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agradecido.

Jesús Gerardo Valdés Vázquez
Octubre de 2007



Abstract

Nowadays, fluid-structure interaction problems are a great challenge of different
fields in engineering and applied sciences. In civil engineering applications, wind
flow and structural motion may lead to aeroelastic instabilities on constructions
such as long-span bridges, high-rise buildings and light-weight roof structures. On
the other hand, biomechanical applications are interested in the study of hemody-
namics, i.e. blood flow through large arteries, where large structural membrane
deformations interact with incompressible fluids.

In the structural part of this work, a new methodology for the analysis of
geometrically nonlinear orthotropic membrane and rotation-free shell elements is
developed based on the principal fiber orientation of the material. A direct conse-
quence of the fiber orientation strategy is the possibility to analyze initially out-of-
plane prestressed membrane and shell structures. Additionally, since conventional
membrane theory allows compression stresses, a wrinkling algorithm based on mod-
ifying the constitutive equation is presented. The structure is modeled with finite
elements emerging from the governing equations of elastodynamics.

The fluid portion of this work is governed by the incompressible Navier-Stokes
equations, which are modeled by stabilized equal-order interpolation finite elements.
Since the monolithic solution for these equations has the disadvantage that take
great computer effort to solve large algebraic system of equations, the fractional
step methodology is used to take advantage of the computational efficiency given by
the uncoupling of the pressure from the velocity field. In addition, the generalized-
α time integration scheme for fluids is adapted to be used with the fractional step
technique.

The fluid-structure interaction problem is formulated as a three-field system:
the structure, the fluid and the moving fluid mesh solver. Motion of the fluid do-
main is accounted for with the arbitrary Lagrangian-Eulerian formulation with two
different mesh update strategies. The coupling between the fluid and the structure
is performed with the strong coupling block Gauss-Seidel partitioned technique.
Since the fluid-structure interaction problem is highly nonlinear, a relaxation tech-
nique based on Aitken’s method is implemented in the strong coupling formulation
to accelerate the convergence.

Finally several example problems are presented in each field to verify the robust-
ness and efficiency of the overall algorithm, many of them validated with reference
solutions.
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Chapter 1

Introduction

1.1 Motivation

Modeling of structural elements, such as membranes and thin shells, is widely
used in many engineering fields. In civil engineering applications, their elegance,
effectiveness and optimal material usage make these light weight structures an ideal
construction element.

The introduction of new fiber materials, such as glass, carbon or aramide fibers
with orthotropic material behavior have motivated a deep study of such elements
which are used to build membrane and thin shell structures.

Moreover membrane and thin shell structures are characterized by their low

Figure 1.1 Membrane long span structure

1
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Figure 1.2 Prestressed membrane structure

flexural stiffness. Consequently these elements should not resist any compression at
all. Therefore the usage of such construction materials is performed by introducing
a prestressed force to the structure. Figs. 1.1 and 1.2 show different applications
of membranes in civil engineering structures.

Other examples where light weight structures can be found include aircraft and
spacecraft applications, parachutes, automobile airbags, sails, windmills and human
tissues.

Since this kind of structures are highly flexible systems, they are susceptible
to wind loads applied to them. Wind flow and structural motion may lead to
aeroelastic instabilities which may cause important damage or even collapse of the
structure.

Maybe one of the most important examples of aeroelastic instabilities is the
disaster of the Tacoma Narrows suspension bridge that took place in the U.S.A. on
November 7, 1940. The collapse of the bridge was due to wind-induced vibrations
that at the beginning produced large transverse and rotational oscillations, as can
be seen in Fig. 1.3.

In general many physical problems of different fields belong to multiphysic prob-
lems. In particular, numerical simulation of fluid-structure interaction problems
have gained great interest from the industry community in order to reduce de-
velopment time and cost in coupled systems. This kind of problems are complex
because they consist of structural nonlinear boundary conditions imposed on fluid
moving domains where the position is part of the solution.

Recently biomechanical applications are interested in the numerical simulation
of hemodynamics, which study the blood flow through veins and arteries. In this
problem, large structural deformations of the arteries interact with viscous blood
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Figure 1.3 Aeroelastic instabilities of the Tacoma Narrows suspension bridge, U.S.A.

flow as a consequence of each heart beat. Another field where fluid-structure inter-
action plays an important role is the aerospace engineering which study wind flow
around flexible wings of aircrafts.

1.2 Background

In this work, membrane and shell structures with large deformations are studied.
A numerical solution for membranes may be constructed using the finite element
method, which solution for small deformations can be found in Zienkiewicz and
Taylor (1989), Cook et al. (1989) or Oñate (1992).

Theory for large deformations can proceed following the presentations of Simo
and Fox (1989), Simo et al. (1990a), Bütchter et al. (1992) or Braun et al. (1994).
In particular a large displacement formulation of membrane elements composed by
three-node triangular finite elements based on rectangular Cartesian coordinates is
proposed by Taylor (2001).

This last formulation together with the study of Lu et al. (2001) form the basis
for the development of the membrane formulation given in this work, which includes
orthotropic material behavior and prestressed forces.

Several studies have been carried out to study the geometrically nonlinear be-
havior of shells, for example the works of Simo and Fox (1989), Simo et al. (1990a),
Simo and Kennedy (1992), among many others. Since shell analysis requires a lot
of memory and cpu-time to compute, several authors have tried to derive plate and
shell elements with displacements as the only nodal variables.

In this area, Oñate and Cervera (1993) proposed a general procedure based on
finite volume concepts for deriving linear thin plate elements of triangular and
quadrilateral shapes with the nodal deflections as the only degree of freedom.
Brunet and Sabourin (1994) proposed a different approach to compute the con-
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stant curvature field within each triangle in terms of the six-node displacement of a
macro-element. This triangular element was successfully applied to nonlinear shell
analysis using an explicit dynamic approach. Zárate (1996) continue with the study
of rotation free elements of Oñate and Cervera (1993) developing new triangular
elements. This formulation applied to large deformations with an explicit dynamic
procedure was presented by Cendoya (1996). Rojek et al. (1998) proposed the same
element that Cendoya (1996) but applied to metal forming processes.

As an alternative formulation for large strain plasticity, the BST shell element
was introduced by Flores and Oñate (2001). This formulation constitutes the start-
ing point for the development of the rotation-free shell formulation developed in
this work, which includes orthotropic material behavior and prestressed forces.

Besides the structural developments, to perform a fluid-structure interaction
study the fluid flow for incompressible problems has to be implemented. Finite
element analysis of fluids present potential numerical instabilities that emerge for
incompressible flow problems. To circumvent these problems, different stabilization
techniques have been proposed. One of the stabilization techniques that has been
extensively used is the streamline-upwind/Petrov-Galerkin SUPG method. Here
numerical oscillations could be avoided by introducing numerical diffusion only
along the streamlines as explained in the work of Hughes and Brooks (1979) for
advection-diffusion equation. The use of the streamline diffusion in the context of
weighted residual methods is given in Hughes and Brooks (1982). Another kind
of stabilization is the pressure-stabilizing/Petrov-Galerkin PSPG method. In Tez-
duyar et al. (1990), the SUPG and PSPG stabilization methods are used together
with equal-order interpolations.

With the idea to better understand the origins of stabilized methods, which can
be derived from a firm theoretical foundation and a precise definition of the intrinsic
time scale parameter, Hughes (1995) developed the subgrid scale method. In the
context of these methods, the orthogonal sub-scales OSS method was introduced
by Codina (2000). The stabilization methods described require the addition of
some artificial diffusion terms. However another technique where the stabilization
terms emerge from the governing equations of the problem is the finite calculus
FIC method given by Oñate (1998). An application of the FIC for incompressible
viscous flow problems can be found in Oñate (2000).

The monolithic coupled equations for incompressible fluid problems have the
disadvantage that take great computer effort to solve the algebraic system for each
time step in a transient analysis. Since the original works of Chorin (1967) and
Temam (1969), fractional step methods for the incompressible Navier-Stokes equa-
tions have earned widespread popularity because of the computational efficiency
given by the uncoupling of the pressure from the velocity field. A detailed stabil-
ity analysis of fractional step methods for incompressible flows is given in Codina
(2001). In this work, the FIC and OSS stabilization techniques are implemented
to study the coupled problem of large structural deformations and incompressible
fluids flow using pressure segregation methods.

With the structural and fluid problem introduced, the remaining task to study
is the coupled problem between both of them. The implementation of a coupled
problem can be done using two different global strategies, which are the monolithic
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methods and the partitioned methods. In partitioned methods application of exist-
ing appropriate and sophisticated solvers for either structural or fluid subsystems
will be used. Partitioned methods were introduced by Park and Felippa (1983).
The key idea for these methods is clearly described in Felippa et al. (1998). Parti-
tioned solutions with staggered coupling algorithms are developed by Farhat et al.
(1997) to be used in aeroelastic wing problems.

Applications of strongly partitioned algorithms to large displacements structural
problems coupled to viscous incompressible fluids are given by Wall and Ramm
(1998) and Wall (1999). Other large displacements structural problems interacting
with incompressible fluids are detailed in Mok (2001), Mok and Wall (2001) and
Tallec and Mouro (2001). More sophisticated developments on strong partitioned
method for FSI problems can be found in Steindorf (2002), Matthies and Steindorf
(2004) and Tezduyar et al. (2006). A study on strong coupling partitioned methods
for fluid-structure interaction problems applied to hemodynamic can be found in
Nobile (2001), Causin et al. (2005), and Fernández and Moubachir (2005). In this
work, strong coupling partitioned methods are used for fluid-structure interaction
problems.

1.3 Objectives

Two general objectives in this work are pursued. The first of them is the improve-
ment of prior developments made at CIMNE related to nonlinear membrane and
shell analysis. The second general objective is the study of fluid-structure inter-
action problems using fluid flow pressure segregation methods and stabilization
techniques developed at CIMNE.

The two general objectives must be implemented in one efficient, robust and
accurate computational tool that use finite element technology to solve the problem
in study, which also must have possibilities to analyze each subproblem, i.e. the
solid or fluid part, independently as a highly developed software that exchange data
for the solution of the coupled problem with other separate solvers.

The following particular objectives belong to the structural part:

• To review the state of the art for geometrically nonlinear membrane and shell
finite elements.

• To improve the membrane and rotation-free shell finite elements developed
at CIMNE in prior studies.

• To develop a new methodology to analyze orthotropic material behavior of
membrane and shell finite elements, including the wrinkling phenomena to
avoid compression stresses in membranes.

• To propose a new strategy to study prestressed membrane elements.

• To explore existing time integration schemes for structural dynamic problems
and to work with the best choice for long time analysis periods.
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• To implement the membrane and rotation-free shell finite elements together
with their new developments in the COMET program, which is a software
for coupled contact, mechanical and thermal analysis built at CIMNE.

The particular objectives belonging to the fluid-structure interaction problem part
are:

• To implement in the COMET program the finite element fluid problem based
on the incompressible Navier-Stokes equations and to use the stabilization
techniques developed at CIMNE.

• To implement the mesh update strategy developed at CIMNE for the motion
of the fluid domain.

• To explore existing time integration schemes for fluid dynamic problems and
to work with the best choice for long time analysis periods.

• To review the state of the art for fluid-structure interaction problems.

• To implement a general and simple methodology to perform the study of
coupled problems using the COMET program.

All these objectives are oriented to improve and to combine the developments made
in-the-house in the solid mechanics field, i.e. membrane and thin shell finite ele-
ments, and the fluid dynamics field, i.e. stabilization techniques and mesh moving
algorithms, to perform fluid-structure interaction of problems involving large struc-
tural displacements and incompressible fluid flows.

1.4 Outline

Since this work deals with different topics, a detailed review of the state-of-the-art
is provided at the beginning of each theme to be developed. The work presented is
organized as follows:

Chapter 2. Since the computational models emerged in this work are developed
from the mechanics of a continuous medium, in this chapter the kinematics, stress
and strain measures for solids and fluids, conservation equations, and the consti-
tutive and Navier-Stokes equations used in this work are given. The remainder of
this work is referred to these equations.

Chapter 3. In this chapter a review of the total Lagrangian formulation for geomet-
rically nonlinear solid mechanics is made. From the continuum mechanics theory,
the general formulation of each subject is presented which later is discretized with
finite elements. Here the concept of principal fiber orientation is introduced. Next a
new formulation for membrane elements is developed based on the fiber orientation,
including orthotropic material behavior and initially out-of-plane prestressed con-
ditions. Also a basic wrinkling algorithm to avoid compression stresses is studied.
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Then the rotation-free shell elements are derived, using the fiber orientation to yield
a new formulation to study prestressed and orthotropic material behavior of shells.
Later a review of some time integration schemes for solids are addressed. The so-
lution strategy used in this work and linearization of the semi-discrete equations of
motion is explained. Finally some example problems are presented to validate the
finite element implementations in the COMET code.

Chapter 4. This chapter deals with the fluid dynamic equations that solve the
incompressible flow problem. Next the governing equations which yield the weak
form and the finite element discretization for fluids are explained. Later a review of
some time integration schemes for fluids are studied. Two different pressure segre-
gation methods to solve the incompressible fluid equations problem are presented.
Then three stabilization techniques for the incompressible fluid problem are intro-
duced. The solution strategy used in this work to solve the nonlinear algebraic
equations is shown. Finally some benchmark problems are solved and compared to
validate the finite element implementation in the COMET program.

Chapter 5. In this chapter the coupling strategies for fluid-structure interaction
problems are explained. The finite element formulation described in chapter 4
dealing with the incompressible flow problem is extended to account for moving
fluid domains by means of the arbitrary Lagrangian-Eulerian formulation. Next the
governing equations which yield the weak form of the coupled problem are obtained.
Then different partitioned methods to solve the fluid-structure interaction problem
are studied. Later two different mesh update techniques are presented. A detailed
algorithm for the strong coupling with relaxation used in this work is given. Finally
some example problems are presented to validate the finite element implementations
in the COMET code.

Chapter 6. Here the conclusions and achievements of this work are presented.
This monograph concludes with some suggestions for future research lines to be
developed as a direct consequence of this work.



8 1. Introduction



Chapter 2

Continuum Mechanics

This work deals with the study of structures with large deformations interacting
with incompressible fluids. As mentioned in Batchelor (2000), the distinction be-
tween solids and fluids is not a sharp one. While a solid has a definite shape which
changes are small when there is a small change in the external conditions, a fluid
does not have a preferred shape and the relative positions of their elements change
by an amount which is not small even tough the applied forces are small.

The macroscopic behavior of fluids, solids and structures is given by models
emerged from the mechanics of a continuous medium. In this chapter a summary of
the continuum mechanics used in this work for fluid-structure interaction problems
is presented. A general and more detailed description of continuum mechanics
can be found in Malvern (1969), Gurtin (1981), Holzapfel (2000), Batchelor (2000),
Kundu and Cohen (2002), and Spencer (1980) among many other well known books.

This chapter begins with the kinematics that involved motion of a body. Next
the concepts of stress and strain related to nonlinear solid mechanics and fluids are
described. Then the conservation equations, also known as balance equations, are
presented. Finally the constitutive and Navier-Stokes equations are given.

2.1 Kinematics

Kinematics is the study of motion and deformation of a body without regard to
the forces responsible for such action. A body B can be imagined as a composition
of a set of particles which are called material points. This body is in an initial
state when time t = 0 as shown in Fig. 2.1. The domain of the body in this
state is denoted by Ω0 which occupies a region in space and is known as the initial
configuration. To describe the kinematics of a body another configuration is needed
where equations are referred to and is called the reference configuration. Most of
the times the initial configuration is used as the referenced configuration, unless we
specify otherwise.

Now we assume that the domain Ω0 moves to a new region Ω which is occupied
by the body B for any subsecuent time t > 0. At this time the configuration of the

9



10 2. Continuum Mechanics

X

Z

Y

X

x

u

I
I

0 d

Figure 2.1 Configurations of a body

body is called the current configuration, also known as the deformed configuration.
The boundary of the domain, in this case for the current configuration, is denoted
by Γ. The dimension of any model is denoted by ndime denoting the number of
space dimensions of the body B.

The position vector of a material point in the reference configuration is defined
by X, where

X = Xiei =

ndime∑

i=1

Xiei (2.1.1)

where Xi are the components of X in the reference configuration and ei are the unit
base vectors for a rectangular Cartesian coordinate system. The variable vectors
X are called material coordinates or Lagrangian coordinates. The motion of the
body B is given by

x = φ(X, t) = x(X, t) (2.1.2)

where

x = xiei =

ndime∑

i=1

xiei (2.1.3)

is the position of the material point X in the current configuration. The variable
vectors x are called spatial coordinates or Eulerian coordinates, and the function
φ(X, t) is a mapping of the reference configuration onto the current configuration.

When describing the kinematics of a continuum two approaches can be used.
First, if we take material coordinates Xi and time t as the independent variables,
the description is called material description or Lagrangian description. On the
other hand, if the independent variables are the spatial coordinates xi and time
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t, we are taking about a spatial description or Eulerian description. In general
solid mechanics use Lagrangian descriptions while fluid mechanics use Eulerian
descriptions.

The difference for a material point between its current and reference configura-
tion gives the displacement which in material description is

u(X, t) = x − X (2.1.4)

Using Eq. (2.1.1) and Eq. (2.1.2) into Eq. (2.1.4) yields

u(X, t) = φ(X, t) −φ(X, 0) = φ(X, t) − X (2.1.5)

since for t = 0, x = φ(X, 0) = X which means that at reference configuration
x = X. Given (x, t) as the independent variables, the inverse mapping of the
motion is defined as

X = φ−1(x, t) = X(x, t) (2.1.6)

meaning that the material point X is associated with the place x at time t. For a
material point the velocity is the rate of change, or derivative, of the position vector.
When X is held constant then the derivative is called material time derivative or
total time derivative. Using Eq. (2.1.2) and Eq. (2.1.5) the material velocity is
given by

v(X, t) =
∂x(X, t)

∂t
=

∂u(X, t)

∂t
= u̇(X, t) (2.1.7)

The material acceleration is the rate of change of the velocity, or the material time
derivative of the velocity expressed by

a(X, t) =
∂v(X, t)

∂t
= v̇(X, t) = ü(X, t) (2.1.8)

For expressions given in spatial description, i.e. the velocity v(x, t) = v(x(X, t), t)
where we use Eq. (2.1.2), its material time derivative can be found using

Dvi(x, t)

Dt
=

∂vi(x, t)

∂t
+

∂vi(x, t)

∂xj
· ∂xj(X, t)

∂t
=

∂vi

∂t
+

∂vi

∂xj
vj (2.1.9)

where ∂vi(x, t)/∂t is the spatial time derivative and the second term in the right
hand side is the convective term, where ∂vi/∂xj is the right gradient of the velocity
vector field with respect to the spatial coordinates, which in indicial form is vi,j or
in tensor notation is v∇. Using the inverse mapping of the motion, Eq. (2.1.6) to
express the velocity in spatial description, Eq. (2.1.9) can be written as

Dv(x, t)

Dt
=

∂v(x, t)

∂t
+ v(x, t) · ∇v(x, t) (2.1.10)

where ∇v is the left gradient of the velocity vector field with respect to the spatial
coordinates, which in indicial form is ∂jvi. It is important to see that
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Dv(x, t)

Dt
=

∂v(X, t)

∂t
(2.1.11)

In general the material time derivative of any function, vector or tensor given
in spatial variables x and time t can be obtained with

D(•)
Dt

=
∂(•)
∂t

+ v · ∇(•) (2.1.12)

When a continuum body moves from the reference configuration Ω0 to the
current configuration Ω, it changes its size and shape giving a deformation. A
primary measure of deformation in nonlinear mechanics is the material deformation
gradient tensor given by

F =
∂x

∂X
or Fij =

∂φi

∂Xj
=

∂xi

∂Xj
(2.1.13)

which relates a quantity in the reference configuration to its corresponding quantity
in the current configuration. For example consider an infinitesimal line segment dX

in the reference configuration, then using Eq. (2.1.13) the resulting line segment
dx in the current configuration is

dx = F · dX or dxi = FijdXj (2.1.14)

The deformation gradient F is also known as the Jacobian matrix . Another impor-
tant quantity related to F is the Jacobian determinant given by

J = det(F) (2.1.15)

The Jacobian determinant is useful to relate integrals in the reference configuration
to its counterpart in the current configuration.

Using x from Eq. (2.1.4) in Eq. (2.1.13), the deformation gradient tensor can
be expressed by

Fij =
∂ui

∂Xj
+

∂Xi

∂Xj
=

∂ui

∂Xj
+ δij (2.1.16)

where ∂ui/∂Xj is the material displacement gradient tensor and δij is the Kronecker
delta which values are

δij =

{
1 when i = j

0 otherwise
(2.1.17)

2.2 Strain Measures

In the behavior of materials, the strain measures the geometrical deformation
caused by the forces applied on a continuum body B. The strain is computed
as the change between the undeformed initial configuration of the body and its
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final deformed configuration. Therefore, the strain expresses itself the motion and
deformation of a body.

