ammonia concentration. However, sometimes 



depending on the specific situation and the criterion of the plant manager, the 
nitrification or denitrification steps can be forced. For the plant described in this work 
—with two biological reactors— and considering two states of the biological process 
—i.e. nitrification and denitrification, the use of four case bases is proposed. In the 
retrieval step 1 case is retrieved from the case memory, according to the used similarity 
measure. As all the variables of the dataset are numeric, the Euclidean distance is used 
as a first approach, but other approaches will be considered.  

In the adaptation stage the same solution of the most similar case is applied, i.e. 
null adaptation. The range of all set-points is defined by the experts on the process and 
can be changed by the plant manager. If the given solution is not within the range, set-
points are adapted to fulfill the configured limits. In order to be more accurate in the 
set-point calculation, the use of rule-based adaptation methods taking into account the 
plant manager knowledge will be explored in the next steps. 

Regarding the four stages of the CBR (Figure 3), the evaluation of the CBR output 
and the learning methods implementation are in progress, so results shown in this work 
are related to retrieval and adaptation stages. Both the evaluation of the CBR output 
and the learning stages are paramount for the forthcoming online tests, since the quality 
of the output provided to the actual plant and the method to keep updated and validated 
information for future actuation is key in order to assure current and future quality of 
operation. In Section 3.4, some KPIs are discussed to evaluate the performance of the 
CBR system. In Section 4, some ideas about how to deal with these stages are given.   

3.4. Results 

The prototype of the proposed CBR system is tested in an off-line fashion using real 
data gathered from the WWTP Hence, here the prototype is running in the plant and 
receiving new cases to obtain a solution using data from the real process, but the 
proposed solutions are not used in the WWTP operation, i.e. they are only compared 
with the ones generated by the current on-line control system. Figure 4 shows some 
oxygen concentration set-points for Reactor 1 and a 48 hours scenario, whereas the 
complete test length is two weeks. Figure 5 shows some valves position set-point for 
the same reactor and period. Figure 6 shows the Graphical User Interface (GUI) used to 
test the prototype of the designed IDSS in the WWTP of the case study. 

 

 
Figure 4 Oxygen set-points generated for Reactor 1 vs. reference 
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Figure 5 Valves set-points generated for Reactor 1 vs. reference  

 

 
Figure 6 GUI of the online application developed using Matlab 

 
As it can be seen the performance of the CBR system in the offline test is 

promising for further on-line tests of the tool. In most of the cases the solution given is 
very similar to the reference one, although there are some wrong predictions in some 
situations involving predicted set-point values that are quite different from the actual 
set-points values. The CBR performance is evaluated in terms of the accuracy of the 
generated set-points compared to the reference ones, considering a tolerance of the 10 
% (i.e. for lower differences the CBR system set-point is considered successful, 
otherwise unsuccessful). Taking this into account, the global accuracy for the two 
weeks scenario considering the set-point generation of 21 actuators (Table 2) is 67 %. 
In the case of oxygen set-points, the mean accuracy is 62 %, while valves position set-
points accuracy is higher, about 75 %. Incorrect case retrieval may be caused by e.g. 
failed stored cases in the case base or the lack of information to distinguish situations 
with the available features. On the other hand, it is possible that the dynamic nature of 
this domain implies that the problem cannot be solved with high accuracy using an 
individual case retrieval. The solution might depend not only in the current situation 
but also on how this situation has been reached, so temporary dependences with past 
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cases should be taken into account, as proposed in [12] with the use of a temporary 
CBR approach. 

The execution time of the CBR cycle or the size of the case base are also important 
parameters, regarding the on-line nature of the target real application. The tool is 
running on a 64 bit Windows Server machine with three cores CPU and four GB RAM. 
At the current stage, the execution time of the CBR cycle (from the reading of all 
measurements to the calculation of the generated set-points) is about 0.26 seconds, 
ranging from 0.08 to 1 second. Considering that the process is executed every minute, 
no improvement of the execution is needed in order to provide the output on time. 
Regarding the case base, note that the size of the case base model is about 12 MB.  

To the light of the current results, future steps include on-line test stages in the 
actual operation of the WWTP. In addition to the conclusions drawn from the offline 
test, it can be highlighted the importance of having mechanisms to evaluate the solution 
obtained from the point of view of the process performance, since it is known that a 
given set-point sometimes does not have the expected effect on the system. Solutions in 
the past should have the same effect in a similar situation at present. But again, it could 
be some differences between them that cannot be distinguished with the available 
information to describe the domain, or even that the sensors or actuators involved are 
not giving the appropriated measurements or responses. To this end, two levels are 
proposed for the evaluation phase: first, by defining some KPI to determine that the 
solution applied is having the desired effect on the system. The KPIs suggested here are 
related to the outflow quality and the WWTP efficiency. At the current stage, these KPI 
—which are designed together with the plant manager— are: 
 24 h moving average (MA) of ammonia concentration: This value is stablished by 

applicable regulations to a maximum of 4 mg/l.  
 Blower electrical consumption: Historical daily average consumption is used as a 

threshold to be compared with the current daily average consumption.  
 Nitrogen removal efficiency: Total nitrogen in the influent and in the effluent of 

the WWTP is not an online measure but an offline analytic measure obtained three 
times per week. Since nitrogen removal efficiency is stablished at 80 % by 
applicable regulations, it is also proposed as a useful performance indicator. 

In the daily operation and considering the slow dynamics of the processes 
involved, these indicators can be useful in a medium-term horizon and may be involved 
with expert criterion  —validating e.g. the daily set of solutions—, but further indices 
should be used to evaluate the solutions in a short term horizon. Thus, the second level 
of evaluation will include some rules related with the actuators response, e.g. 
consistency among set-point and opening position or expected valves air flow. 

4. Conclusions and future work 

In this paper the application of a CBR approach to solve the control of the aeration in 
the biological process of a real WWTP is presented. The concept architecture presented 
in [2] has been applied in a real case study using real measured operation data in an off-
line fashion. The CBR off-line system has been tested using real data obtained from the 
actual process, but with no actuation in the actual facility, which will be performed in 
the following stage. Some KPIs are designed together with the plant manager and 
proposed to evaluate the CBR output in the forthcoming online tests. Obtained results 



are promising to devise further steps towards this on-line implementation but still some 
problems have to be solved e.g. incorrect case retrieval that may occur due to failed 
stored cases or possible missing information in the case base or to the temporary and 
continuous nature of this domain.   

Thus, further work includes the use of rule-based methods to improve the 
adaptation and evaluation phases and the definition of the learning strategy, as well as 
the inclusion of high-performance data validation and reconciliation stages and the 
Rule-Based Reasoning (RBR) methods in the scheme in order to provide redundancy 
and complement the CBR outputs. In addition, episode-based reasoning modules are 
been developed to take into account the temporary nature of the system. 
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