There are many kinematic measures of strain in continuum mechanics. For La-
grangian descriptions the most essential strain is the Green-Lagrange strain tensor
defined by

E =
1

2

(
FT · F − I

)
or Eij =

1

2

(
FT

ikFkj − δij

)
(2.2.1)

which also can be expressed as a function of the displacement gradient tensor
yielding

Eij =
1

2

(
∂ui

∂Xj
+

∂uj

∂Xi
+

∂uk

∂Xi

∂uk

∂Xj

)
(2.2.2)

For linear strain problems, the infinitesimal strain tensor can be found from
Eq. (2.2.2) by neglecting the nonlinear terms giving

εij =
1

2

(
∂ui

∂Xj
+

∂uj

∂Xi

)
(2.2.3)

Now we define the spatial velocity gradient tensor by

l =
∂v

∂x
or lij =

∂vi

∂xj
(2.2.4)

which can be decomposed into its symmetric and skew-symmetric parts using

l =
1

2

(
l + l T

)
+

1

2

(
l − l T

)
(2.2.5)

where the spatial rate of deformation tensor d, also known as the velocity strain
tensor or strain rate tensor is given by the symmetric part of the velocity gradient
according to

d =
1

2

(
l + l T

)
or dij =

1

2

(
∂vi

∂xj
+

∂vj

∂xi

)
(2.2.6)

The spatial rate of rotation tensor w, also known as the spin tensor is given by
the skew-symmetric part of l yielding

w =
1

2

(
l − l T

)
or wij =

1

2

(
∂vi

∂xj
− ∂vj

∂xi

)
(2.2.7)

Taking the material time derivative of the deformation gradient tensor, Eq.
(2.1.13), gives

Ḟ =
∂v

∂X
or Ḟij =

∂vi

∂Xj
(2.2.8)

and now Eq. (2.2.4) can be written as

l = Ḟ · F−1 or lij = ḞikF−1
kj (2.2.9)
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where we use the spatial deformation gradient tensor

F−1 =
∂X

∂x
or F−1

kj =
∂Xk

∂xj
(2.2.10)

If we take the material time derivative of the Green-Lagrange strain tensor, Eq.
(2.2.1), we get

Ė =
1

2

(
FT · Ḟ + Ḟ

T · F
)

= FT · d · F (2.2.11)

2.3 Stress Measures

The motion and deformation of a continuum body B gives rise to forces emerging
from interactions between interior parts of the body or between the body and its
environment. Physically, the stress measures a force per unit area within a body.
Let P be a point on the boundary Γ of the body, n the outward normal unit vector
for P and dΓ the part of the surface on the body where P is contained. Then dfs
is the surface force acting at P that depends of n and dΓ. Henceforth the surface
traction t at point P on the surface with normal n is defined by

t = t(n) = lim
dΓ→0

dfs
dΓ

(2.3.1)

where t does not necessarily coincide in direction with n. It is important to see
that the surface traction has units of force per unit area. There exists a spatial
tensor field σ called the Cauchy stress tensor such that for each unit vector n

t = n · σ = σT · n or ti = σjinj (2.3.2)

which is also known as the Cauchy’s theorem. Since the Cauchy stress tensor
involves the normal to the current surface and the traction on the current surface
too, this tensor is also known as the true physical stress tensor and has the property
that is symmetric, see section 2.4.2. In the reference configuration the counterpart
of Eq. (2.3.2) is

t0 = n0 · P or t0i = Pjin
0
j (2.3.3)

where P is the nominal stress tensor and t0 and n0 is the traction force and unit
normal respectively in the reference configuration. Unlike the Cauchy stress tensor,
the nominal stress tensor is not symmetric and is important to see that the normal
is to the left. The transpose of the nominal stress tensor is the first Piola-Kirchhoff
stress tensor. The second Piola-Kirchhoff stress tensor S is defined by

F−1 · t0 = n0 · S (2.3.4)

where the transformation of the forces by F−1 makes it a symmetric tensor. The
transformation between these stresses is given by

σ = J−1F · P = J−1F · S · FT (2.3.5)
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P = JF−1 · σ = S · FT (2.3.6)

S = JF−1 · σ · F−T = P · F−T (2.3.7)

2.4 Conservation Equations

The conservation equations reflect some physical quantity for a continuum medium
which always must be satisfied and that are not restricted in their application to any
material. Applying the conservation equations to the domain Ω of a body B leads
to an integral relation. Since the integral relation must hold for any subdomain of
the body, then the conservation equations can be expressed as partial differential
equations.

Before continuing with the conservation equations, the material time derivative
of an integral relation for any spatial property is defined by

D

Dt

∫

Ω

(•) =

∫

Ω

(
D(•)
Dt

+ (•)∇ · v
)

dΩ (2.4.1)

which is the Reynold’s transport theorem. The divergence ∇ · (•) taken respect to
current coordinates can also be expressed as div(v) or in indicial form vi,i.

2.4.1 Mass Conservation

Consider the domain Ω of a body B bounded by the surface Γ which is filled with
a constant material density ρ(X, t). Then the mass of the body is given by

m =

∫

Ω

ρ(X, t)dΩ =

∫

Ω0

ρ(X, t)JdΩ0 =

∫

Ω0

ρ0(X)dΩ0 (2.4.2)

where we use Eq. (2.1.15) to relate integrals in the reference and current config-
urations. Mass conservation requires that the mass of any material domain be
constant. Consequently the material time derivative of the mass must be zero,
giving

Dm

Dt
=

D

Dt

∫

Ω

ρdΩ = 0 (2.4.3)

which leads to the following integral relation using Eq. (2.4.1)

Dm

Dt
=

∫

Ω

(
Dρ

Dt
+ ρ∇ · v

)
dΩ = 0 (2.4.4)

where the quantities used are expressed in spatial coordinates. Since the above
holds for any subdomain Ω, the mass conservation yields the following first-order
partial differential equation

Dρ

Dt
+ ρ∇ · v = 0 or ρ̇ + ρvi,i = 0 (2.4.5)
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The above equation is also known as the continuity equation. Using the definition
of material time derivative Eq. (2.1.12) in first term of Eq. (2.4.5), the continuity
equation can be written as

∂ρ

∂t
+ (ρvi),i = 0 (2.4.6)

which is known as the conservative form of the mass conservation equation. When
a material is said to be incompressible, the density keeps constant in time so that
its material time derivative vanishes and the continuity equation becomes

∇ · v = 0 or vi,i = 0 (2.4.7)

This is the continuity equation used in this work for fluid problems which always
are considered as incompressible.

For Lagrangian descriptions, the mass conservation equation Eq. (2.4.3) can be
integrated in time to obtain an algebraic equation for the density in the form of
Eq. (2.4.2) yielding

ρ(X, t)J = ρ0(X) (2.4.8)

which is the Lagrangian description for the mass conservation equation.

2.4.2 Conservation of Linear and Angular Momentum

The conservation of linear momentum states that the rate of change of its linear
momentum is equal to the total force applied to it. The conservation of linear
momentum is also known as the balance of momentum principle or simply the
momentum conservation principle. If we consider an arbitrary domain Ω with
boundary Γ in the current configuration subjected to body forces ρb and surface
tractions t, where b is a force per unit mass, then the total force f is given by

f(t) =

∫

Ω

ρb(x, t)dΩ +

∫

Γ

t(x, t)dΓ (2.4.9)

The linear momentum is given by the product of the density ρ and the velocity v

over the domain Ω in the form

p(t) =

∫

Ω

ρv(x, t)dΩ (2.4.10)

Hence the conservation of linear momentum is expressed by

D

Dt

∫

Ω

ρv(x, t)dΩ =

∫

Ω

ρb(x, t)dΩ +

∫

Γ

t(x, t)dΓ (2.4.11)

Using Eq. (2.4.1) and Eq. (2.4.5) in Eq. (2.4.11), the rate of change of the linear
momentum is found to be

D

Dt

∫

Ω

ρv(x, t)dΩ =

∫

Ω

ρ
Dv(x, t)

Dt
dΩ (2.4.12)
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The boundary integral in Eq. (2.4.11) can be transformed to a domain integral
using Eq. (2.3.2) and Gauss’ divergence theorem yielding

∫

Γ

t(x, t)dΓ =

∫

Ω

∇ · σ(x, t)dΩ (2.4.13)

Substituting Eq. (2.4.12) and (2.4.13) into (2.4.11) gives

∫

Ω

(
ρ
Dv

Dt
− ρb −∇ · σ

)
dΩ = 0 (2.4.14)

and since it holds for any arbitrary domain we find

ρ
Dv

Dt
= ∇ · σ+ ρb or ρ

Dvi

Dt
=

∂σij

∂xj
+ ρbi (2.4.15)

This is called the momentum equation. In an Eulerian description for the mo-
mentum equation, the material time derivative of the velocity in Eq. (2.4.15) is
developed using Eq. (2.1.12) yielding

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ+ ρb or ρ

(
∂vi

∂t
+ vj∂jvi

)
=

∂σij

∂xj
+ ρbi (2.4.16)

where all the quantities are given is spatial coordinates. In this work, Eq. (2.4.16)
is the one to be used in the fluid mechanics problem. For fluid finite elements this
equation is called Eulerian formulation.

The momentum equation Eq. (2.4.15) can also be written in a Lagrangian
description where all the quantities are expressed in material coordinates, giving

ρ
∂v

∂t
= ∇ · σ+ ρb or ρ

∂vi

∂t
=

∂σij

∂xj
+ ρbi (2.4.17)

Since Eq. (2.4.15) is in the current configuration, the divergence term is taken
respect to spatial coordinates and therefore σ(X, t) is expressed by σ

(
φ−1(x, t), t

)

so that the spatial gradient of the stress field can be evaluated. For nonlinear solid
finite elements, Eq. (2.4.17) is called updated Lagrangian formulation.

The conservation of angular momentum is obtained by taking the cross product
of the current vector position x by each term of the linear momentum equation Eq.
(2.4.11), yielding

D

Dt

∫

Ω

x × ρv(x, t)dΩ =

∫

Ω

x × ρb(x, t)dΩ +

∫

Γ

x × t(x, t)dΓ (2.4.18)

where it can be shown that leads to the following result

σ = σT (2.4.19)

The acceleration term in Eq. (2.4.15) can be neglected when the loads are
applied slowly so that the inertial forces become insignificant. Then we can write
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∇ · σ+ ρb = 0 or
∂σij

∂xj
+ ρbi = 0 (2.4.20)

which is known as the equilibrium equation. Problems that use Eq. (2.4.20) are
called static problems.

The conservation of linear momentum can also be expressed in the reference
configuration. Consider an arbitrary domain Ω0 with boundary Γ0 in the reference
configuration subjected to body forces ρ0b and surface tractions t0, then the total
force f is given by

f(t) =

∫

Ω0

ρ0b(X, t)dΩ0 +

∫

Γ0

t0(X, t)dΓ0 (2.4.21)

The linear momentum is given by

p(t) =

∫

Ω0

ρ0v(X, t)dΩ0 (2.4.22)

Hence the conservation of linear momentum is expressed by

d

dt

∫

Ω0

ρ0v(X, t)dΩ0 =

∫

Ω0

ρ0b(X, t)dΩ0 +

∫

Γ0

t0(X, t)dΓ0 (2.4.23)

The boundary integral in Eq. (2.4.23) can be transformed to a domain integral
using Eq. (2.3.3) and Gauss’ divergence theorem yielding

∫

Γ0

t0(X, t)dΓ0 =

∫

Ω0

∇0 · P(X, t)dΩ0 (2.4.24)

where ∇0 · (•) is the divergence taken respect to material coordinates. Leaving the
derivation of the conditions which follow from Eq. (2.4.23), the conservation of
linear momentum in reference configuration for Lagrangian coordinates is

ρ0
∂v

∂t
= ∇0 · P + ρ0b or ρ0

∂vi

∂t
=

∂Pji

∂Xj
+ ρ0bi (2.4.25)

This is called the Lagrangian form of the momentum equation. For nonlinear
solid finite elements, Eq. (2.4.25) is called total Lagrangian formulation. The
corresponding equilibrium equation for this description is

∇0 · P + ρ0b = 0 or
∂Pji

∂Xj
+ ρ0bi = 0 (2.4.26)

As a consequence of the conservation of angular momentum Eq. (2.4.18) and
Eq. (2.4.19) the nominal stress tensor yields

F · P = PT · FT (2.4.27)

which is in general not symmetric. The number of conditions imposed by angular
momentum conservation are usually imposed directly on the constitutive equation.
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Using Eq. (2.3.6) in Eq. (2.4.27) we obtain that for the second Piola-Kirchhoff
stress

S = ST (2.4.28)

is a symmetric tensor.

2.4.3 Conservation of Energy

The kinetic energy of a material is given by

Ekin =

∫

Ω

1

2
ρv · vdΩ (2.4.29)

which for a continuum body B is only part of the total energy. The remainder
energy is called the internal energy that is expressed by wint per unit mass. The
internal energy per unit volume is denoted by

E int =

∫

Ω

ρwintdΩ (2.4.30)

The total energy is then expressed by Etot = E int + Ekin. Then the conservation of
energy requires that the power of the total energy equals the power of the applied
forces plus the power at which other energy enters in the domain. The other energy
may take different forms, but the most important is the energy due to heat sources
and heat flux across B. Other energy sources arise from radiation, chemical changes,
electromagnetic fields, etc. We consider thermomechanical processes only.

The power of the total energy is given by

Ptot = P int + Pkin =
D

Dt

∫

Ω

ρwintdΩ +
D

Dt

∫

Ω

1

2
ρv · vdΩ (2.4.31)

while the power of the applied forces is expressed by

Pext =

∫

Ω

v · ρbdΩ +

∫

Γ

v · tdΓ (2.4.32)

The power supplied by heat sources s and the heat flux q is

Pheat =

∫

Ω

ρsdΩ −
∫

Γ

n · qdΓ (2.4.33)

The conservation of energy states that

Ptot = Pext + Pheat (2.4.34)

which is known as the first law of thermodynamics. Replacing Eqs. (2.4.31)-(2.4.33)
into Eq. (2.4.34) yields the equation of conservation of energy
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D

Dt

∫

Ω

ρwintdΩ +
D

Dt

∫

Ω

1

2
ρv · vdΩ =

∫

Ω

v · ρbdΩ+

∫

Γ

v · tdΓ +

∫

Ω

ρsdΩ −
∫

Γ

n · qdΓ

(2.4.35)

The equation which emerges from the above integral form leads to the following
Eulerian partial differential equation of energy conservation

ρ
Dw int

Dt
= σ : d −∇ · q + ρs (2.4.36)

For a purely mechanical process, the above equation becomes

ρ
Dw int

Dt
= σ : d (2.4.37)

which is no longer a partial differential equation. As a consequence of Eq. (2.4.37)
we can say that the Cauchy stress tensor σ and the rate of deformation tensor d

are conjugate in power.

The conservation of energy can also be expressed in Lagrangian coordinates and
in the reference configuration, where the counterpart of Eq. (2.4.35) gives

d

dt

∫

Ω0

(
ρ0w

int +
1

2
ρ0v · v

)
dΩ0 =

∫

Ω0

v · ρ0bdΩ0+

∫

Γ0

v · t0dΓ0 +

∫

Ω0

ρ0sdΩ0 −
∫

Γ0

n0 · qdΓ0

(2.4.38)

which gives the Lagrangian partial differential equation of energy conservation

ρ0ẇ
int = P : Ḟ

T −∇0 · q + ρ0s (2.4.39)

For a purely mechanical process, the Lagrangian energy conservation is

ρ0ẇ
int = P : Ḟ

T
(2.4.40)

showing that the nominal stress tensor is conjugate in power to the material time
derivative of the deformation gradient tensor. Using Eq. (2.3.6) in Eq. (2.4.40)
we obtain the energy conservation equation in terms of the second Piola-Kirchhoff
stress tensor

ρ0ẇ
int = S : Ė (2.4.41)

which shows that the second Piola-Kirchhoff stress tensor is conjugate in power to
the rate of the Green-Lagrange strain tensor.
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2.5 Constitutive Equations

The equations given so far are still insufficient to describe the mechanical behavior
of any material. Therefore we need additional equations called constitutive equa-
tions which complete the set of equations specifying the mechanical properties of a
material. For a purely mechanical process, the constitutive equation of a material
specifies the dependence of the stress tensor in terms of kinematic variables such
as the strain tensor.

2.5.1 Linear Elasticity

Engineering materials such as metals or concrete usually undergo very small changes
of shape when they are subjected to the forces which they are exposed. They also
have an initial shape to which they will return if the forces applied are removed.
Since the changes of shape are very small, there is no difference between the refer-
ence and current configuration.

The linear elasticity theory gives an excellent model for the behavior of such
materials. The infinitesimal strain tensor ε is used to measure strains while the
Cauchy stress tensor σ measures the stresses. For the linear elasticity theory the
energy conservation equation takes the form

ρ0ẇ
int = σ : ε̇ = σij ε̇ij (2.5.1)

where σ and ε̇ are conjugate in power.
It is conventional to denote the internal energy per unit volume ρ0w

int by W int

which is called the strain energy function. For a linear elastic material the strain
energy function depends only of the components εij and is a quadratic function of
the form

W int =
1

2
Cijklεijεkl or W int =

1

2
ε : C : ε (2.5.2)

where Cijkl are called elastic constants. Since the elastic constants possess symme-
try of the form Cijkl = Cjikl = Cijlk = Cklij (2.5.3)

then for an isotropic material , its properties are the same in all directions.
Since W int depends only on εij , the material time derivative of Eq. (2.5.2) gives

∂W int

∂t
=

∂W int

∂εij

∂εij

∂t
=

∂W int

∂εij
ε̇ij (2.5.4)

where the symmetry of the material has been used. Substituting Eq. (2.5.4) into
Eq. (2.5.1) gives

σij =
∂W int

∂εij
(2.5.5)

However from Eq. (2.5.2) and Eq. (2.5.3)
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∂W int

∂εij
= Cijklεkl (2.5.6)

Substituting Eq. (2.5.6) into Eq. (2.5.5) yields

σij = Cijklεkl or σ = C : ε (2.5.7)

which is the constitutive equation that relates stresses and strains. The constitu-
tive equation complete the equations to describe the mechanical behavior of linear
elastic materials. For an isotropic material Cijkl takes the formCijkl = λδijδkl + µ (δikδjl + δilδjk) or C = λI ⊗ I + 2µI (2.5.8)

where only two constants λ and µ of the original 81 of the fourth-order tensor
survived after the restrictions of material isotropy and stress symmetry. The two
independent material constants λ and µ are called the Lamé constants, I is the
second-order identity tensor and I is the fourth-order symmetric identity tensor
given by 1

2 (δikδjl + δilδjk). The constitutive equation Eq. (2.5.7) becomes

σij = λεkkδij + 2µεij or σ = λtr(ε)I + 2µε (2.5.9)

where tr(ε) is the trace of ε = εkk.

2.5.2 Nonlinear Elasticity

Engineering applications also involved small strains and large deformations, where
these effects arise from large displacements and large rotations of the structure.
The response of such materials may be modeled with a Saint Venant-Kirchhoff
material which is a generalization of the linear theory to large deformations giving
the nonlinear elasticity theory.

The strain energy function for a nonlinear elastic material is a generalization of
Eq. (2.5.2) and is given by

W int =
1

2
CijklEijEkl or W int =

1

2
E : C : E (2.5.10)

where the stress is

Sij =
∂W int

∂Eij
(2.5.11)

The counterpart of Eq. (2.5.7) in the nonlinear theory yields

Sij = CijklEkl or S = C : E (2.5.12)

where Cijkl is given by Eq. (2.5.8). Finally, the constitutive equation for nonlinear
elastic materials is

Sij = λEkkδij + 2µEij or S = λtr(E)I + 2µE (2.5.13)
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The Lamé constants λ and µ can be expressed in terms of other physical mea-
surements given by

µ =
E

2(1 + υ)
(2.5.14)

λ =
υE

(1 + υ)(1 − 2υ)
(2.5.15)

K = λ +
2

3
µ (2.5.16)

where E is the Young’s modulus, υ is the Poisson’s ratio and K is the bulk modulus.

2.5.3 Newtonian Fluid

An equation that linearly relates the stress tensor to the rate of strain tensor in a
fluid medium is called the constitutive equation for Newtonian fluids.

In a static fluid there are only normal components of the stress tensor on a
boundary, so the stress tensor for a fluid at rest is isotropic and takes the form

σij = −pδij (2.5.17)

where p is the thermodynamic pressure related to the density ρ and the temperature
T. A moving fluid develops additional components of stress due to viscosity yielding

σij = −pδij + σ
dev
ij (2.5.18)

where the deviatoric stress tensor σ
dev
ij is linearly related to the strain rate tensor

by

σ
dev
ij = Cijkldkl (2.5.19)

Substituting Eq. (2.2.6) and Eq. (2.5.8) into Eq. (2.5.19) and this new equation
in Eq. (2.5.18), the resulting equation is

σij = −pδij + λdkkδij + 2µdij (2.5.20)

where dkk = ∇·v is the volumetric strain rate. If the Stokes assumption, λ+ 2
3µ = 0,

is used in Eq. (2.5.20) to relate λ and µ the new equation is

σij = −
(

p +
2

3
µ∇ · v

)
δij +2µdij or σ = −

(
p +

2

3
µ∇ · v

)
I+2µd (2.5.21)

which is the constitutive equation for Newtonian fluids. For incompressible fluids
the continuity equation Eq.(2.4.7) is substituted into Eq. (2.5.21) and the consti-
tutive equation for incompressible fluids takes the simple form

σij = −pδij + 2µdij or σ = −pI + 2µd (2.5.22)

where p is the pressure. For incompressible fluids, p is called mechanical pressure.
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2.6 Navier-Stokes Equation

The equation of motion for a Newtonian fluid is obtained by substituting the con-
stitutive equation for Newtonian fluids Eq. (2.5.21) into the momentum equation
in Eulerian description Eq. (2.4.16) to obtain

ρ

(
∂vi

∂t
+ vj∂jvi

)
= − ∂p

∂xi
+ ρbi +

∂

∂xj

(
2µdij −

2

3
µ(∇ · v)δij

)
(2.6.1)

Equation (2.6.1) is the general form of the Navier-Stokes equation. If µ is taken as
a constant, the derivative in the right hand side term can be written as

∂

∂xj

(
2µdij −

2

3
µ(∇ · v)δij

)
= µ

(
∇2vi +

1

3

∂

∂xi
(∇ · v)

)
(2.6.2)

where ∇2vi is the Laplacian1 of vi. For incompressible fluids the continuity equation
Eq.(2.4.7) is substituted into Eq. (2.6.2) and the Navier-Stokes equation reduces
to

ρ

(
∂vi

∂t
+ vj∂jvi

)
= − ∂p

∂xi
+ ρbi + µ∇2vi (2.6.3)

If viscous effects are negligible, which may occur far from boundaries of the flow
field,

ρ

(
∂vi

∂t
+ vj∂jvi

)
= − ∂p

∂xi
+ ρbi (2.6.4)

and the Euler equation is obtained. Now consider given a characteristic velocity
scale vc and a characteristic length scale lc, then the Reynolds number is defined as
Re = ρvclc/µ. When the Reynolds number for the flow is very low, the convective
term can be neglected yielding

ρ
∂vi

∂t
+

∂p

∂xi
− µ∇2vi = ρbi (2.6.5)

which is known as the Stokes flow. In the literature, it is common to express Eq.
(2.6.5) without the inertial term.

1∇ 2vi = ∂
∂xj

∂vi
∂xj

= ∂2vi

∂x2
1

+ ∂2vi

∂x2
2

+ ∂2vi

∂x2
3



Chapter 3

Structural Dynamics

Structural elements such as membranes and thin shells are widely used in modern
technology in many engineering fields. Their elegance, effectiveness and optimal
material usage make these light weight structures an ideal construction element for
structural and decorative purposes.

This chapter begins with a review of the standard total Lagrangian formulation.
Then membrane elements are developed for isotropic and orthotropic material be-
havior and prestressed fields. Next cable elements are given as a particular case of
the membrane theory. Rotation-free shell elements are developed for isotropic and
orthotropic materials too. Finally time integration schemes and solution strategies
for these structural elements are presented.

3.1 Preliminaries

Before developing membrane and shell elements, the principle of virtual work is
developed for standard elements of the total Lagrangian formulation. The principle
of virtual work emerges as a consequence of the strong form of the momentum
equation.

3.1.1 Total Lagrangian Weak Form

The strong form consists of the momentum equation, the displacement boundary
conditions ūi on the Dirichlet boundary ΓD and the traction boundary conditions
t̄i on the Neumann boundary ΓN . See for example Hughes (1987), Zienkiewicz and
Taylor (1989) and Bathe (1996). In particular for total Lagrangian formulations,
the momentum equation used is Eq. (2.4.25). A complete deduction can be found
in Bonet and Wood (1997) and Belytschko et al. (2000).

To develop the weak form, test function δui(X) and trial functions ui(X, t) are
require. The space of the test functions is defined as

δui(X) ∈ U0, U0 =
{
δui|δui ∈ C0(X), δui = 0 on ΓD

}
(3.1.1)

25
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where C0 describes the continuity of the function and the boundary Γ0 is defined
by Γ0 = ΓD ∪ΓN . In general, a function is Cn if the nth derivative is a continuous
function. Eq. (3.1.1) means that for the weak form, the integral over the kinematic
boundary is neglected and remains only the integral over the traction boundary.
Since the principal of virtual work is to be developed, the space of the trial functions
for the displacements is given by

ui(X, t) ∈ U , U =
{
ui|ui ∈ C0(X), ui = ūi on ΓD

}
(3.1.2)

Note that the spaces of test and trial functions are similar except that the test
displacements vanish wherever the trial displacement are prescribed.

The development of a Galerkin-type weak form consists of taking the product
of the momentum equation Eq. (2.4.25) by the test function δui and integrating
over the reference configuration giving

∫

Ω0

δui

(
∂Pji

∂Xj
+ ρ0bi − ρ0üi

)
dΩ0 = 0 (3.1.3)

This weak form is useless because the space of trial functions for the displace-
ments needs to be C1. To solve this problem, the underlined term of Eq. (3.1.3) is
integrated by parts1 leading to

∫

Ω0

(δFijPji − δuiρ0bi + δuiρ0üi) dΩ0 −
∫

ΓN
0

δuit̄
0
i dΓ0 = 0 (3.1.4)

which is the weak form of the momentum equation together with the traction
boundary conditions t̄i. Note that the spaces of test and trial functions are C0.
Substituting Eq. (2.3.6) into Eq. (3.1.4), the resulting equation takes the form

∫

Ω0

(δFijSjkFik − δuiρ0bi + δuiρ0üi) dΩ0 −
∫

ΓN
0

δuit̄
0
i dΓ0 = 0 (3.1.5)

where the second Piola-Kirchhoff stress tensor has been replaced by the nominal
stress tensor. Eq. (3.1.4) and Eq. (3.1.5) are the principle of virtual work which
can be written as

δW int − δWext + δWkin = 0 (3.1.6)

where

δW int =

∫

Ω0

δFijPjidΩ0 =

∫

Ω0

δFijSjkFikdΩ0 or

δW int =

∫

Ω0

δFT : PdΩ0 =

∫

Ω0

δFT : S · FT dΩ0

(3.1.7)

1
R

d(uv) =
R

udv +
R

vdu,
R

udv = uv −
R

vdu
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δWext =

∫

Ω0

δuiρ0bidΩ0 +

∫

ΓN
0

δuit̄
0
i dΓ0 or

δWext =

∫

Ω0

ρ0δu · bdΩ0 +

∫

ΓN
0

δu · t̄0dΓ0

(3.1.8)

δWkin =

∫

Ω0

δuiρ0üidΩ0 or δWkin =

∫

Ω0

ρ0δu · üdΩ0 (3.1.9)

are the virtual internal work, the virtual external work and the virtual kinetic work
respectively. From the virtual internal work the following identity emerges

δFT : P = tr (P · δF) = tr
(
S · FT · δF

)
= tr

(
FT · δF · S

)
=

= δFT · F : S =
1

2

(
δFT · F + FT · δF

)
: S =

=
1

2
δ
(
FT · F − I

)
: S = δE : S

(3.1.10)

and the virtual internal work becomes

δW int =

∫

Ω0

δEijSijdΩ0 or δW int =

∫

Ω0

δE : SdΩ0 (3.1.11)

as it was expected from Eq. (2.4.41). Substituting Eq. (3.1.10) into Eq. (3.1.4)
yields

∫

Ω0

(δEijSij − δuiρ0bi + δuiρ0üi) dΩ0 −
∫

ΓN
0

δuit̄
0
i dΓ0 = 0 (3.1.12)

which is another form to express the principle of virtual work in the reference
configuration.

3.1.2 Finite Element Discretization

In this section the finite element discretization for total Lagrangian formulations is
described . It is assumed that the reference domain Ω0 is discretized by a finite
number of elements that conform the finite element mesh. For each finite element
of the mesh, the equation of motion is approximated by

xh
i (X, t) =

nnode∑

I=1

NI(X)xiI(t) ∀i = 1, ndime (3.1.13)

where NI(X) are the shape functions of each node, nnode is the number of nodes
for the finite element and xiI(t) are the nodal values of the motion at node I with
direction i. The displacements are given by
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uh
i (X, t) =

nnode∑

I=1

NI(X)uiI(t) ∀i = 1, ndime (3.1.14)

The corresponding velocity and acceleration is

u̇h
i (X, t) =

nnode∑

I=1

NI(X)u̇iI(t) ∀i = 1, ndime (3.1.15)

üh
i (X, t) =

nnode∑

I=1

NI(X)üiI(t) ∀i = 1, ndime (3.1.16)

Substituting Eq. (3.1.13) into Eq. (2.1.13) the material deformation gradient tensor
is found to be

Fij = xiIB
0
jI or F = x · BT

0 (3.1.17)

where

B0
jI =

∂NI

∂Xj
(3.1.18)

is the strain-displacement tensor. The space of the test functions is time indepen-
dent and its discretization yields

δuh
i (X) =

nnode∑

I=1

NI(X)δuiI ∀i = 1, ndime (3.1.19)

Since XI is a constant vector, the variation of xI gives

δxiI = δuiI (3.1.20)

Consequently, the variation of the material deformation gradient tensor is

δFij = δuiIB
0
jI or δF = δu · BT

0 (3.1.21)

Recalling that work can be obtained by a force multiplied by a distance, the
internal forces emerge from the virtual internal work, Eq. (3.1.7), as

δW int = δuiIf
int
iI =

∫

Ω0

δFijPjidΩ0 = δuiI

∫

Ω0

B0
jIPjidΩ0 (3.1.22)

Since the variations of the displacements δuiI are arbitrary, the internal forces are
expressed by

f int
iI =

∫

Ω0

B0
jIPjidΩ0 or f int =

∫

Ω0

BT
0 · PdΩ0 (3.1.23)

where the internal forces are given in terms of the nominal stress tensor. Since the
nominal stress tensor is not symmetric, it is more convenient to express the internal
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forces as a function of the second Piola-Kirchhoff stress tensor S. Substituting Eq.
(2.3.6) into Eq. (3.1.23) yields

f int
iI =

∫

Ω0

B0
jISjkFikdΩ0 =

∫

Ω0

B0
jIFikSjkdΩ0 (3.1.24)

where the second Piola-Kirchhoff stress tensor S is a symmetric tensor in (j, k) and
defining the strain-displacement tensor B as

BijkI = sym(j,k)

(
B0

jIFik

)
(3.1.25)

the internal forces are expressed by

f int
iI =

∫

Ω0

BijkISjkdΩ0 (3.1.26)

At this point, it is convenient to use the Voigt notation to express Eq. (3.1.26) in
the form

f int
a =

∫

Ω0

BT
abSbdΩ0 or f int =

∫

Ω0

BT {S}dΩ0 or f int
I =

∫

Ω0

BT
I {S}dΩ0

(3.1.27)

where the internal forces f int
a = f int

iI and its positions are given by

a = (I − 1)ndime + i (3.1.28)

The second Piola-Kirchhoff stress components are transformed by the kinetic Voigt
rule as shown in table 3.1.

Sij Sa

i j a
1 1 1
2 2 2
3 3 3
2 3 4
1 3 5
1 2 6

Table 3.1 Voigt rule for stresses

The strain-displacement tensor BI in Voigt notation for 3D problems is
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BI =


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∂X2
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∂NI

∂X3

∂xh
2

∂X3

∂NI

∂X3

∂xh
3

∂X3

∂NI

∂X2

∂xh
1

∂X3
+ ∂NI

∂X3

∂xh
1

∂X2

∂NI

∂X2

∂xh
2

∂X3
+ ∂NI

∂X3

∂xh
2

∂X2

∂NI

∂X2

∂xh
3

∂X3
+ ∂NI

∂X3

∂xh
3

∂X2

∂NI

∂X1

∂xh
1

∂X3
+ ∂NI

∂X3

∂xh
1

∂X1

∂NI

∂X1

∂xh
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∂X3
+ ∂NI

∂X3

∂xh
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∂X1

∂NI

∂X1

∂xh
3

∂X3
+ ∂NI

∂X3

∂xh
3

∂X1

∂NI

∂X1

∂xh
1

∂X2
+ ∂NI

∂X2

∂xh
1

∂X1

∂NI

∂X1

∂xh
2

∂X2
+ ∂NI

∂X2

∂xh
2

∂X1

∂NI

∂X1

∂xh
3

∂X2
+ ∂NI

∂X2

∂xh
3

∂X1
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

(3.1.29)
Assuming that body forces and surface tractions are given, the external forces

come from the virtual external work by substituting Eq. (3.1.19) into Eq. (3.1.8)
yielding

δWext = δuiIf
ext
iI = δuiI

(∫

Ω0

NIρ0bidΩ0 +

∫

ΓN
0

NI t̄
0
i dΓ0

)
(3.1.30)

where the external forces are found to be

f ext
iI =

∫

Ω0

NIρ0bidΩ0 +

∫

ΓN
0

NI t̄
0
i dΓ0 (3.1.31)

The kinetic forces are a consequence of the virtual kinetic work, which are
expressed by the relation

δWkin = δuiIf
kin
iI =

∫

Ω0

δuh
i ρ0ü

h
i dΩ0 = δuiI

∫

Ω0

NIρ0NJ üiJdΩ0 (3.1.32)

where Eq. (3.1.16) and Eq. (3.1.19) have been substituted into Eq. (3.1.32), and
the kinetic forces are given by

fkin
iI =

∫

Ω0

NIρ0NJ üiJdΩ0 =

∫

Ω0

NIρ0NJdΩ0üiJ (3.1.33)

However, it is common to express the kinetic forces as the product of the mass
matrix and the accelerations. From Eq. (3.1.33) the mass matrix is defined by

MijIJ = δij

∫

Ω0

ρ0NINJdΩ0 (3.1.34)

and the kinetic forces become
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fkin
iI = MijIJ üjJ = MijIJajJ (3.1.35)

The kinetic forces are also known as the inertial forces.

All the above equations have not been discretized in time, so instead of finite
element discretization, sometimes these equations are called finite element semidis-
cretization. Finally the equations of motion are given by

f int
iI + MijIJajJ = f ext

iI or f int + Ma = f ext (3.1.36)

3.2 Membrane Elements

3.2.1 Introduction

Membrane structures are used for many purposes because they are built with
very light materials which are optimally used since the structures are subjected
to membrane tension stresses. Examples include aircraft and spacecraft applica-
tions, parachutes, automobile airbags, sails, windmills, human tissues and long span
structures.

A membrane is essentially a thin shell with no flexural stiffness, consequently a
membrane should not resist any compression at all. In such a theory only the in-
plane stress resultants are included. The position of points on the two-dimensional
surface in the Euclidean space gives the deformation state for a membrane. A
numerical solution for membranes may be constructed using the finite element
method, which solution for small deformations can be found in Zienkiewicz and
Taylor (1989), Cook et al. (1989) or Oñate (1992). Theory for large deforma-
tions can proceed following the presentations of Simo and Fox (1989), Simo et al.
(1990a), Bütchter et al. (1992) or Braun et al. (1994). A general formulation for
membranes based on curvilinear coordinates is given by Bonet et al. (2000) and Lu
et al. (2001). Taylor (2001) proposed a large displacement formulation of a mem-
brane composed of three-node triangular elements based on rectangular Cartesian
coordinates, where details of the various terms involved are given in Valdés (2002).
This work has been generalized for different finite elements by Rossi (2005).

Some membrane structures have a very low flexural stiffness that can support
a small amount of compressive stress before buckling appears. In order to avoid
compression stresses, membranes are prestressed. Levy and Spillers (1995), Raible
(2003) and Gil (2003) use a prestressed method to analyze membranes which are
initially flat in the Euclidean space. An approach that include curved pre-stressed
membranes using a projection scheme can be found in Bletzinger and Wüchner
(2001).

In the present work, analysis of initially curved pre-stressed membranes is per-
formed using the fiber orientation strategy, which is an extension of the work of
Valdés et al. (2004). Also the fiber orientation allow to analyze orthotropic mem-
branes, where other possibilities are studied in Raible (2003) and Wüchner and
Bletzinger (2005).
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When a membrane is subjected to compression in one principal direction and
tension in the other principal direction, it will buckle and many narrow wrinkles
will form with crests and troughs roughly parallel to the tensile direction. As the
flexural stiffness decreases, so do the critical buckling stress and the distance be-
tween the crests. When a flexural stiffness vanishes, so does the critical buckling
stress and there would be an infinite number of wrinkles exactly parallel to the ten-
sile direction, as mentioned by Libai and Simmonds (1998). However conventional
membrane theory can resist compression without wrinkling although its flexural
stiffness vanishes. Therefore one difficulty in modelling membranes is to account
for wrinkling phenomena that are not predicted by normal membrane theory. A
membrane theory which accounts for wrinkling does not allow any negative stress
to appear. When a negative stress is about to appear the membrane will wrinkle.

The modelling of wrinkled membranes was started by Wagner (1929). He tried
to explain the behavior of thin metal webs and spars carrying a shear load in excess
of the initial buckling value. Many authors contributed to the linear analysis of
wrinkles like Reissner (1938), Kondo et al. (1955), Mansfiled (1970) or Mansfiled
(1977). Since then, many significant contributions to analyze wrinkling models
of membranes have been studied extensively with different approaches. In one ap-
proach, the constitutive relation of the membrane is modified to simulate wrinkling.
For example, Contri and Schrefler (1988) use a no-compression material model that
was carried out in a two step procedure that allows the folds and the mean deformed
position of the wrinkled surface to be obtained. Liu et al. (2001) propose a penalty
parameter modified material model with a constant parameter, which rotates the
constitutive equation to the direction of principal strains. Then the values of the
constitutive equation related to the direction of the second principal strains are
penalize almost to zero and then the constitutive equation is rotated back to its
original position. Rossi et al. (2003) and Rossi et al. (2005) use the same procedure
that Liu et al. (2001) but with one extra parameters that keeps the convergence
properties of the element. Inspired in the work of Liu et al. (2001) and Rossi
et al. (2003), Jetteur (2005) proposed a material model with small resistance in
compression in order to have a good convergence in a static scheme.

In the present work, following Valdés et al. (2005) a modified material model for
orthotropic materials is presented. An advantage of this kind of procedure is that
since commercial finite element codes do not usually support tension field models,
the method can be input to the code through the user-defined material model port.

A second approach is based on modifying the deformation gradient tensor with-
out changing the constitutive relation. Wu and Canfield (1981) presented a model
describing the wrinkling of membranes in finite plane-stress theory. They modified
the deformation gradient tensor by introducing an extra parameter. The value of
this parameter was determined by the condition that the stress in wrinkling direc-
tion is zero. The modification of the deformation gradient tensor was chosen in a
way that the principal Cauchy directions did not change because of the wrinkling,
which is only true when the material is isotropic. Another model capable of dealing
with anisotropy was introduced by Roddeman et al. (1987a) and Roddeman et al.
(1987b). They also introduced the correct criterion to judge the state of the mem-
brane at a point. Due to the complexity of the formulation, explicit expressions for
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the nodal forces and stiffness matrix lead to lengthy derivations. Later Roddeman
(1991) presented a much more simple element derivation and instead of deriving ex-
plicit expression for the nodal forces and the stiffness matrix, the equivalent nodal
forces are obtained numerically. The tangent stiffness matrix follows from numeri-
cal differentiation of the nodal forces. Muttin (1996) has generalized the wrinkling
theory of Roddeman (1991) for curved membranes using curvilinear coordinates,
which also uses numerical differentiation to calculate the internal forces and the
tangent stiffness matrix. Based on the wrinkling condition of Roddeman et al.
(1987a), Ziegler (2001) and Ziegler et al. (2003) develop an algorithm in analogy
to the small strain elasto-plasticity model to calculate the wrinkling strains, which
was applied to isotropic materials only. The wrinkling theory of Roddeman et al.
(1987a) is formulated by Lu et al. (2001) using curvilinear coordinates, and a ro-
bust scheme to find the wrinkling direction is derived with concise explicit formulas
for the internal forces and the tangent stiffness matrix. An alternative formulation
of Roddeman et al. (1987a) is given by Schoop et al. (2002) where a reference
configuration methodology results in a simpler formulation.

Another approach similar to the second one, decompose the strain tensor in its
principal directions and then using a new variable, the second principal direction
is modified until the compression stresses disappear. In the works of Raible (2003)
and Löhnert et al. (2003) this approach is used, where explicit formulas for the
internal forces are derived.

3.2.2 Membrane Formulation

Until now a rectangular Cartesian coordinate system have been employed as the
basis for the representation of vectors and tensors. However for the membrane
theory, a curvilinear coordinate system based on differential geometry of surfaces
will be used, as can be found in Farrashkhalvat and Miles (2003), Lu et al. (2001)
and Wüchner and Bletzinger (2005). Here Greek indices on membrane mid-surface
take on values of 1 and 2 in a plane stress state in Euclidean space.

e
1

e
2

e
3

X
2

X

X
1

X
3

x
2

x
1

Figure 3.1 Curvilinear coordinates for a surface

The position vector X on the surface in the reference configuration Ω0 is defined
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by two independent curvilinear coordinates ξ1 and ξ2, shown in Fig. 3.1, as

X = X(ξ1, ξ2) (3.2.1)

It is assumed that there is an invertible relationship between Eq. (2.1.1) and Eq.
(3.2.1). The position vector x on the surface in the current configuration Ω is given
by

x = x(ξ1, ξ2, t) (3.2.2)

An invertible relationship between Eq. (2.1.2) and Eq. (3.2.2) is assumed.
The convected covariant base vectors of the curvilinear coordinate system on

Ω0 and Ω are defined respectively as

Gα =
∂X

∂ξα
, gα =

∂x

∂ξα
(3.2.3)

Note that the covariant base vectors Gα and gα form the tangent space TXB
to the membrane surface and in general they are neither unit vector nor orthogonal
to each other, as can be seen in Fig. 3.2.

G
1

x
1

x
2

G
2

T
BX

B

Figure 3.2 Covariant base vectors forming a tangent plane

Therefore the surface normals are determined by

G3 = G1 × G2, N =
G3

‖G3‖
, g3 = g1 × g2, n =

g3

‖g3‖
(3.2.4)

in reference and current configuration respectively. The normals are normalized
given a unit vector. The covariant components of the metric tensors are defined by

Gαβ = Gα · Gβ , gαβ = gα · gβ (3.2.5)

for the reference and current configurations respectively. The convected contravari-
ant base vectors are given for Ω0 and Ω respectively by
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Gα = Gαβ · Gβ , gα = gαβ · gβ (3.2.6)

where the contravariant components of the metric tensors are obtained from

[
Gαβ

]
=
[
Gαβ

]−1

,
[
gαβ
]

=
[
gαβ

]−1

(3.2.7)

for the corresponding configurations. For the case when the contravariant base
vectors are given, the covariant base vector can be obtained from

Gα = Gαβ · Gβ , gα = gαβ · gβ (3.2.8)

for reference and current configurations respectively. The covariant and contravari-
ant base vectors define the scalar product identities

Gα · Gβ = δα
β , gα · gβ = δα

β (3.2.9)

where the Kronecker delta is given by

δα
β =

{
1 when α = β

0 otherwise
(3.2.10)

The deformation gradient tensor F in curvilinear coordinates is given by

F = gα⊗Gα, FT = Gα⊗gα, F−1 = Gα⊗gα, F−T = gα⊗Gα (3.2.11)

and substituting Eq. (3.2.11) into the Green-Lagrange strain tensor, Eq. (2.2.1),
yields

E =
1

2

(
FT · F − I

)
=

1

2

(
Gα ⊗ gα · gβ ⊗ Gβ − GαβGα ⊗ Gβ

)
(3.2.12)

which components for the membrane surface in a plane stress state are given by

E = EαβGα ⊗ Gβ , Eαβ =
1

2
(gαβ − Gαβ) (3.2.13)

In Eq. (3.2.12) the identity tensor I was written as the product of F−1 ·F and Eq.
(3.2.8) was used to expressed I = GαβGα ⊗ Gβ .

Using the appropriate constitutive equation to relate the second Piola-Kirchhoff
stress tensor and the Green-Lagrange strain tensor in curvilinear coordinates, the
components of the stress tensor are defined as

S = SαβGα ⊗ Gβ (3.2.14)

Finally the virtual internal work, Eq. (3.1.11), can be expressed in curvilinear
coordinates as

δW int =

∫

Ω0

δEαβSαβdΩ0 (3.2.15)
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3.2.2.1 Pressure Follower Forces

Although the most common example of a body force is gravity loading and a wide
variety of surface traction forces exists, the most important case for geometrically
nonlinear membrane elements is the case of uniform normal pressure follower forces,
that change their direction each time the normal to the surface changes in the
current configuration.

Consider a membrane element with an applied uniform pressure p acting on the
current configuration having a pointwise normal n. Then the traction force vector
t is expressed as pn, and the corresponding virtual external work in the current
configuration is

δWext =

∫

Γ

δu · pndΓ (3.2.16)

3.2.3 Fiber Orientation

The idea for the fiber orientation comes from the manufacturing process of mem-
brane structures, which can be built with orthotropic or composite materials and
a reference principal fiber direction is needed to perform correctly an analysis with
finite elements. Even for isotropic materials, the reference principal fiber direction
is needed if the membrane has an initial pre-stressed field. With the methodology
proposed, a pre-stressed field for orthotropic materials is also possible.

Another important aspect of the fiber orientation comes from postprocessing
the strain and stress field in-plane on the membrane surface. Other possibilities for
postprocessing these values are given in Oñate (1992).

To build the fiber orientation for a membrane structure, first a finite element
mesh is needed and for each element the following methodology is applied. A local
Cartesian base system is obtained from the covariant base vectors as

eloc
1 =

G1

‖G1‖
, eloc

3 = N =
G1 ⊗ G2

‖G1 ⊗ G2‖
, eloc

2 = eloc
3 ⊗ eloc

1 (3.2.17)
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ed
ed

ed

ed

ed

ed

ed

Figure 3.3 Principal fiber direction and local base system
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If a curved membrane structure is meshed with finite elements, the local Carte-
sian axes of each element generally have different orientations, even for structured
meshes as can be seen in Fig. 3.3.

If dashed-lines are the reference principal fibers direction or the orthotropy
direction for the material, then an angle θ is needed to rotate each local Cartesian
base system eloc

i in order to apply the material orthotropy correctly (or the pre-
stress field). Suppose that ed is a given vector that defines the principal fiber
direction for a finite element and lies in the tangent space of the element, as shown
in Fig. 3.4. This principal fiber direction is always known at least for one finite
element and is given by the manufacture process of the structure.

e
1
loc

e
d

e2

loc

S

Figure 3.4 Principal fiber direction for a finite element

To assign correctly the principal fiber direction from a known element (or source
element) to the whole mesh, first the adjacent elements of the source element must
be identified, see Fig. 3.5(a). Next build the tangent space TXBS for the source
element together with its normal that will be called NS . For one adjacent element
its tangent space TXBN is also built and its normal will be called NN . The
intersection line to both tangent spaces will be a common vector between both of
them.

(a) (b) (c)

Figure 3.5 Assignment of principal fiber direction to adjacent elements

A new Cartesian base system for TXBS is constructed. The Cross product
between the normal NS and the vector XS , given by the intersection line between
both tangent spaces, yields YS . This new vector YS must have a direction pointing
inside of the source element, as can be seen in Fig. 3.6.

In a similar way, a new Cartesian base system for the adjacent element will
be built. The Cross product between the normal NN and the vector given by the
intersection line XN yields YN , where XN = −XS . This new vector YN must
point inside the adjacent element. Remark that vectors XS and YS belong to
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N
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T
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YS YN

XS

XN

Intersection line

Figure 3.6 Local Cartesian base systems for tangent spaces

the tangent space of the source element while vectors XN and YN belong to the
tangent space of the adjacent element.

Once both local Cartesian base systems are defined, the next step is to choose
an arbitrary point a on axis XS . Now over point a the principal fiber direction
vector ed is passed and its intersection over axis YS will be the point b, as shown
in Fig. 3.7.

T BX
S

YS YN

XS

XN

T BX
N

ed
a

b
c

d
o

Figure 3.7 Transferring reference principal fiber direction

Finally to transfer the principal fiber direction to the adjacent element, the
distance from the origin o to the point a must be the same that the distance from
the origin o to the point c located on axis XN . Also the distance from the origin o
to the point b must be the same that from the origin o to the point d over axis YN .
Then build the vector from point c to point d which will be the reference principal
fiber direction of the neighbor element, as can be seen in Fig. 3.7.

This procedure of transferring the principal fiber direction from a source element
to one of its adjacent elements is repeated for all adjacent elements of the source
element, as in Fig. 3.5. Once each adjacent element has a principal fiber direction
transferred, the procedure is repeated for the whole finite element mesh until every
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element has a known principal fiber direction ed. A finite element mesh with all
its elements with a principal fiber direction assigned is shown in Fig. 3.8.

Figure 3.8 Principal fibers direction of a mesh

With every finite element of the mesh with a principal fiber direction vector ed

known, the angle θ for every element that is needed to rotate each local Cartesian
base system, as shown in Fig. 3.4, is given by

sin θ = −ed · eloc
2 , cos θ = ed · eloc

1 (3.2.18)

and

θ = tan−1

(
sin θ

cos θ

)
(3.2.19)

The local Cartesian base system with the fiber orientation is denominated local
fiber Cartesian base system, and is found with the equation

e
fiber
i = R(θ,N) · eloc

i (3.2.20)

where R(θ,N) is the Rodrigues’ rotation formula that rotates an angle θ about
a fixed axis specified by a unit vector, in this case the unit normal vector to the
surface element N, and is given by

R(θ,N) =

2

6

6

6

6

6

6

6

4

cosθ + N2
1 (1 − cosθ) N1N2(1 − cosθ) − N3sinθ N2sinθ + N1N3(1 − cosθ)

N3sinθ + N1N2(1 − cosθ) cosθ + N2
2 (1 − cosθ) N2N3(1 − cosθ) − N1sinθ

N1N3(1 − cosθ) − N2sinθ N1sinθ + N2N3(1 − cosθ) cosθ + N2
3 (1 − cosθ)

3

7

7

7

7

7

7

7

5

(3.2.21)

The finite element mesh for the analysis with the fiber orientation is shown in
Fig. 3.9.

A fast algorithm to find the adjacent elements in a finite element mesh is given
in Löhner (2001), which is an important step to be applied in this methodology.
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Figure 3.9 Local fiber base system

3.2.4 Finite Element Discretization for Membranes

This section contains different subsections that begins with the general discretiza-
tion for membrane elements expressed in curvilinear coordinates. Next this dis-
cretization is transformed to local Cartesian coordinates that simplify the imple-
mentation and allow the analysis of isotropic membranes without any pre-stressed
fields. To be able to add a pre-stress field or an orthotropic material to the in-
ternal forces, the discretization with fiber orientation is presented. Finally the
implementation of a triangular three-node finite element is particularized.

3.2.4.1 Discretization in Curvilinear Coordinates

The discretization is established for the total Lagrangian formulation. The finite
element discretization is developed with shape functions expressed in terms of the
so called parent element coordinates or master element coordinates. The most
common parent element coordinates are the isoparametric coordinates. The parent
element coordinates are denoted by ξα for each element with a parent domain Ω�.
The shape of the parent domain depends on the type of element and the problem
dimension.

In Fig. 3.10 it is shown that the ξ1 and ξ2 surface coordinates of the parent
element can be mapped to curvilinear coordinates when plotted in local rectangular
Cartesian coordinates for a given finite element. Therefore these coordinates are
used to develop membrane elements. Consider a membrane element with parent
element coordinates ξ1 and ξ2 as the curvilinear coordinate system. Then Eq.
(3.2.1) can be approximated by

Xh(ξ) =

nnode∑

I=1

NI(ξ)XI or Xh
i (ξ) =

nnode∑

I=1

NI(ξ)XiI ∀i = 1, ndime

(3.2.22)

where NI(ξ) are the parent element shape functions. The equation of motion Eq.
(3.2.2) is given by
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Figure 3.10 Mapping of surface elements

xh
i (ξ, t) =

nnode∑

I=1

NI(ξ)xiI(t) ∀i = 1, ndime

or xh(ξ, t) =

nnode∑

I=1

NI(ξ)xI(t)

(3.2.23)

and the displacements are

uh
i (ξ, t) =

nnode∑

I=1

NI(ξ)uiI(t) ∀i = 1, ndime

or uh(ξ, t) =

nnode∑

I=1

NI(ξ)uI(t)

(3.2.24)

Substituting Eq. (3.2.22) into the covariant base vectors of the curvilinear
coordinates in the reference configuration Ω0 of Eq. (3.2.3) yields

Gα =
∂

∂ξα

(
nnode∑

I=1

NI(ξ)XI

)
=

nnode∑

I=1

NI,αXI (3.2.25)

where
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NI,α =
∂NI(ξ)

∂ξα
(3.2.26)

Following the same procedure, Eq. (3.2.23) is substituted into the covariant base
vectors of the curvilinear coordinates in the current configuration Ω, Eq. (3.2.3),
to express

gα =

nnode∑

I=1

NI,αxI(t) (3.2.27)

With these quantities known, the covariant components of the metric tensor Gαβ

and gαβ given in Eq. (3.2.5) are found. Then components of the Green-Lagrange
strain tensor are computed with

Eαβ =
1

2
(gαβ − Gαβ) (3.2.28)

The variation δEαβ becomes

δEαβ =
1

2
δ(gαβ − Gαβ) =

1

2
δgαβ (3.2.29)

and

δgαβ = δgα · gβ + gα · δgβ (3.2.30)

where Eq. (3.2.5) has been used. The variation of the covariant base vectors in
current configuration results from Eq. (3.2.27) yielding

δgα =

nnode∑

I=1

NI,αδxI =

nnode∑

I=1

NI,αδuI (3.2.31)

Substituting Eq. (3.2.27) and Eq. (3.2.31) into Eq. (3.2.30), the resulting equation
is

δgαβ =

nnode∑

I=1

NI,αδuiI ·
nnode∑

J=1

NJ,βxiJ +

nnode∑

J=1

NJ,αxiJ ·
nnode∑

I=1

NI,βδuiI (3.2.32)

Substituting Eq. (3.2.32) into Eq. (3.2.29), the variation of the Green-Lagrange
strain tensor becomes

2 δEαβ =

nnode∑

I=1

NI,αδuiI ·
nnode∑

J=1

NJ,βxiJ +

nnode∑

J=1

NJ,αxiJ ·
nnode∑

I=1

NI,βδuiI (3.2.33)

and the virtual internal work, Eq. (3.2.15), yields
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2 δW int =

∫

Ω0

nnode∑

I=1

NI,αδuiI ·
nnode∑

J=1

NJ,βxiJSαβ +

nnode∑

J=1

NJ,αxiJ ·
nnode∑

I=1

NI,βδuiIS
αβdΩ0

(3.2.34)

From Eq. (3.1.22), the virtual internal work was expressed as

δWint =

nnode∑

I=1

δuiIf
int
iI ∀i = 1, ndime (3.2.35)

Substituting Eq. (3.2.34) into Eq. (3.2.35), the internal forces for a particular
direction i and node I can be expressed as

f int
iI =

∫

Ω0

1

2

nnode∑

J=1

(NI,αNJ,β + NJ,αNI,β) xiJSαβdΩ0 (3.2.36)

where the strain-displacement tensor in curvilinear coordinates is given by

Bcur
αβiI =

1

2

nnode∑

J=1

(NI,αNJ,β + NJ,αNI,β)xiJ (3.2.37)

and the internal forces, Eq. (3.1.26), for membrane elements in curvilinear coordi-
nates can be written as

f int
iI =

∫

Ω0

Bcur
αβiIS

αβdΩ0 (3.2.38)

Eq. (3.2.37) can be expressed in the simple form

Bcur
αβiI =

1

2

(
NI,αxh

i,β + NI,βxh
i,α

)
(3.2.39)

where the equation

xh
i,α =

nnode∑

J=1

NJ,αxiJ (3.2.40)

has been used.
Using the Voigt notation to express the internal forces in curvilinear coordinates,

Eq. (3.2.38), yields

f int
a =

∫

Ω0

[BT
ab]

cur{Sb}curdΩ0 or f int
I =

∫

Ω0

[BT
I ]cur{S}curdΩ0 (3.2.41)

where the strain-displacement matrix Bcur
I is given by
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Bcur
I =




∂NI

∂ξ1

∂xh
1

∂ξ1
∂NI

∂ξ1

∂xh
2

∂ξ1
∂NI

∂ξ1

∂xh
3

∂ξ1

∂NI

∂ξ2

∂xh
1

∂ξ2
∂NI

∂ξ2

∂xh
2

∂ξ2
∂NI

∂ξ2

∂xh
3

∂ξ2

∂NI

∂ξ1

∂xh
1

∂ξ2 + ∂NI

∂ξ2

∂xh
1

∂ξ1
∂NI

∂ξ1

∂xh
2

∂ξ2 + ∂NI

∂ξ2

∂xh
2

∂ξ1
∂NI

∂ξ1

∂xh
3

∂ξ2 + ∂NI

∂ξ2

∂xh
3

∂ξ1




(3.2.42)
In Voigt notation, the virtual internal work Eq. (3.1.22) is written as

δWint = {δET
b }cur{Sb}cur = {δua}T [BT

ab]
cur{Sb}cur (3.2.43)

where the variation of the Green-Lagrange strain tensor in curvilinear coordinates
and Voigt notation is given by

δEcur
b = Bcur

ba δua (3.2.44)

3.2.4.2 Discretization in Cartesian Coordinates

The Green-Lagrange strain tensor E expressed in local Cartesian coordinates can
be found using the following transformation equation, see i.e. Crisfield (1991),

Ecur = J̄
T
ξ ElocJ̄ξ (3.2.45)

where the Jacobian transformation tensor J̄ξ in the reference configuration is de-
fined as

J̄ξ =

[
G1 · eloc

1 G2 · eloc
1

G1 · eloc
2 G2 · eloc

2

]
=

[
J11 J12

0 J22

]
(3.2.46)

Note that the product G1 ·eloc
2 = 0 because they are orthogonal vectors. From Eq.

(3.2.45) the Green-Lagrange strain tensor Eloc is found by

Eloc = TT
ξ EcurTξ (3.2.47)

where Tξ is used to denote the inverse of J̄ξ by

Tξ = J̄
−1
ξ =

[
T11 T12

0 T22

]
(3.2.48)

where

T11 =
1

J11
, T12 =

−J12

J11J22
, T22 =

1

J22
(3.2.49)

Eq. (3.2.47) can be written in Voigt notation yielding

{E}loc = [Q]{E}cur or Eloc
c = Qcb Ecur

b (3.2.50)

From Eq. (3.2.47), the variation of the Green-Lagrange strain tensor is
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δEloc = TT
ξ δEcurTξ (3.2.51)

which in Voigt notation can be written as

{δE}loc = [Q]{δE}cur or δEloc
c = Qcb δEcur

b (3.2.52)

where the transformation matrix Q = Q(Tξ) gives the transformation from curvi-
linear coordinates to local Cartesian coordinates and is defined by

Q =




T 2
11 0 0

T 2
12 T 2

22 T22T12

2T11T12 0 T11T22


 (3.2.53)

The virtual internal work, Eq. (3.2.43), written in local Cartesian coordinates
yields

δWint = {δET
c }locSloc

c = {δua}T [BT
ac]

locSloc
c = {δua}T [BT

ab]
curQT

bcS
loc
c (3.2.54)

where the strain-displacement tensor in local Cartesian coordinates and in Voigt
notation is defined by

B loc
ca = QcbB

cur
ba or Bloc = QBcur (3.2.55)

The internal forces in Voigt notation and local Cartesian coordinates are given
by

f int
a =

∫

Ω0

[BT
ab]

curQT
bcS

loc
c dΩ0 or f int

I =

∫

Ω0

[BT
I ]cur[QT ]{S}locdΩ0 (3.2.56)

This equation is defined only for isotropic materials without any pre-stressed
field. To add a pre-stressed field or an orthotropic material to the internal forces,
the fiber orientation has to be used.

3.2.4.3 Discretization with Fiber Orientation

The following relations to rotate the stress S and strain E tensor in Voigt notation
are needed, see i.e. Decolon (2000),

{S}loc = [Tσ]{S}fib (3.2.57)

and

{E}loc = [Tε]{E}fib (3.2.58)

where the rotation matrix for the stresses Tσ and the strains Tε are given respec-
tively by
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Tσ =




cos2θ sin2θ −2sinθcosθ
sin2θ cos2θ 2sinθcosθ

sinθcosθ −sinθcosθ cos2θ − sin2θ


 (3.2.59)

and

Tε =




cos2θ sin2θ −sinθcosθ
sin2θ cos2θ sinθcosθ

2sinθcosθ −2sinθcosθ cos2θ − sin2θ


 (3.2.60)

where θ is given by Eq. (3.2.19). The inverse relationship of Eq. (3.2.57) and Eq.
(3.2.58) is given respectively by

{S}fib = [TT
ε ]{S}loc (3.2.61)

and

{E}fib = [TT
σ ]{E}loc (3.2.62)

The variation of the Green-Lagrange strain tensor in Voigt notation with the
fiber orientation yields

{δE}fib = [TT
σ ]{δE}loc = [TT

σ ][Q]{δE}cur = [TT
σ ][Q][B]cur{δu} (3.2.63)

where the strain-displacement matrix with the fiber orientation is given by the
following equation

Bfib
ea = [TT

ec]σ QcbB
cur
ba or Bfib = TT

σ QBcur (3.2.64)

Finally the internal forces with the fiber orientation and in Cartesian coordinates
are given by

f int
I =

∫

Ω0

[BT
I ]cur[QT ][Tσ]{S}fibdΩ0 =

∫

Ω0

[BT
I ]fib{S}fibdΩ0 (3.2.65)

or in indicial notation

f int
a =

∫

Ω0

[BT
ab]

cur[QT
bc][Tce]σ {Se}fibdΩ0 =

∫

Ω0

[BT
ae]

fib{Se}fibdΩ0 (3.2.66)

Note that if the angle θ = 0 when no fiber orientation is performed, the rotation
matrix Tσ = I3×3 and the classical membrane element is recovered.

To add a prestressed field to the membrane structure once the fiber orientation
is performed, simple add the desire prestressed value, yielding

f int
I =

∫

Ω0

[BT
I ]fib

(
{S}fib + {S}prestressed

)
dΩ0 (3.2.67)
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or in indicial notation

f int
a =

∫

Ω0

[BT
ae]

fib
(
{Se}fib + {Se}prestressed

)
dΩ0 (3.2.68)

Also an orthotropic analysis can be performed once the fiber orientation is done,
as shown next.

3.2.4.4 Plane Stress Constitutive Equation

The constitutive equation used in this work is a Saint Venant-Kirchhoff material
model that express the stresses {S}fib from the strains {E}fib as

{S}fib = [C]{E}fib (3.2.69)

where the constitutive matrix [C] for plane stress isotropic materials is given by

C =
E

1 − υ2




1 υ 0
υ 1 0
0 0 (1 − υ)/2


 (3.2.70)

where E is the elastic or Young’s modulus, and υ is the Poisson’s ratio. For
orthotropic materials the constitutive matrix is

C =
1

1 − υxyυyx




Ex υyxEx 0
υxyEy Ey 0

0 0 (1 − υxyυyx)Gxy


 (3.2.71)

with Exυyx = Eyυxy and Gxy being the shear modulus. The Green-Lagrange strain
tensor in Voigt notation {E}fib is found substituting Eq. (3.2.50) into Eq. (3.2.62)
yielding

{E}fib = [TT
σ ][Q]{E}cur (3.2.72)

3.2.4.5 Implementation of Triangular Three-Node Finite Elements

Rotation-free thin shells give excellent solutions to many structural problems when
the finite element used for the discretization is a three-node triangle. Since any shell
element is composed of a bending part and a membrane part, a membrane element
for three-node triangles is developed next, which will be used as the membrane part
of the rotation-free shell element described in section 3.4.

Consider the triangular element of Fig. 3.11. To clarify the notation, compo-
nents of the vector (x1, x2, x3) are change to (x, y, z), while the components of
(ξ1, ξ2) are now (ξ, η). The shape functions for this elements are given by

N1 = 1 − ξ − η, N2 = ξ, N3 = η (3.2.73)

Derivatives of the shape functions are
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Figure 3.11 Triangular three-node finite element

∂N1

∂ξ
= −1,

∂N1

∂η
= −1

∂N2

∂ξ
= 1,

∂N2

∂η
= 0

∂N3

∂ξ
= 0,

∂N3

∂η
= 1

(3.2.74)

From Eq. (3.2.42) the following equation is derived

∂xh
1

∂ξ1
=

∂xh

∂ξ
=

nnode=3∑

J=1

∂NJ

∂ξ
x
J

=
∂N1

∂ξ
x
J=1

+
∂N2

∂ξ
x
J=2

+
∂N3

∂ξ
x
J=3

(3.2.75)

where Eq. (3.2.40) has been used, and the subindexes naming the element nodes
J = 1, J = 2 and J = 3 are used to clarify the notation. Substituting the corre-
sponding values from Eq. (3.2.74) into Eq. (3.2.75) yields

∂xh

∂ξ
= (−1)x

J=1
+ (1)x

J=2
+ (0)x

J=3
= x

J=2
− x

J=1
(3.2.76)

Similarly for the other derivatives of Eq. (3.2.42) respect to ξ

∂xh
2

∂ξ1
=

∂yh

∂ξ
=

3∑

J=1

∂NJ

∂ξ
y

J
= y

J=2
− y

J=1
(3.2.77)
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∂xh
3

∂ξ1
=

∂zh

∂ξ
=

3∑

J=1

∂NJ

∂ξ
z
J

= z
J=2

− z
J=1

(3.2.78)

Derivatives of Eq. (3.2.42) respect to η yield

∂xh
1

∂ξ2
=

∂xh

∂η
=

3∑

J=1

∂NJ

∂η
x
J

=
∂N1

∂η
x
J=1

+
∂N2

∂η
x
J=2

+
∂N3

∂η
x
J=3

(3.2.79)

∂xh

∂η
= (−1)x

J=1
+ (0)x

J=2
+ (1)x

J=3
= x

J=3
− x

J=1
(3.2.80)

and

∂xh
2

∂ξ2
=

∂yh

∂η
=

3∑

J=1

∂NJ

∂η
y

J
= y

J=3
− y

J=1
(3.2.81)

∂xh
3

∂ξ2
=

∂zh

∂η
=

3∑

J=1

∂NJ

∂η
z
J

= z
J=3

− z
J=1

(3.2.82)

The strain-displacement matrix for this element is composed of

Bcur = [Bcur
1 ,Bcur

2 ,Bcur
3 ] (3.2.83)

where each submatrix is found substituting Eqs. (3.2.74)-(3.2.82) into Eq. (3.2.42)
to yield

Bcur
1 =




x
J=1

− x
J=2

y
J=1

− y
J=2

z
J=1

− z
J=2

x
J=1

− x
J=3

y
J=1

− y
J=3

z
J=1

− z
J=3

2x
J=1

− x
J=2

− x
J=3

2y
J=1

− y
J=2

− y
J=3

2z
J=1

− z
J=2

− z
J=3




(3.2.84)
or

Bcur
1 =




− (x2 − x1)
T

− (x3 − x1)
T

− (x2 − x1)
T − (x3 − x1)

T


 (3.2.85)

Similarly

Bcur
2 =




x
J=2

− x
J=1

y
J=2

− y
J=1

z
J=2

− z
J=1

0 0 0
x
J=3

− x
J=1

y
J=3

− y
J=1

z
J=3

− z
J=1


 =




(x2 − x1)
T

0

(x3 − x1)
T


 (3.2.86)

and
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Bcur
3 =




0 0 0
x
J=3

− x
J=1

y
J=3

− y
J=1

z
J=3

− z
J=1

x
J=2

− x
J=1

y
J=2

− y
J=1

z
J=2

− z
J=1


 =




0

(x3 − x1)
T

(x2 − x1)
T


 (3.2.87)

The complete strain-displacement matrix for the three-node triangular finite
element is given by

Bcur =




− (x2 − x1)
T

(x2 − x1)
T

0

− (x3 − x1)
T

0 (x3 − x1)
T

− (x2 − x1)
T − (x3 − x1)

T
(x3 − x1)

T
(x2 − x1)

T


 (3.2.88)

The internal forces for this element in Cartesian coordinates are given by

f int
(9×1)

=

∫

Ω0

[BT ]cur
(9×3)

[QT ]
(3×3)

[Tσ]
(3×3)

{S}fib
(3×1)

dΩ0 (3.2.89)

Usually at this point numerical integration is performed. However, for this
element exact integration can be found using the Cross product

A0 =
1

2
‖(X2 − X1) × (X3 − X1)‖ (3.2.90)

giving the area A0 of the triangular membrane element. Therefore reference domain
integral for the internal forces can be written as

f int = A0h[BT ]cur[QT ][Tσ]{S}fib (3.2.91)

or in indicial notation

f int
a = A0h[BT

ab]
cur[QT

bc][Tce]σ {Se}fib (3.2.92)

where h is the membrane thickness in the reference configuration.
To find the components of the strain tensor, discretization of the covariant base

vectors for this element in the reference configuration, Eq. (3.2.25), yields

G1 =

nnode=3∑

I=1

∂NI

∂ξ
XI = X2 − X1 (3.2.93)

and

G2 =

nnode=3∑

I=1

∂NI

∂η
XI = X3 − X1 (3.2.94)

The corresponding discretization in the current configuration for this element is
given by Eq. (3.2.27) yielding
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g1 =

nnode=3∑

I=1

∂NI

∂ξ
xI = x2 − x1 (3.2.95)

and

g2 =

nnode=3∑

I=1

∂NI

∂η
xI = x3 − x1 (3.2.96)

Substituting Eqs. (3.2.93)-(3.2.96) into Eq. (3.2.5) gives the covariant components
of the metric tensor Gαβ and gαβ , which substituted into Eq. (3.2.13) yields the
components of the strain tensor Ecur.

The transformation matrix Q is a function of the components of the tensor Jξ

given by Eq. (3.2.46) where

G1 · eloc
1 = G1 ·

G1

‖G1‖
(3.2.97)

Here Eq. (3.2.17) has been substituted. Using the identity

‖G1‖ = (G1 · G1)
1/2

(3.2.98)

and the covariant base vector G1 of Eq. (3.2.93), Eq. (3.2.97) can be written as

G1 · eloc
1 = ‖X2 − X1‖ (3.2.99)

The remaining components of the Jacobian tensor J̄ξ are found using the same
methodology yielding

J̄ξ =



‖X2 − X1‖ (X2−X1)·(X3−X1)

‖X2−X1‖

0 ‖(X2−X1)×(X3−X1)‖
‖X2−X1‖


 (3.2.100)

Components of Eq. (3.2.100) are used to build the transformation matrix Q

giving by Eq. (3.2.53) and Eq. (3.2.49). Note that this matrix is always evaluated
in the reference configuration.

An important advantage of this element is that all the expression can be ob-
tained with the vectors X2 −X1 and X3 −X1 of the reference configuration which
are evaluated just once, and the vectors x2 − x1 and x3 − x1 of the current config-
uration.

3.2.4.6 Pressure Follower Forces Discretization

From the virtual external work for pressure follower forces given by Eq. (3.2.16), the
external forces emerge for the three-node triangular element with constant pressure
as

f ext =
1

3
Apn (3.2.101)
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where A is the area of the triangular membrane element in current configuration
given by

A =
1

2
‖(x2 − x1) × (x3 − x1)‖ (3.2.102)

and n is the normal to the current surface, which for the three-node triangle is
given by

n =
(x2 − x1) × (x3 − x1)

‖(x2 − x1) × (x3 − x1)‖
(3.2.103)

Substituting Eqs. (3.2.102)-(3.2.103) into Eq. (3.2.101), the external forces can be
written as

f ext =
p

6
(x2 − x1) × (x3 − x1) (3.2.104)

3.2.5 Wrinkling

Here a wrinkling algorithm based on a modified material model is developed. The
idea of this algorithm is to present a simple algorithm that allow to solve the
wrinkling phenomena that are not predicted by normal membrane theory even its
flexural stiffness vanishes. This algorithm is not intended for time-history analysis,
consequently only the final solution is accurate.

At any point on its surface, a membrane must be in one of three states. In a
slack state, the membrane is not stretched in any direction. In a taut state, the
membrane is in tension in all directions. If the membrane is neither taut not slack,
it is in a wrinkle state corresponding to uniaxial tension. In a slack or wrinkled
criterion the real configuration of the membrane is undefined. To avoid this, the
slack or wrinkled region can be replaced with an average smoothed pseudo-surface
where material points on the real wrinkled surface are projected onto the pseudo-
surface.

To predict the real configuration of a wrinkled membrane, a very dense finite
element mesh is needed to perform the analysis, which sometimes needs an initial
perturbation, see Tessler et al. (2003). However from an engineering point of view,
the shape of the wrinkles are not as important as the membrane stresses. Therefore
different wrinkling algorithms are developed.

In this work, the wrinkling criterion based on principal stresses and principal
strains introduced by Roddeman et al. (1987a) is used. Its main objective is the
differentiation of a membrane state for isotropic and orthotropic materials. Table
3.2 shows this classification.

First the membrane state is determined. If the membrane is taut, the consti-
tutive matrix [C] does not need to be modified. Then [C

CON
] = [C] and the state

stress is computed as

{S}fib = [C
CON

]{E}fib (3.2.105)
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Stress and strain Wrinkling Membrane
SII > 0 No Taut

EI > 0 and SII ≤ 0 One axial Wrinkled
EI ≤ 0 Two axial Slack

Table 3.2 Wrinkling criterion

If the membrane is slack, components of the constitutive matrix [C] are modified
yielding [C

CON
] = 0 and the stress field is simply

{S}fib = 0 (3.2.106)

Finally if the membrane is wrinkled, the angle θσ of principal stresses is found.
With this angle the rotation matrix for stresses given by Eq. (3.2.59) and the
rotation matrix for strains given by Eq. (3.2.60) are built, where the angle θ is
replaced by the angle θσ. Then the constitutive matrix is rotated with the following
equation

[C̃] = [TT
ε ][C][Tε] (3.2.107)

This new rotated constitutive matrix is modified as shown next yielding

[C
MOD

] =




C̃
1,1

0 C̃
1,3

0 0 0

C̃
3,1

0 C̃
3,3




(3.2.108)

Finally this modified constitutive matrix is rotated back to its original position
with the following equation giving

[C
CON

] = [Tσ][C
MOD

][TT
σ ] (3.2.109)

Now the stress field for the wrinkled state is computed using

{S}fib = [C
CON

]{E}fib (3.2.110)

Since a geometrically non-linear problem is being solved, it is common to use
a Newton-Raphson scheme with an appropriate linearization. Usually each time
step ti is solved within 3 to 5 Newton-Raphson iterations. If the wrinkling algo-
rithm presented is applied at each iteration, then the number of iterations may be
increased significantly.

To avoid this problem, the wrinkling algorithm is applied only for the first
two iterations of the time step. After the second iteration the constitutive matrix
[C

CON
] is kept constant until convergence for the time step is reached. Therefore

the model perform 4 to 6 Newton-Raphson iterations per time step.
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An important aspect to be accounted for orthotropic materials is to find the
correct wrinkling direction, as given in Jarasjarungkiat et al. (2007).

A limitation of this work is that the principal stress direction is taken as the
wrinkling direction, which is not true for orthotropic materials. However for the
studied cases, the solution is quite similar to the reported by other investigations.

3.3 Cable Elements

Cable elements are modeled as geometrically non-linear unidimensional truss ele-
ments in Euclidean space. Here a cable element is developed as a particular case
of the membrane theory.

3.3.1 Cable Formulation

The position vector X for the cable element in the reference configuration Ω0 is
defined by one independent curvilinear coordinate ξ, shown in Fig. 3.12, as

X

Z

Y

1

2

3
Y

Y

1

2

Figure 3.12 Cable two-node and three-node finite elements

X = X(ξ) (3.3.1)

The position vector x of the current configuration Ω is given by

x = x(ξ, t) (3.3.2)

The covariant base vector of the curvilinear coordinate system for this element on
Ω0 and Ω are defined respectively by

G1 =
∂X

∂ξ
, g1 =

∂x

∂ξ
(3.3.3)

The covariant components of the metric tensors are given by

G11 = G1 · G1 g11 = g1 · g1 (3.3.4)
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for the reference and current configurations respectively. The contravariant base
vectors are given for Ω0 and Ω respectively by

G1 = G11 · G1 g1 = g11 · g1 (3.3.5)

where the contravariant components of the metric tensors are

G11 =
1

G11
g11 =

1

g11
(3.3.6)

for the corresponding configurations. The Green-Lagrange strain tensor for the
cable element is given by

E cur
11 =

1

2
(g11 − G11) (3.3.7)

Using the appropriate constitutive equation to relate the second Piola-Kirchhoff
stress tensor and the Green-Lagrange strain tensor in curvilinear coordinates, the
stress tensor S11

cur is found.
From Eq. (3.3.4) and Eq. (3.3.7), the variation δE cur

11 yields

δE cur
11 =

1

2
δg11 = g1 · δg1 (3.3.8)

Finally the virtual internal work, Eq. (3.1.11), can be expressed in curvilinear
coordinates for the cable element as

δW int =

∫

Ω0

δE cur
11 S11

curdΩ0 (3.3.9)

3.3.2 Finite Element Discretization for Cables

The discretization is established for the total Lagrangian formulation. Here a two-
node cable element is developed. Consequently Eq. (3.3.1) is approximated by

Xh(ξ) =

nnode∑

I=1

NI(ξ)XI or Xh
i (ξ) =

nnode∑

I=1

NI(ξ)XiI ∀i = 1, ndime

(3.3.10)
where the shape functions NI(ξ) are given by

N1 =
1

2
(1 − ξ) , N2 =

1

2
(1 + ξ) (3.3.11)

Derivatives of the shape functions yield

∂N1

∂ξ
= −1

2
ξ,

∂N2

∂ξ
=

1

2
ξ (3.3.12)

The equation of motion, Eq. (3.3.2), is given by
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xh
i (ξ, t) =

nnode∑

I=1

NI(ξ)xiI(t) ∀i = 1, ndime

or xh(ξ, t) =

nnode∑

I=1

NI(ξ)xI(t)

(3.3.13)

The covariant base vector in the reference configuration Ω0 is expressed by

G1 =

nnode∑

I=1

∂NI

∂ξ
XI =

1

2
(X2 − X1) (3.3.14)

In the current configuration Ω the covariant base vector is

g1 =

nnode∑

I=1

∂NI

∂ξ
xI =

1

2
(x2 − x1) (3.3.15)

which variation δg1 is expressed as

δg1 =
1

2
(δu2 − δu1) (3.3.16)

Covariant components of the metric tensor, Eq. (3.3.4), yield

G11 =
1

4
(X2 − X1) · (X2 − X1) =

1

4
L2, g11 =

1

4
(x2 − x1) · (x2 − x1) =

1

4
l 2

(3.3.17)
where L is the length of the element in the reference configuration and l is the
length of the current configuration. Substituting Eq. (3.3.17) into Eq. (3.3.7) the
Green-Lagrange strain tensor yields

E cur
11 =

1

8

(
l2 − L2

)
(3.3.18)

Transformation from curvilinear coordinates to Cartesian coordinates requires

J11 = G1 · eloc
1 =

1

2
L (3.3.19)

and

E cur
11 = J11E

loc
11 J11 = J2

11E
loc
x (3.3.20)

From Eq. (3.3.20)

E loc
x =

1

J2
11

E cur
11 (3.3.21)

and



3.4 Shell Elements 57

E loc
x =

l 2 − L2

2L2
(3.3.22)

The discretization of δE cur
11 , given by Eq. (3.3.8) yields

δE cur
11 =

1

4
(x2 − x1) · (δu2 − δu1) (3.3.23)

which can be written in matrix notation as

δE cur
11 =

1

4

[
− (x2 − x1)

T
(x2 − x1)

T
] [δu1

δu2

]
(3.3.24)

where the strain-displacement matrix for the cable element is given by

Bcur
(1×6)

=
1

4

[
− (x2 − x1)

T
(x2 − x1)

T
]

(3.3.25)

From Eq. (3.3.21), transformation of Bcur from curvilinear coordinates to Cartesian
coordinates yields

B loc
(1×6)

=
1

L2

[
− (x2 − x1)

T
(x2 − x1)

T
]

(3.3.26)

Finally, the internal forces for a two-node cable element are

f int
(6×1)

= A0 L [BT ] loc
(6×1)

{Sx}loc
(1×1)

(3.3.27)

where A0 is the cross-sectional area of the element, L is the length in the reference
configuration and S loc

x = E E loc
x with E being the Young’s modulus.

3.4 Shell Elements

3.4.1 Introduction

Shells are used in wide structural fields such as civil, mechanical, naval and airspace
engineering. A formulation based on thin-shell theory can be used to analyze several
applications of shell structures. Since shell analysis demand a lot of computer
memory and cpu time to be computed, a formulation using displacements as the
only degrees of freedom is developed.

The basic idea of the shell theory is to take into account the particular three-
dimension model and by integration over the thickness get a two-dimensional model
in the Euclidean space formulated on the middle surface of the shell. The pioneers of
this kind of derivation were Kirchhoff (1876) and Love (1934). The main assumption
of this theory of shells (plates) is to preserve the orthogonality of the normal to the
middle-surface. The well-known problems to derive conforming C 1 continuous thin
shell elements motivated a number of authors to explore the possibilities of Reissner
(1945) and Mindlin (1951) theory. This theory relaxes the normal orthogonality
condition, introducing the shear deformation stress that is important for thick shell
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simulations. Unfortunately Reissner-Mindlin plate and shell elements suffer the so-
called shear locking in the thin limit. This difficulty wrecked the full success of
Reissner-Mindlin plate and shell elements for practical engineering analysis.

The first developments of plate and shell elements using Kirchhoff-Love theory
were made by Melosh (1961), Zienkiewics and Cheung (1964), Clough and Tocher
(1965) among many others. On the other hand, Hughes et al. (1977), Oñate et al.
(1979), Bathe and Dvorkin (1985) and Zienkiewics et al. (1990) proposed the first
plate and shell elements based on Reissner-Mindlin theory. A complete state of the
art for linear plate elements can be found in Oñate (1992).

Nonlinear behavior of shell elements is continuously increasing because of its
important aspects in which large rotations and large deformations are involved as
well as nonlinear material properties. Several studies have been carried out for
example by Simo and Fox (1989), Simo et al. (1990a), Simo and Kennedy (1992),
among many others. Since shell analysis requires a lot of memory and cpu-time
to compute, several authors have tried to derive plate and shell elements with
displacements as the only nodal variables.

The idea of using the deflection as the only nodal variables, i.e. rotation-free,
is not new and many different procedures are based on this approach, i.e. Ugu-
ral (1981). The well-known difficulties of finite difference analysis with boundary
conditions and the problems for dealing with non-orthogonal or unstructured grids
limited their progress. One of the first attempts to use finite elements was due to
Nay and Utku (1972) who derived a rotation free thin plate triangle using a least-
square quadratic approximation to describe the deflection field within the patch
surrounding a node in terms of the deflections of the patch nodes. Later, Barnes
(1977) proposed a method for deriving a three-node triangle with the nodal deflec-
tions as the only degrees of freedom based on the computation of the curvatures in
terms of the nodal rotations at the middle-side points from the nodal deflections of
adjacent elements. This method was exploited by Hampshire et al. (1992) assuming
that the elements are hinged together at their common boundaries and the bending
stiffness is represented by torsional springs resisting rotations about the hinge line.
Oñate and Cervera (1993) proposed a general procedure based on finite volume con-
cepts for deriving thin plate elements of triangular and quadrilateral shapes with
the nodal deflections as the only degree of freedom. Brunet and Sabourin (1994)
proposed a different approach to compute the constant curvature field within each
triangle in terms of the six-node displacement of a macro-element. This triangular
element was successfully applied to nonlinear shell analysis using an explicit dy-
namic approach. Zárate (1996) continue with the study of rotation free elements of
Oñate and Cervera (1993) developing new triangular elements. This formulation
applied to large deformations with an explicit dynamic procedure was presented
by Cendoya (1996). Rojek et al. (1998) proposed the same element that Cendoya
(1996) but applied to metal forming processes. As an alternative formulation for
large strain plasticity, the BST shell element was introduced by Flores and Oñate
(2001). A new perspective using a subdivision of surfaces for thin-shell analysis was
introduced by Cirak et al. (2000) for small strains, and Cirak and Ortiz (2001) for
large deformations. An improvement of the BST shell element using an assumed
strain approach is given by Flores and Oñate (2005).
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3.4.2 Shell Formulation

A finite deformation shell formulation is presented. Here Greek indices take on
values of 1 and 2 while lower latin indices take on values of 1, 2 and 3. The
position vector R̃ on the middle surface in the reference configuration is defined by
the indepent curvilinear coordinates ξ1, ξ2 and ζ as

R̃
(
ξ1, ξ2, ζ

)
= X

(
ξ1, ξ2

)
+ ζN

(
ξ1, ξ2

)
(3.4.1)

where N is the normal to the middle surface on Ω0 and −h0

2 ≤ ζ ≤ h0

2 with h0

being the shell thickness in the reference configuration, see Fig. 3.13.

Y
1

Y
2

h0

N

Figure 3.13 Shell middle surface

The position vector r̃ on the current configuration is given by

r̃
(
ξ1, ξ2, ζ, t

)
= x

(
ξ1, ξ2, t

)
+ ζλ

(
ξ1, ξ2, t

)
n
(
ξ1, ξ2, t

)
(3.4.2)

where n is the normal to the middle surface on Ω and λ is the thickness stretch that
relates the thickness h of the deformed shell to the thickness h0 of the undeformed
shell. Finite thickness stretch measured by λ play an important role in problems
involving finite membrane strains or contact, as given in Simo et al. (1990b). How-
ever, in this work a Saint Venant-Kirchhoff material model is used and therefore
only small strains are assumed. Consequently, the λ term is not considered.

The convected covariant base vectors of the curvilinear coordinates system on
Ω0 are defined by

G̃α =
∂R̃

∂ξα
=

∂X

∂ξα
+ ζ

∂N

∂ξα
= Gα + ζN,α

G̃3 =
∂R̃

∂ζ
= N

(3.4.3)
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Here Gα are the middle surface basis vectors in the reference configuration. The
convected covariant base vectors on the current configuration Ω are given by

g̃α =
∂r̃

∂ξα
=

∂x

∂ξα
+ ζ

∂n

∂ξα
= gα + ζn,α

g̃3 =
∂r̃

∂ζ
= n

(3.4.4)

where gα are the middle surface basis vectors in the current configuration. The
convected contravariant base vectors follow from the relations

G̃
i · G̃j = δ i

j , g̃
i · g̃j = δ i

j (3.4.5)

where δ i
j is the Kronecker delta. The covariant metric tensors in both configurations

follow as

G̃ij = G̃i · G̃j , g̃ij = g̃i · g̃j (3.4.6)

Components of the Green-Lagrange strain tensor are given as the difference
between the covariant metric tensors on the current and reference configurations of
the shell yielding

Eij =
1

2

(
g̃ij − G̃ij

)
(3.4.7)

The Green-Lagrange strain tensor can be extended to be written in the form of

Eij = ǫij + ζκij + ζ2γij (3.4.8)

where the non-zero components of the above expression are given by

ǫαβ =
1

2

(
gα · gβ − Gα · Gβ

)
, ǫα3 =

1

2
(gα · n − Gα · N)

ǫ33 =
1

2
(n · n − N · N)

(3.4.9)

καβ = gα · n,β − Gα · N,β (3.4.10)

γαβ =
1

2
(n,α · n,β − N,α · N,β) (3.4.11)

This work is intended for the Kirchhoff-Love theory of thin shells, consequently
the deformed director n coincides with the unit normal to the current middle sur-
face. Therefore the values ǫα3 and ǫ33 vanish identically and values for thin shells of
ζ2 can be neglected. This constraint yields the components of the Green-Lagrange
strain tensor to be deduced from the deformation of the middle surface of the shell
as
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Eαβ = ǫαβ + ζκαβ = E
memb

αβ + ζE
bend

αβ (3.4.12)

where

ǫαβ =
1

2
(gαβ − Gαβ) (3.4.13)

is identical to Eq. (3.2.13) and measure membrane strains. For convenience of the
discretization given in section 3.4.3, the bending strains are written as2

καβ = Gα,β · N − gα,β · n = Kαβ − kαβ (3.4.14)

The variation of the Green-Lagrange strain tensor is given by the variation of Eq.
(3.4.12) yielding

δEαβ = δE
memb

αβ + ζδE
bend

αβ (3.4.15)

With an appropriate constitutive equation to relate stresses and strains, the
virtual internal work is expressed as

δW int =

∫

Ω0

∫ + h
2

−h
2

δEαβSαβdζdΩ0 (3.4.16)

where Ω0 is the middle surface domain.

3.4.3 Finite Element Discretization for Shells

The discretization used for the thin shell element is given for the total Lagrangian
formulation. Discretization only for bending strains is presented since membrane
strains given in Eq. (3.4.13) are developed in section 3.2.4.

In this work the rotation free triangle element presented by Flores and Oñate
(2001) is extended to account for the principal fiber direction and perform the
analysis with initially pre-stressed fields or orthotropic materials.
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n
1

n
2

n
3

M
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2

3

Figure 3.14 Shell patch

2(gα · n) ,β = gα · n,β + gα,β · n = 0 and (Gα · N) ,β = Gα · N,β + Gα,β · N = 0
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Bending effect for this rotation-free triangle element is given by the displacement
field of one element and all nodes of immediately adjacent elements, as shown in
Fig. 3.14.

The path description is as follows:

• Element number is inside a circle.

• Nodes of the main element (M) are numbered locally as 1, 2 and 3.

• Sides of the main element are defined by its local node opposite to the side.

• Adjacent elements are numbered with the number associated to the common
side 1, 2 and 3.

• The remaining nodes of the patch are numbered locally as 4, 5, and 6 corre-
sponding to nodes on adjacent elements (1), (2) and (3) respectively.

Conectivities for the path element are defined in table 3.3.

Conectivities
Element Node 1 Node 2 Node 3

(M) 1 2 3
(1) 4 3 2
(2) 5 1 3
(3) 6 2 1

Table 3.3 Patch conectivities

A local coordinate system must be defined for the patch. In the original work
of Flores and Oñate (2001), the following definition was proposed: the unit vector
eloc
1 was directed from node 1 to node 2. Unit vector eloc

3 was given by the normal
of the main element (M). The last unit vector was obtained by eloc

2 = eloc
3 × eloc

1 .
In this work, the local coordinate system is given by the local fiber Cartesian

base system, defined in section 3.2.3. Then the base system for each finite element
is given by the unit vectors e

fib
1 , e

fib
2 and the normal e

fib
3 . The choice for this local

system allow us to compute shells with a prestressed field as well as orthotropic
material definitions.

The bending part of Eq. (3.4.16) is given by,

δW int =

∫ + h
2

−h
2

∫

Ω0

δE
bend

αβ Sαβ
benddΩ0dζ (3.4.17)

and the values of E
bend

αβ and δE
bend

αβ are needed to evaluate the internal forces. The
bending strains for the current configuration are expressed by

kαβ = gα,β · n (3.4.18)

which can be written in the form

kαβ =
1

A0

∫

Ω0

gα,βdΩ0 · n (3.4.19)
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and then applying the divergence theorem3 yields

kαβ =
1

A0

∫

Γ0

n̄β gαdΓ0 · n (3.4.20)

where n̄β are the components of the normal to the boundary, in-plane with the unit

base vectors e
fib
1 and e

fib
2 , of the main element (M), as shown in Fig. 3.14. Since

the boundary integral of the three-node triangular main element can be computed
explicitly, then Eq. (3.4.20) is expressed as

kαβ =
1

A0

nsides∑

J=1

lJ n̄J
β gα · n (3.4.21)

where nsides = 3, J is the number of the side in the main element, lJ is the length
of side J and n̄J

β are the components of the normal to the boundary of side J of
the main element.

At this point it is convenient to change from curvilinear coordinates to the local
fiber Cartesian base system, so the whole patch is with the same local coordinate
system.

Discretization of gα is expressed in Eq. (3.2.27), which can be written explicitly
as

[
g1

g2

]
=

nnode∑

I=1




∂NI

∂ξ

∂NI

∂η


xI(t) (3.4.22)

Since the formulation is to be carried out in the local fiber system, the derivatives
of the shape functions need to be transformed. The Jacobian transformation tensor
Jξ in the current configuration is defined as

Jξ =

[
g1 · efib

1 g2 · efib
1

g1 · efib
2 g2 · efib

2

]
(3.4.23)

and the Cartesian derivatives become




∂NI

∂x

∂NI

∂y


 = J−T

ξ




∂NI

∂ξ

∂NI

∂η


 (3.4.24)

Then Eq. (3.4.22) can be written in Cartesian coordinates as

[
xh

,1

xh
,2

]
=

nnode∑

I=1




∂NI

∂x

∂NI

∂y


xI(t) (3.4.25)

Using Voigt notation, Eq. (3.4.21) can be written in local fiber Cartesian coordi-
nates as

3
R

Ω

∂u

∂xi
dΩ =

R

Γ
n̄iudΓ
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


k11

k22

k12


 =

1

A0

nsides∑

J=1

lJ




n̄J
1 0
0 n̄J

2

n̄J
2 n̄J

1



[
xh

,1 · n
xh

,2 · n

]
(3.4.26)

The constraints imposed by the Kirchhoff-Love theory of thin shells make the
product xh

,α ·n = 0. This problem is solved taking for xh
,α the average value between

the main triangle and each one of the adjacent elements yielding




k11

k22

k12


 =

1

A0

nsides∑

J=1

lJ




n̄J
1 0
0 n̄J

2

n̄J
2 n̄J

1






1
2

(
xM

,1 + xJ
,1

)
· n

1
2

(
xM

,2 + xJ
,2

)
· n


 (3.4.27)

which can be simplified to




k11

k22

k12


 =

1

2A0

nsides∑

J=1

lJ




n̄J
1 0
0 n̄J

2

n̄J
2 n̄J

1





xJ

,1 · n

xJ
,2 · n


 (3.4.28)

since xM
,α · n = 0 and where xJ

,α is given by



xJ

,1

xJ
,2


 =

nnode∑

I=1




∂NJ
I

∂x

∂NJ
I

∂y


xJ

I (3.4.29)

The same methodology is used to obtain the bending strains for the reference
configuration yielding




K11

K22

K12


 =

1

2A0

nsides∑

J=1

LJ




n̄J
1 0
0 n̄J

2

n̄J
2 n̄J

1





XJ

,1 · N

XJ
,2 · N


 (3.4.30)

The bending strain tensor in Voigt notation is then given by

{E}bend

=




κ11

κ22

κ12


 =




K11

K22

K12


−




k11

k22

k12


 (3.4.31)

The variation of the bending strain tensor in Voigt notation yields

δ {E}bend

=




δκ11

δκ22

δκ12


 = −




δk11

δk22

δk12


 (3.4.32)

where




δk11

δk22

δk12


 =

1

2A0

nsides∑

J=1

lJ




n̄J
1 0
0 n̄J

2

n̄J
2 n̄J

1






δ
(
xJ

,1 · n
)

δ
(
xJ

,2 · n
)


 (3.4.33)

The last term of the right hand side of Eq. (3.4.33) can be expanded to become
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δ
(
xJ

,α · n
)

= δxJ
,α · n + xJ

,α · δn (3.4.34)

The variation δxJ
,α yields




δxJ
,1

δxJ
,2


 =

nnode∑

I=1




∂NJ
I

∂x

∂NJ
I

∂y


 δuJ

I (3.4.35)

From Eq. (3.2.4), the normal n is given as a function of g3 which can be written
as

n =
g3

‖g3‖
=

g1 × g2

‖g1 × g2‖
=

xh
,1 × xh

,2∥∥xh
,1 × xh

,2

∥∥ (3.4.36)

Therefore the normal variation yields

δn = δ

(
g3

‖g3‖

)
= δg3

1

‖g3‖
− g3

δg3 · g3

‖g3‖3 (3.4.37)

which components of the convective covariant base vectors xh
,α give

δn1 = xh
,1 · δn = xh

,1 · δg3

1

‖g3‖
− xh

,1 · g3

δg3 · g3

‖g3‖3

δn2 = xh
,2 · δn = xh

,2 · δg3

1

‖g3‖
− xh

,2 · g3

δg3 · g3

‖g3‖3

(3.4.38)

where xh
,α · g3 = 0. The variation of g3 is

δg3 = δ
(
xh

,1 × xh
,2

)
= δxh

,1 × xh
,2 + xh

,1 × δxh
,2 (3.4.39)

Instead of the Cross product, it is convenient to express Eq. (3.4.39) in a matrix
form yielding

δg3 = −x̂
h
,2δx

h
,1 + x̂

h
,1δx

h
,2 (3.4.40)

where

x̂
h
,α =




0 −x3,α x2,α

x3,α 0 −x1,α

−x2,α x1,α 0


 (3.4.41)

Substituting Eq. (3.4.40) into Eq. (3.4.38) leads to

δn1 =
1

‖g3‖
(
−xh

,1 · x̂h
,2δx

h
,1 + xh

,1 · x̂h
,1δx

h
,2

)

δn2 =
1

‖g3‖
(
−xh

,2 · x̂h
,2δx

h
,1 + xh

,2 · x̂h
,1δx

h
,2

) (3.4.42)
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However xh
,1 · x̂h

,1δx
h
,2 = xh

,2 · x̂h
,2δx

h
,1 = 0, yielding

δn1 =
1

‖g3‖
(
−xh

,1 × xh
,2 · δxh

,1

)
= −n · δxh

,1

δn2 =
1

‖g3‖
(
xh

,2 × xh
,1 · δxh

,2

)
= −n · δxh

,2

(3.4.43)

and Eq. (3.4.37) can be written as

δn = δn1x̃
h
,1 + δn2x̃

h
,2 (3.4.44)

where x̃h
,α are the convective contravariant base vectors given by Eq. (3.2.6) or

simply by

x̃h
,1 =

1

‖g3‖
xh

,2 × n , x̃h
,2 = − 1

‖g3‖
xh

,1 × n (3.4.45)

From Eq. (3.4.25) the variation δxh
,α is

[
δxh

,1

δxh
,2

]
=

nnode∑

I=1




∂NI

∂x

∂NI

∂y


 δuI (3.4.46)

Substituting Eq. (3.4.46) into Eq. (3.4.43), and the resulting equation into Eq.
(3.4.44) yields

δn = −
nnode∑

I=1

(
∂NI

∂x
x̃h

,1 +
∂NI

∂y
x̃h

,2

)
n · δuI (3.4.47)

Substituting Eq. (3.4.35) and Eq. (3.4.47) into Eq. (3.4.34) leads to




δ
(
xJ

,1 · n
)

δ
(
xJ

,2 · n
)


 =

nnode∑

I=1




∂NJ
I

∂x

∂NJ
I

∂y


n · δuJ

I −
nnode∑

I=1




∂NI

∂x xJ
,1 · x̃h

,1 + ∂NI

∂y xJ
,1 · x̃h

,2

∂NI

∂x xJ
,2 · x̃h

,1 + ∂NI

∂y xJ
,2 · x̃h

,2


n · δuI

(3.4.48)
Now substituting Eq. (3.4.48) into Eq. (3.4.33) yields



δk11

δk22

δk12


 =

1

2A0

nsides∑

J=1

lJ




n̄J
1 0
0 n̄J

2

n̄J
2 n̄J

1




nnode∑

I=1




∂NJ
I

∂x

∂NJ
I

∂y


n · δuJ

I +

− 1

2A0

nsides∑

J=1

lJ




n̄J
1 0
0 n̄J

2

n̄J
2 n̄J

1




nnode∑

I=1




∂NI

∂x xJ
,1 · x̃h

,1 + ∂NI

∂y xJ
,1 · x̃h

,2

∂NI

∂x xJ
,2 · x̃h

,1 + ∂NI

∂y xJ
,2 · x̃h

,2


n · δuI

(3.4.49)
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Finally substituting Eq. (3.4.49) into Eq. (3.4.32), the variation of the bending
strain tensor in Voigt notation can be written explicitly as

δ {E}bend
=

1

2A0

nsides∑

J=1

lJ




n̄J
1 0
0 n̄J

2

n̄J
2 n̄J

1




nnode∑

I=1




∂NI

∂x xJ
,1 · x̃h

,1 + ∂NI

∂y xJ
,1 · x̃h

,2

∂NI

∂x xJ
,2 · x̃h

,1 + ∂NI

∂y xJ
,2 · x̃h

,2


n · δuI +

− 1

2A0

nsides∑

J=1

lJ




n̄J
1 0
0 n̄J

2

n̄J
2 n̄J

1




nnode∑

I=1




∂NJ
I

∂x

∂NJ
I

∂y


n · δuJ

I

(3.4.50)

The variation of the bending strain tensor can be expressed in compact form as

δ {E}bend
= [B]

main
δuI + [B]

adj
δuJ

I (3.4.51)

where the expression of the strain-displacement matrix [B]
main

for the main element

and [B]
adj

for the adjacent element is taken from Eq. (3.4.50). The complete strain-
displacement matrix for bending is given by

[B]
bend

= [B]
main

+ [B]
adj

(3.4.52)

3.4.3.1 Stress resultants and internal forces

The membrane and bending stress tensors may be given in a direct mechanistic
interpretation as force and moment resultants .

The constitutive equation given by Eq. (3.2.69) can be written for shell elements
as

{S} = [C] · {E} = [C] ·
(
{E}memb

+ ζ {E}bend
)

(3.4.53)

and the virtual internal work given by Eq. (3.4.16) for shells is expressed by

δW int =

∫

Ω0

∫ h
2

−h
2

(
δ {E}memb

+ ζδ {E}bend
)
· [C]

(
{E}memb

+ ζ {E}bend
)

dζdΩ0

(3.4.54)
which can be split to yield

δW int =

∫

Ω0

∫ h
2

−h
2

δ {E}memb · [C] {E}memb
dζdΩ0 +

∫

Ω0

∫ h
2

−h
2

ζ2δ {E}bend · [C] {E}bend
dζdΩ0

(3.4.55)
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In this work a linear material model is used and integration of the virtual internal
work becomes

δW int =A0hδ {E}memb · [C] {E}memb
+

A0
h3

12
δ {E}bend · [C] {E}bend

(3.4.56)

where the forces resultant {N} res
and the moments resultant {M} res

are obtained
as

{N} res
= h [C] {E}memb

{M} res
=

h3

12
[C] {E}bend

(3.4.57)

Finally the internal forces for the rotation-free shell element are expressed by

f int = A0

[
BT
]memb

{N} res
+ A0

[
BT
]bend

{M} res
(3.4.58)

where all expressions related to the membrane part are given directly in section
3.2.4.

3.4.3.2 Boundary conditions

The main difference between classical formulations for shells and rotation-free for-
mulations for shells is that the boundary conditions for rotation-free elements be-
come a part of the formulation that also needs to be implemented into the finite
element code.

It is important to give special considerations to the boundaries where there
might be one or two missing adjacent elements. In this work, the boundary condi-
tions are treated as given by Flores and Oñate (2001).

3.5 Time Integration Schemes

Time integration schemes can be classified as explicit solution and implicit solution.
In an explicit scheme the lumped mass is commonly used and consists in finding
the position vector x at time tn+1 using the known value of x at time tn. However
x is defined as x = X+u, and the only variable to find reduces to the displacement
vector u at time tn+1. Therefore in an explicit method, the time integration of
the discrete momentum equations does not require the solution of any equations.
An explicit solution is conditionally stable and requires that the time step size
∆t be less or equal than a critical time step size ∆tcrit for all time steps. The
critical time step depends on element size and the maximum wave speed for the
element material. The resulting time increment is often too small for practical
considerations in computer effort and for the response necessary to model slowly
varying loads.
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Implicit schemes are based on finding the position vector x at time tn+1 using
not only the known value of x at time tn but also the values at tn+1. Therefore in an
implicit method, the time integration of the discrete momentum equations requires
the solution of algebraic equations. An implicit solution is generally unconditionally
stable, i.e. see Hughes (1987), and can be one or two orders of magnitude larger
than the time step used in an explicit scheme. However the accuracy of the implicit
schemes deteriorates as the time step size increases relative to the period of response
of the system.

In this work only implicit schemes are solved for structural dynamic problems.
The semi-discrete equations of motion to be solved are given by

f int(un+1) + Mün+1 = f ext(un+1) (3.5.1)

where the acceleration vector ün+1 has to be integrated in time to solve the alge-
braic equations for un+1 from the second-order differential equations.

Among the several numerical integration methods available to integrate second
order equations, the most popular used in structural dynamics is the method de-
veloped by Newmark (1959). A major drawback of the Newmark integrator is the
tendency for high frequency noise to persist in the solution. On the other hand,
when linear damping or artificial viscosity is added, the accuracy is markedly de-
graded. Therefore other integration schemes are utilized with minor modifications
as the ones given by Hilber et al. (1977), Wood et al. (1980) and Chung and Hulbert
(1993). These methods improve numerical dissipation for high frequencies without
degrading the accuracy as much. Details of these methods can also be found in
Adams and Wood (1983) and Barbat and Canet (1994).

3.5.1 Newmark Method

In the Newmark method it is supposed that the solution at time step tn is known
for the displacements un and its time derivatives u̇n and ün. The semi-discrete
equations of motion to be solved at time tn+1 are given by

f int(un+1) + Mün+1 = f ext(un+1) (3.5.2)

and the displacements un+1 and its time derivative are approximated according to

u̇n+1 = u̇n + ∆t (1 − γ) ün + ∆tγün+1 (3.5.3)

un+1 = un + ∆tu̇n + ∆t2
(

1

2
− β

)
ün + ∆t2βün+1 (3.5.4)

where ∆t is the time step size, and γ, β are the parameters that determine the
stability and accuracy of the scheme. The different values for the parameters γ and
β originate the Newmark family methods. Stability conditions for the Newmark
method are given for implicit schemes by

Unconditional 2β ≥ γ ≥ 1

2
(3.5.5)
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Conditional γ ≥ 1

2
, β <

γ

2
with ω∆t ≤ Ωcrit

(3.5.6)

where Ωcrit is the stability condition and ω is the natural frequency and must be
satisfied for each mode in the system. Second-order accuracy is achieved if and
only if γ = 1

2 , and viscous damping has no effect on stability. When γ > 1
2 the

effect of viscous damping is to increase the critical time step of conditionally stable
Newmark methods. Two of the methods from the Newmark family for implicit
schemes with second-order of accuracy are given in table 3.4. Other methods can
be found, i.e. Hughes (1987).

Method γ parameter β parameter Stability condition
Trapezoidal rule 1/2 1/4 Unconditional

Linear acceleration 1/2 1/6 Ωcrit = 2
√

3

Table 3.4 Most commons members of the implicit Newmark family

To solve the semi-discrete equations of motion with algebraic equations, the
value of ün+1 is obtained from Eq. (3.5.4) yielding

ün+1 =
1

β∆t2
(un+1 − un) − 1

β∆t
u̇n −

(
1

2β
− 1

)
ün (3.5.7)

The value of u̇n+1 is obtained from the resulting equation of substituting Eq.
(3.5.7) into Eq. (3.5.3) yielding

u̇n+1 =
γ

β∆t
(un+1 − un) −

(
γ

β
− 1

)
u̇n − ∆t

(
γ

2β
− 1

)
ün (3.5.8)

When the system has some kind of damping, i.e. viscous damping as described
in section 3.5.5, the internal forces are function not only of un+1 but also of u̇n+1

and are written as f int(un+1, u̇n+1). Now substituting Eq. (3.5.7), and Eq. (3.5.8)
when necessary, into Eq. (3.5.2) yields

f int(un+1) +
1

β∆t2
Mun+1 − f ext(un+1) =

M

[
1

β∆t2
un +

1

β∆t
u̇n +

(
1

2β
− 1

)
ün

] (3.5.9)

and the algebraic equations can be solved for un+1 since all values at time tn are
known. With un+1 solved, the values for u̇n+1 and ün+1 are updated with Eqs.
(3.5.8) and (3.5.7) respectevely. The solution strategy used in this work to solve
Eq. (3.5.9) is given ahead in section 3.6.
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3.5.2 Hilber-Hughes-Taylor Method

Hilber, Hughes and Taylor introduced the α-method as given in Hilber et al.
(1977). This method introduces numerical dissipation for high frequencies without
degrading the order of accuracy. In the α-method, the Newmark formulas given by
Eqs. (3.5.3) and (3.5.4) are retained, whereas the semi-discrete equations of motion
are modified as follows

f int(un+1+αH
) + Mün+1 = f ext(un+1+αH

) (3.5.10)

where the only change is given by

un+1+αH
= (1 + αH)un+1 − αH un (3.5.11)

If αH = 0 this method reduces to the Newmark method. The method is uncondi-
tionally stable for linear systems when the parameters are selected such that

αH ∈
[
−1

3
, 0

]
, γ =

1 − 2αH

2
, β =

(1 − αH)2

4
(3.5.12)

Any value given here for αH results in a second-order accurate scheme. If αH = 0,
the method correspond to the Newmark trapezoidal rule method. There are no
general stability results for this method for nonlinear problems. Now substituting
Eq. (3.5.7), and Eq. (3.5.8) when necessary, into Eq. (3.5.10) yields

f int(un+1+αH
) +

1

β∆t2
Mun+1 − f ext(un+1+αH

) =

M

[
1

β∆t2
un +

1

β∆t
u̇n +

(
1

2β
− 1

)
ün

] (3.5.13)

and the algebraic equations can be solved for un+1. Note that the expression
f int(un+1+αH

) is not equal to (1 − αH) f int(un+1) − αHf int(un) since the problem is
nonlinear. The solution strategy used in this work to solve Eq. (3.5.13) is given
ahead in section 3.6.

3.5.3 Bossak Method

An extension of the Newmark method was proposed by Bossak as given in Wood
et al. (1980). This method defined by the Newmark formulas given by Eqs. (3.5.3)
and (3.5.4), and the semi-discrete equations of motion modified as follows

f int(un+1) + Mün+1−αB
= f ext(un+1) (3.5.14)

where the only change is given by

ün+1−αB
= (1 − αB) ün+1 + αB ün (3.5.15)

The method is unconditionally stable for linear systems when the parameters are
selected such that
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αB ∈
[
−1

3
, 0

]
, γ =

1 − 2αB

2
, β =

(1 − αB)2

4
(3.5.16)

Again, any value given here for αB results in a second-order accurate scheme. If
αB = 0, the method correspond to the Newmark trapezoidal rule method. A com-
parison of Bossak’s method and the Hilber-Hughes-Taylor α-method is presented
in Adams and Wood (1983). Both methods posses the same high-frequency dissi-
pation properties. Howerver it is easier to implement in a finite element code the
Bossak’s method. Now substituting Eq. (3.5.7), Eq. (3.5.15) , and Eq. (3.5.8)
when necessary, into Eq. (3.5.14) yields

f int(un+1) +
1 − αB

β∆t2
Mun+1 − f ext(un+1) =

M

[
1 − αB

β∆t2
un +

1 − αB

β∆t
u̇n +

(
1 − αB

2β
− 1

)
ün

] (3.5.17)

and the algebraic equations can be solved for un+1. The solution strategy used in
this work to solve Eq. (3.5.17) is given ahead in section 3.6.

3.5.4 Generalized-α Method

The generalized-α method was introduced by Chung and Hulbert (1993), which
achieves high-frequency dissipation while minimizing unwanted low-frequency dis-
sipation. This method is a combination of all the above methods presented. In the
generalized-α method, the Newmark formulas given by Eqs. (3.5.3) and (3.5.4) are
retained, whereas the semi-discrete equations of motion are modified as follows

f int
(
un+αs

f

)
+ Mün+αs

m
= f ext

(
un+αs

f

)
(3.5.18)

where the changes are given by

un+αs
f

=
(
1 − αs

f

)
un + αs

f un+1 (3.5.19)

ün+αs
m

= (1 − αs
m) ün + αs

m ün+1 (3.5.20)

Low frequency dissipation is optimal with

ρs
∞ ∈ [0, 1], αs

f =
1

1 + ρs
∞

, αs
m =

2 − ρs
∞

1 + ρs
∞

(3.5.21)

and the method is second-order accurate and posses high frequency dissipation
when

γ =
1

2
+ αs

m − αs
f , β =

1

4

(
1 + αs

m − αs
f

)2
(3.5.22)

Other possibilities for αs
f and αs

m, as given in Chung and Hulbert (1993), result in
the methods of Newmark, Bossak or α-method. For example if αs

f = 1 and αs
m = 1,
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the method correspond to the Newmark trapezoidal rule method. The algebraic
equations to be solved for un+1 are given by

f int
(
un+αs

f

)
+

αs
m

β∆t2
Mun+1 − f ext

(
un+αs

f

)
=

M

[
αs

m

β∆t2
un +

αs
m

β∆t
u̇n +

(
αs

m

2β
− 1

)
ün

] (3.5.23)

The solution strategy used in this work to solve Eq. (3.5.23) is given ahead in
section 3.6.

3.5.5 Structural Damping

The purpose of structural damping is to dissipate strain energy in a structure that is
stored due to deformation processes. The energy dissipation within a structure due
to material and structural damping depends on many factors such as the structural
material or the magnitude of deformations experienced. In a dynamic analysis, this
energy dissipation usually is accounted for by specifying an amount of viscoelastic
damping that would result in energy dissipation in the analytical model equivalent
to that expected to occur as a result of material and structural damping in the real
structure.

In this work, a viscoelastic damping is taken in account for geometrically non-
linear structures and consists of an extension of the viscoelastic damping given in
Oller (2001) for geometrically linear structures with Kelvin’s model.

In this model, the viscoelastic strain tensor is given as a function of the Green-
Lagrange strain tensor by

Evis = E + τĖ (3.5.24)

where τ is the retardation time. For linear problems this model yields a damping
term which is a function of the stiffness matrix K in the form of

D = τK (3.5.25)

where D is the damping matrix. A very popular damping scheme in structural
dynamics is given by the Rayleigh damping, which is a linear combination of the
stiffness and mass matrices as

D = αM + βK (3.5.26)

where α and β are the mass and stiffness damping constants respectively. As
demonstrated in Oller (2001), when α = 0, the Rayleigh and viscoelastic damping
are equivalent, that is

D = βK = τK (3.5.27)
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and the constant τ = β. Note that the damping matrix is only proportional to the
stiffness matrix. For nonlinear analysis, the damping is introduced directly only in
the internal forces, which are written as

f int = f int(un+1, u̇n+1) (3.5.28)

This way of introducing the viscoelastic strain yields in a natural form to add the
damping, and not like a trick as in the Rayleigh case.

The only difference in the solution between both damping schemes is given by
the stress field. While in the Rayleigh damping the stresses are given by S = CE,

the stresses for the viscoelastic model are given by S = C
(
E + τĖ

)
.

3.5.6 Quasi-static Solution

The methods described before are used to analyze dynamic problems since the
inertial forces are computed. However if a static analysis is required, problems may
be encountered when the membrane or shell problem has coplanar nodes yielding a
singular matrix. To solve this inconvenient, a quasi-static solution can be employed.
The quasi-static problem is expressed as a dynamic problem, only that the inertial
terms are neglected and a damping matrix is added explicitly. This damping matrix
is taken equal to the mass matrix. The problems solved in this work with the quasi-
static analysis give a good solution with this methodology.

3.6 Solution Strategies

The numerical procedures used to solve nonlinear algebraic equations, given i.e. by
Eq. (3.5.9) for the Newmark method, are iterative. Among the many different pro-
cedures available to solve nonlinear problems, in this work only the Newton-Raphson
method, see i.e. Reddy (2004), is outlined for structural dynamic problems.

3.6.1 Newton-Raphson Iterative Method

In the Newton-Raphson method, Eq. (3.5.9) is written in a residual form given by

Rn+1 = f ext(un+1) −
1

β∆t2
Mun+1 − f int(un+1) +

M

[
1

β∆t2
un +

1

β∆t
u̇n +

(
1

2β
− 1

)
ün

] (3.6.1)

where it is supposed that the solution for iteration i−1 is known and the solution for
iteration i is been searched. If the residual is expanded about the known solution
ui−1

n+1 in Taylor’s series yields

Ri
n+1 ≈ Ri−1

n+1 +
∂Rn+1

∂un+1

∣∣∣∣
i−1

· ∆ui
n+1 = 0 (3.6.2)
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where higher-order terms have been neglected. If the tangent stiffness matrix is
defined as

KT =
∂R

∂u
(3.6.3)

then Eq. (3.6.2) can be written in the form

(
KT
)i−1

n+1
· ∆ui

n+1 = −Ri−1
n+1 (3.6.4)

which is an algebraic system for ∆ui
n+1. If the procedure converges, the residual

is gradually reduced to zero and the solution at the ith iteration is given by

ui
n+1 = ui−1

n+1 + ∆ui
n+1 (3.6.5)

The iteration procedure is continued until a certain convergence criterion is satisfied
for the system. Then the value for the current position vector is given by xn+1 =
X + un+1.

For the first iteration i = 1 of the time step n + 1, the predictor for ui−1
n+1 is

taken from the previous converged solution at time step n, that is

u0
n+1 = un (3.6.6)

From the residual equation given by Eq. (3.6.1), the tangent stiffness matrix is
evaluated yielding

KT = KT
ext − KT

kin − KT
int (3.6.7)

where the internal tangent matrix KT
int comes from the internal forces, the kinetic

tangent matrix KT
kin is associated to the mass matrix and and the external tangent

matrix KT
ext comes from the external forces. Here the external tangent matrix is

different from zero only when pressure follower forces exist or in the presence of
any other non-conservative load types.

3.6.2 Linearization

A difficult task in the solution of implicit systems for the semi-discrete equations
of motion is the linearization of the governing equations. Here the expressions for
the tangent stiffness matrix are derived. This is done with the continuum tangent
moduli which does not account for the actual constitutive update algorithm and is
the one used in this work because it is intended only for linear materials. Other
constitutive equations may need an algorithmic tangent moduli, which gives rise to
the consistent tangent stiffness matrix.

The linearization depends on the type of formulation for the different elements
studied. Here only membrane, cable and shell linearization is taken into account.
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3.6.2.1 Membrane Linearization

The internal tangent stiffness matrix for a membrane element is computed by taking
the derivative of the internal forces in the displacements direction. The general
expression for the internal membrane forces is given in Eq. (3.2.38) yielding the
following derivative

(KijIJ )
T
int =

∂f int
iI

∂ujJ
=

∫

Ω0

(
Bcur

αβiI

∂Sαβ

∂ujJ
+

∂Bcur
αβiI

∂ujJ
Sαβ

)
dΩ0 (3.6.8)

Expressing the second Piola-Kirchhoff stress tensor as a function of the Green-
Lagrange strain tensor, then Sαβ = CαβγǫEγǫ and since in this work the com-
ponents of the constitutive tensor are constant, the first term in the integral is
expressed by

Bcur
αβiI

∂Sαβ

∂ujJ
= Bcur

αβiIC
αβγǫ ∂Eγǫ

∂ujJ
(3.6.9)

Now substituting Eq. (3.2.5) in the derivative term yields

∂Eγǫ

∂ujJ
=

1

2

∂gγǫ

∂ujJ
(3.6.10)

which can be expanded leading to

∂gγǫ

∂ujJ
=

∂gγ

∂ujJ
· gǫ + gγ · ∂gǫ

∂ujJ
(3.6.11)

and

∂gγ

∂ujJ
=

nnode∑

I=1

∂NI

∂ξγ

∂xI

∂ujJ
(3.6.12)

However, the last term can be expressed as

∂xI

∂ujJ
=

∂uiI

∂ujJ
ei = δijδIJei = δIJej (3.6.13)

Substituting Eq. (3.6.13) into Eq. (3.6.12) the following expression is obtained

∂gγ

∂ujJ
=

∂NJ

∂ξγ
ej (3.6.14)

If the covariant base vector is discretized by

gǫ =

nnode∑

I=1

∂NI

∂ξǫ
xiIei (3.6.15)

then the first product of Eq. (3.6.11) yields

∂gγ

∂ujJ
· gǫ =

nnode∑

I=1

∂NJ

∂ξγ

∂NI

∂ξǫ
xjI (3.6.16)
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This last equation allow us to expressed Eq. (3.6.10) in the form of

∂Eγǫ

∂ujJ
=

1

2

nnode∑

I=1

(NJ,γNI,ǫ + NI,γNJ,ǫ) xjI (3.6.17)

which is equal to the expression for the strain-displacement tensor given in Eq.
(3.2.37) and then

Bcur
γǫjJ =

∂Eγǫ

∂ujJ
(3.6.18)

Then the tangent material stiffness is defined as

Kmat
ijIJ =

∫

Ω0

Bcur
αβiIC

αβγǫBcur
γǫjJdΩ0 (3.6.19)

or in Voigt notation

Kmat
IJ =

∫

Ω0

[BT
I ]fib [C] [BJ ]fib dΩ0 (3.6.20)

With Eq. (3.6.18), the internal forces can be written in a more useful equation
instead of Eq. (3.2.38) yielding

f int
iI =

∫

Ω0

∂Eαβ

∂uiI
SαβdΩ0 (3.6.21)

which derivative is given by

(KijIJ )
T
int =

∂f int
iI

∂ujJ
=

∫

Ω0

(
∂Eαβ

∂uiI

∂Sαβ

∂ujJ
+

∂ 2Eαβ

∂uiI∂ujJ
Sαβ

)
dΩ0 (3.6.22)

This is another way to express Eq. (3.6.8). To compute the second derivative on
the right hand side of Eq. (3.6.22), the term

∂ 2Eαβ

∂uiI∂ujJ
=

1

2

∂ 2gαβ

∂uiI∂ujJ
(3.6.23)

where

∂ 2gαβ

∂uiI∂ujJ
=

∂ 2gα

∂uiI∂ujJ
· gβ +

∂gα

∂uiI
·

∂gβ

∂ujJ
+

∂gα

∂ujJ
·

∂gβ

∂uiI
+ gα ·

∂ 2gβ

∂uiI∂ujJ
(3.6.24)

From Eq. (3.6.14), the second derivative term in Eq. (3.6.24) yields

∂ 2gγ

∂uiI∂ujJ
=

∂NJ

∂ξγ

∂ej

∂uiI
= 0 (3.6.25)

Now substituting Eq. (3.6.14) into Eq. (3.6.24), we find that
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∂ 2Eαβ

∂uiI∂ujJ
=

1

2
(NI,αNJ,β + NI,βNJ,α) δij (3.6.26)

This equation and the second Piola-Kirchhoff stress tensor give rise to the tangent
geometrical stiffness tensor, which is given by

Kgeo
ijIJ =

∫

Ω0

∂ 2Eαβ

∂uiI∂ujJ
SαβdΩ0 (3.6.27)

or in Cartesian tensor notation as

K
geo
IJ = I

(3×3)

∫

Ω0

BT
0I S B0J dΩ0 (3.6.28)

where the components of B0I(2×1)
are given by B0

jI in Eq. (3.1.18) for j = 1, 2 and
S is expressed in tensorial notation for the membrane element. Finally, the internal
tangent matrix is defined by

KT
int = Kmat + Kgeo (3.6.29)

Another expression that is needed to compute the tangent stiffness matrix is the
kinetic tangent matrix that is obtained directly from Eq. (3.6.1) by taking the
derivative of the mass term respect to the displacements, which yields

KT
kin =

1

β∆t2
M (3.6.30)

The last term in the tangent stiffness matrix comes from the derivative of the exter-
nal forces respect to the displacements. Only when the external forces are functions
of the displacements, an external tangent matrix different from zero is found. Since
in this work pressure follower forces depend of the current displacements at each
time step, this value can be computed from Eq. (3.2.104) giving

KT
ext =

∂ f ext

∂u
=

p

6

∂

∂u

(
(x2 − x1) × (x3 − x1)

)
(3.6.31)

The resulting equation is given in an explicit form of

KT
ext =

p

6

2

6

6

6

6

4

0 z2 − z3 y3 − y2 0 z3 − z1 y1 − y3 0 z1 − z2 y2 − y1

z3 − z2 0 x2 − x3 z1 − z3 0 x3 − x1 z2 − z1 0 x1 − x2

y2 − y3 x3 − x2 0 y3 − y1 x1 − x3 0 y1 − y2 x2 − x1 0

3

7

7

7

7

5

(3.6.32)
A general expression for the external tangent matrix for pressure follower forces
can be found in Bonet and Wood (1997) or Belytschko et al. (2000). With all these
expressions the tangent stiffness matrix is built with

KT = KT
ext − KT

mat − KT
geo − KT

kin (3.6.33)

and the algebraic equations given by Eq. (3.6.4) can be solve iteratively.
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3.6.2.2 Cable Linearization

Following the same methodology given for the tangent stiffness matrices for mem-
branes, the tangent stiffness matrices for cables are found. From Eq. (3.6.20) we
can conclude that the material tangent stiffness matrix is

Kmat = A0L[BT ]loc [C] [B]loc (3.6.34)

where [B]loc is given by Eq. (3.3.26). The geometrical tangent stiffness matrix is
found with the same procedure that for membrane elements, yielding

Kgeo =
A0 {Sx}loc

L

[
I(3×3) I(3×3)

I(3×3) I(3×3)

]
(3.6.35)

The kinetic tangent stiffness matrix gives the same expression that Eq. (3.6.30),
but with the corresponding mass matrix for two-node cable elements.

3.6.2.3 Shell Linearization

As explained in section 3.4.2, a shell has a membrane and a bending part. Con-
sequently its linearization is formed by a membrane tangent stiffness matrix and a
bending tangent stiffness matrix.

The membrane tangent stiffness matrix is detailed in section 3.6.2.1 and is
exactly the same to be used in shell elements. However the missing part corresponds
to the bending tangent stiffness matrix. For the rotatinal-free shell element used
in this work, this matrix is very complicated to derive, as can be found in Flores
and Oñate (2001), and has no practical advantages if it is incorporated in a finite
element program. Therefore as explained in Flores and Oñate (2005), the bending
stiffness tangent matrix can be avoided and only the membrane tangent stiffness
matrix is used in this work.

3.7 Code Development

In this work the membrane, cable and shell formulation have been implemented
in the finite element program COMET (2007). The dynamic analysis with Bossak
method, Hilber-Hughes-Taylor method and Generalized-α method have also been
added to the code. This software is developed at the International Center for
Numerical Methods in Engineering (CIMNE) and is used for coupled contact, me-
chanical and thermal analysis using the finite element method.

The finite element meshes and input data used in this work where generated
using the program GiD (2007). This software is also developed at the International
Center for Numerical Methods in Engineering (CIMNE) which is a preprocessor
and postprocessor for finite element programs.
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3.8 Example Problems

3.8.1 Inflation of a Square Airbag

A square membrane is inflated by internal pressure to simulate an airbag, as given
by Contri and Schrefler (1988) and Lu et al. (2001). The internal pressure is

0.5 lb/ft
2
. The side length of the airbag is 1 ft with a membrane thickness of

0.0001 ft. The Young’s modulus is E = 4.32 × 106 lb/ft
2

and the Poisson ratio

is υ = 0.3. The density used for the quasi-static analysis is ρ = 100 lb/ft
3
, with

200 steps and a pseudo-time step ∆t = 0.0001. The wrinkling algorithm is used
for the analysis to avoid unwanted compression stresses. Because of the symmetry,
only one-eighth of the airbag is modelled. A structured mesh of 200 three-node
triangular membrane elements is used. The origin O is placed at the center of the
airbag. Symmetry boundary conditions with fixed y-displacements are applied on
side OA, fixed x-displacements are applied on side OC and fixed z-displacements
are applied on side AB and BC.

The inflated airbag analyzed with the wrinkling algorithm is shown in Fig. 3.15
without amplification factor. The maximum transverse displacement is presented
at the origin O in the z-direction with 0.249 ft, while the references give a value of
0.252 ft with nine-node quadrilateral elements. The maximum in-plane displace-
ment is 0.142 ft symmetric for x- and y-direction, while the references give a value
of 0.144 ft.

0.25

0.25

0.20

0.15

0.10

0.05

0.00 [ft]

Figure 3.15 z-displacements of inflated airbag
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The maximum principal stress is at the origin O with 4105 lb/ft
2
, and no compres-

sion stresses appear in the solution since the wrinkling algorithm is used, see Fig.
3.16. The maximum principal stress given by the references is about 4000 lb/ft

2
.

Figure 3.16 Principal stresses with wrinkling

A completely different solution is found with a conventional membrane analysis
(no wrinkling algorithm is used), where high compression stresses appear in the
solution, see blue vectors in Fig. 3.17. These negative stresses do not allow to inflate
the airbag with such finite element discretization. In this analysis, the maximum
transverse displacement is presented at the origin O in the z-direction with 0.097 ft,
while the references give a value of 0.100 ft with nine-node quadrilateral elements.
The maximum in-plane displacement is 0.066 ft symmetric for x- and y-direction,
while the references give a value of 0.077 ft.

Figure 3.17 Principal stresses without wrinkling

The maximum principal tension stress is about 13000 lb/ft
2
, and the maxi-
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mum principal compression stress is −35000 lb/ft
2
. This example demonstrates

the importance in membrane analysis of using an effective wrinkling algorithm to
eliminate compression stresses. When no wrinkling algorithm is available for the
membrane analysis, then a very fine mesh is needed in order to obtain a reasonable
good solution.

3.8.2 Prestressed Membrane

An initially prestressed membrane is loaded by a transversal point load in its middle
domain, as given by Levy and Spillers (1995) and Gil (2003). The point load is
−10000 lb and the membrane side length is 240 in with a thickness of 0.004167 in.
The Young’s modulus is E = 30.0 × 106 psi and the Poisson ratio is υ = 0.3. The
density used for the quasi-static analysis is ρ = 0.06 lb/in

3
, with 40 steps and a

pseudo-time step ∆t = 0.5. The prestressing effect is considered to be σxx = 80000
psi and σyy = 80000 psi in the whole domain. The sides of the membrane are
fixed for the analysis. In Fig. 3.18 the mesh used in the analysis is shown, together
with control nodes and control elements surrounded by a circle. The mesh has 32
three-node triangular membrane elements and 25 nodes.

4
8

9

1
3

11

x

z

y

Figure 3.18 Prestressed membrane geometry

A comparison of the displacements at control nodes is shown in Table 3.5.

Levy and Spillers Gil Present work
Node x-disp y-disp z-disp x-disp y-disp z-disp x-disp y-disp z-disp

4 0.015 -0.015 -1.431 0.014 -0.014 -1.423 0.014 -0.014 -1.429
8 0.000 -0.017 -2.605 0.000 -0.017 -2.600 0.000 -0.017 -2.600
9 0.000 0.000 -6.642 0.000 0.000 -6.626 0.000 0.000 -6.626

Table 3.5 Membrane displacements [in]

It can be seen that the displacements agree well with both referenced analysis using
the same mesh. The major difference is at node 9 in the z-displacement, where Levy
and Spillers (1995) give a greater value.
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Levy and Spillers Gil Present work
Elem σxx σyy σxy σxx σyy σxy σxx σyy σxy

1 97377 85212 -2801 97300 85164 -2797 97328 85139 -2794
3 83510 96859 -8657 83502 96830 -8631 83503 96839 -8677
11 144691 97831 -15616 144471 97849 -15582 144812 97649 -15711

Table 3.6 Membrane Cauchy stresses [psi]

A comparison of the Cauchy stresses at control elements is shown in Table
3.6, where it can be seen that the stresses are very similar between the referenced
analysis.
In this example the fiber orientation is performed in order to give the elements
the same orientation and then assign the correct prestressed values to the mesh.
However in this special case where an initially flat membrane is analyzed, a simpler
method can be used.

Just to compare the maximum z-displacement, the membrane is analyzed with-
out the prestressed force which results in a displacement of -9.242 in compared
to -6.626 in with the prestressed load. This show us how important can be the
prestressed force in membrane elements.

3.8.3 Nonlinear Plate

A plate with uniform load is analyzed. The analysis is assumed to be geometrically
nonlinear, as presented by Zienkiewicz and Taylor (1989) and Clemente (2007).
The same geometry and material properties of Clemente are used in this analysis
to simplify the comparison of the different solutions. The only difference is that
Clemente used 8-node three-dimensional brick elements while in this work the 3-
node rotation-free shell elements are employed. The side length of the plate is
L = 2a = 20 m with a thickness of 1 m. The Young’s modulus is taken as E = 12
Pa and the Poisson ratio is υ = 0.0. The density used for the quasi-static analysis
is ρ = 1.0 kg/m3, with 10 steps and a pseudo-time step ∆t = 0.1. Because of the
symmetry, only a quarter of the plate is analyzed.

Figure 3.19 Finite element meshes used for the analysis
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Two meshes are used for the analysis as shown in Fig. 3.19. The structured mesh
has 800 elements and 441 nodes, while the unstructured mesh has 816 elements
with 447 nodes. A variable uniform load q is applied to the plate, with values from
0.00 to −0.04 Pa. The adimensional solution of the problem is plotted in Fig. 3.20.
The transversal displacement at the central point of the plate w is normalized by
the thickness t in the horizontal axis, while the load q is normalized by Dt/a4 in
the vertical axis, where the value D = Et3/12.

Valdés structured

Valdés unstructured

Zienkiewicz/Taylor

Clemente

Linear Analysis
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Figure 3.20 Central plate displacement by uniform load

The deformed without amplification factor is shown in Fig. 3.21 and Fig. 3.22
for two different views, where the reference mesh is drawn in gray color.
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0.00
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[m]

Figure 3.21 z-displacements of nonlinear plate

We can conclude that our shell analysis gives the same solution that using three-
dimensional brick elements. Less computational effort is required in our analysis
since the degrees of freedom are drastically reduced to those used by Clemente,
where his analysis needed 1600 elements and 2205 nodes with four layers over the
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x
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z 0.00

-2.27
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Figure 3.22 z-displacements of nonlinear plate

thickness. From Fig. 3.20 we can also see that the solution of the linear analysis
becomes an important aspect to take care of when the load is incremented and the
behavior of the linear and nonlinear analysis give great differences.

3.8.4 Hemispherical Shell with 18o Hole

A popular benchmark problem for linear shell analysis is the pinched hemisphere
which is concerned with the nearly inextensional deformation of a hemispherical
shell with an 18o hole at the top under the action of two inward and two outward
forces 90o apart. Symmetry conditions are used in this problem and only one-
quarter needs to be modelled, as shown in Fig. 3.23.

Free
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100

100

Sym.

Sym.

x

y

z

Figure 3.23 Structured hemispherical shell geometry
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To illustrate the large deformation capabilities of the rotation-free formulation,
the forces of the linear problem are incremented 100 times to obtain deflections of
nearly 60% of the initial radius. This problem is compared with the solution ob-
tained by Simo et al. (1990a) and Flores and Oñate (2001). The problem geometry
consists of a sphere of radius R = 10 with an 18o hole and thickness of 0.04. The
material properties are E = 6.825 × 107 and υ = 0.30. The forces and boundary
conditions are shown in Fig. 3.23.

Free

Free
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100

Sym.

Sym.
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y

z

Figure 3.24 Unstructured hemispherical shell geometry

This problem was solved by Simo et al. (1990a) using a structured mesh of 256
quadrilateral elements with 1632 d.o.f. To compare the benchmark, in this work two
meshes are studied, a structured mesh of 640 elements with 1036 d.o.f., as shown
in Fig. 3.23, and an unstructured mesh of 640 elements with 1032 d.o.f. as shown
in Fig. 3.24. A summary of the maximum displacements in x- and y-direction is
given in Table 3.7.

Author Elements d.o.f. Mesh u disp v disp
Simó 256 1632 structured 3.380 -5.875

Present work 640 1036 structured 3.319 -5.878
Present work 640 1032 unstructured 3.324 -5.929

Table 3.7 Maximum displacements

A plot different of load-displacement values is given in Fig. 3.25.



3.8 Example Problems 87

Valdés unstructured u

Valdés unstructured v

Valdés structured u

Valdés structured v

Simo u

Simo v

Load

0 20 40 60 80 100

0

1

2

3

4

5

6

D
is

p
la

ce
m

en
t

Present work unstructured u

Present work unstructured v

Present work structured u

Present work structured v

Figure 3.25 Load-displacement comparison

The complete deformed structured mesh without magnification factor is given
in Fig. 3.26, where the norm of displacements is shown.

0.00 5.87

x

y

z

Figure 3.26 Deformed without magnification factor

We can conclude that the rotation-free shell formulation has an excellent be-
havior for problems involving large deformations with both structured and unstruc-
tured meshes, the former with uniform element size distribution.

3.8.5 Free Vibration Pendulum

The objective of the free vibration pendulum problem is to show the importance
of the time integration scheme used in structural problems since sometimes high
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frequency noise persists in the solution for large deformations analysis. The pen-
dulum problem is also analyzed by Rossi (2005) using quadrilateral elements for
the whole problem, and showing a graph of instability given by the modulus of
reaction. The mesh used in this analysis is shown in Fig. 3.27.

x

y

z

Figure 3.27 Pendulum mesh

The cable length is 1.5 m with a cross sectional area of 0.0005 m2. The circular
end mass has a radio of 0.15 m with a thickness of 1.0 m. The Young’s modulus
for both the cable and mass is taken as E = 2.1 × 1011 Pa and the Poisson ratio
is υ = 0.3. The density used for the dynamic analysis is ρ = 7800 kg/m3 for the
whole problem. The mesh used in the analysis has 20 two-node cable elements and
184 three-node triangular plane stress elements with a total of 131 nodes. The time
step size is ∆t = 0.01 s. Gravity forces are applied to the structure.

Fig. 3.28 show the time vs. y-displacement graph, where the Generalized-α
method is stable for the time studied. However the Newmark algorithm is stable
only at the beginning of the analysis.
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Figure 3.28 Time-displacement graph

In Figs. 3.29-3.33 various time instants are plotted comparing the deformed shape
of the pendulum between the Generalized-α method and the Newmark algorithm.
Fig. 3.31 shows that at time instant 2.18 s the high frequencies begin to appear in
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Generalized-J Newmark

Figure 3.29 Deformed cable at time 1.00 s.

Generalized-J Newmark

Figure 3.30 Deformed cable at time 1.50 s.

Generalized-J Newmark

Figure 3.31 Deformed cable at time 2.18 s.

Generalized-J Newmark

Figure 3.32 Deformed cable at time 2.54 s.
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Generalized-J Newmark

Figure 3.33 Deformed cable at time 2.78 s.

the Newmark analysis. Later in Fig. 3.32 the high frequencies become more evi-
dent until that in Fig. 3.33 the high frequencies spoil the solution for the Newmark
algorithm. However the Generalized-α method keeps its convergence properties for
the time interval studied. Also the Hilber-Hughes-Taylor and Bossak’s methods
show the same accuracy and stability that the Generalized-α method. The New-
mark method give the same solution that the former methods with a time step size
of ∆t = 0.001 s.

3.8.6 Inflation of a Parachute

In this example an initially highly folded parachute is inflated. Since high com-
pression stresses are presented in the solution, the wrinkling algorithm is used in
order to avoid an inappropriate deformed configuration. The initial configuration
of the parachute is shown in Fig. 3.34. Different inflation processes of parachutes
are studied by Lu et al. (2001) and Tezduyar et al. (2006).

0.76 0.76 3.05 6.10

Figure 3.34 Initial configuration of the parachute, top and side views [m]

The mesh used for the example has 1664 membrane elements and 16 cable elements,
with a total of 882 nodes. The internal pressure is taken as 5 Pa. Parachute
material properties are used with the Young’s modulus as E = 2.07 × 108 Pa, the
Poisson ratio 0.3 and the material density ρ = 9.61 kg/m3. The thickness is taken
as 0.00003 m. The cable properties are Young’s modulus E = 2.07 × 109 Pa and
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the cross-sectional area of 0.00013 m2. The initial configuration of the problem is
shown in Fig. 3.35 together with an intermediate deformation step.

Figure 3.35 Inflation process of the parachute from reference configuration

The problem uses the wrinkling algorithm with a quasi-static analysis which
stabilizes the solution. The number of steps are 3000 with a pseudo-time of 0.0001.
Fig. 3.36 shows different instants of the inflation process of the parachute.

Figure 3.36 Inflation process of the parachute until final configuration

The same parachute is analyzed dynamically with the wrinkling algorithm using
3000 steps and a time step size ∆t = 0.0001 s. In this case stiffness proportional
damping was applied to stabilized the solution of the problem. Both analysis,
quasi-static and dynamic lead to the same solution.
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Fig. 3.37 shows the vertical displacements while Fig. 3.38 shows the horizontal
displacements where it can be seen that the problem leads to a symmetric solution.

0.00

-1.58

[m]

Figure 3.37 Vertical displacements at final configuration

1.42

-1.42

[m]

Figure 3.38 Horizontal displacements at final configuration
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Fig. 3.39 shows the maximum principal stresses while Fig. 3.40 shows the mini-
mum principal stresses. In both figures it can be seen that there are no compression
stresses due to the use of the wrinkling algorithm.

2.6 10x

75.6

6

[Pa]

Figure 3.39 Maximum principal stresses

3.2 10x

0.0

5

[Pa]

Figure 3.40 Minimum principal stresses
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The same parachute is analyzed dynamically without the wrinkling algorithm.
Fig. 3.41 shows the vertical displacements while Fig. 3.42 shows the horizontal
displacements.

0.00

-1.03

[m]

Figure 3.41 Vertical displacements at final configuration

1.31

-1.31

[m]

Figure 3.42 Horizontal displacements at final configuration
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Fig. 3.43 shows the maximum principal stresses while Fig. 3.44 shows the min-
imum principal stresses. In both figures it can be seen that there are compression
stresses due to the use of conventional membrane theory that do not include any
wrinkling algorithm.

[Pa]

1.1 10x
6

-1.2 10x
5

Figure 3.43 Maximum principal stresses

8.2 10x
5

[Pa]

-7.7 10x
5

Figure 3.44 Minimum principal stresses
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Fig. 3.45 shows two final configurations of the parachute. One includes the
wrinkling algorithm while the other one does not include it.

Figure 3.45 Final configuration: left with wrinkling, right without wrinkling

It can be seen that the shape of the inflated parachute is completely different
if the wrinkling algorithm is used or not. Also the maximum principal stresses are
very different. In the analysis with the wrinkling algorithm there are no compression
stresses, just as it really happens. However conventional membrane analysis that
do not include any wrinkling algorithm lead to an unreal final configuration due to
the presence of compression stresses.
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3.8.7 Hyperbolic Paraboloid

Ziegler (2001) and Raible (2003) have studied hyperbolic paraboloids under vertical
loading. Geometry parameters are given in Fig. 3.46, where a = 12

√
2 m, b = 2.88

m with a membrane thickness of 0.3 mm. Membrane boundary is fixed. The
Young’s modulus is E = 21000 kN/cm2 and the Poisson ratio is υ = 0.3. A
vertical load of 10 kN/m2 is applied in various steps.

a

a

b

b

M

B

A

Figure 3.46 Geometry and mesh for hyperbolic parabolid

Also in Fig. 3.46 control points M, A and B are given for comparison purposes.
A quasi-static analysis is performed using the wrinkling algorithm to avoid un-
wanted compression stresses. A structured three-node membrane triangular mesh
of 1600 elements and 841 nodes is used for the analysis.

Raible Present work

117.2 1298.0 179.1 1316.8

Figure 3.47 Comparison of 1st principal stress Si [MN/m2]
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In Fig. 3.47 the 1st principal stress Si is compared with the one obtained by
Raible (2003). The tendency of both works is the same, where little differences are
found. Also maximum and minimum values for Si are very similar in both cases. In
this figure, the geometry of the hyperbolic paraboloid is indicated as follows: black
circles denote the lower corner nodes while white circles mean upper ones. At point
A, Ziegler (2001) seems to indicate a slack membrane state, while Raible (2003)
indicate a wrinkled membrane state. In this work, at point A the slack membrane
state is found.

Finally a plot of the vertical displacements at the control points is given in
Fig. 3.48, where solutions of Ziegler (2001) and Raible (2003) are also included. In
the work of Raible (2003) two wrinkling algorithms are studied, and here only the
corrected approach solution is included since it delivers the most reliable results.
In these three works, vertical displacement of control point M is very similar and
in this work a value of 36.4 cm is found. A closer vertical displacement between
these three works is found for control point B with a value of 26.3 cm. However,
control point A delivers some differences between the vertical displacements of the
compared cases. The solution presented in this work lies between the works of
Ziegler (2001) and Raible (2003), but it can be seen that the present solution is
closer to the former one, which in this work correspond to 24.6 cm.

Ziegler Raible Present work
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Figure 3.48 Comparison of selected nodes
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3.8.8 Orthotropic Spinnaker

Usually sails are built with composite materials, which sometimes are modeled with
isotropic or orthotropic materials. Fig. 3.49 shows different materials for sails,
where the material on the left picture can be modeled as an isotropic material
while the material on the right picture can be modeled as an orthotropic material.

Figure 3.49 Materials to build sails

A sail is built as an assembling process of single parts of the cutting pattern
which are sewed and glued together. Each one of the parts has fibers of principal
reinforcement direction that for optimization of the sail take different forms. In the
case of a spinnaker, their orientations are shown in Fig. 3.50.

Figure 3.50 Principal fiber orientation for a spinnaker
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The objective of this example is to show how a membrane structure build with an
orthotropic material can be analyzed, including different local orientations for the
material. Fig. 3.51 shows the manufacturing process for a spinnaker.

Figure 3.51 Spinnaker manufacturing process

Following the methodology given in this work for the fiber orientation, Figs. 3.52
- 3.53 show vectors of local x-direction for two configurations.

Figure 3.52 Principal fiber direction: optimal



3.8 Example Problems 101

Figure 3.53 Principal fiber direction: horizontal

Fig. 3.52 shows the optimal fiber orientation for a spinnaker, while Fig. 3.53 shows
an horizontal orientation.

Material orthotropic properties are taken with a Young modulus Ex = 1100
N/mm2, Ey = 385 N/mm2, Poisson ratio υxy = 035, υyx = 0.1225 and shear
modulus Gxy = 220 N/mm2. A uniform pressure follower load of 20 N/m2 is
applied for the analysis. The bottom dimension is 6.5 m, with a high of 14.0 m and
thickness of 0.1 mm. The structure is discretized with 686 three-node triangular
membrane elements and 384 nodes.

Fig. 3.54 shows values of the second Piola-Kircchoff stress tensor S. On the
left part of the figure, values for Sxx are plotted, where the local direction for xx
is given by the optimal orientation of the fibers, as illustrated in Fig. 3.52. The
corresponding local values for Sxx are maximum with 25.87 MPa and minimum
with 0.64 Mpa. The right part of Fig. 3.54 shows values for the 1st principal com-
ponent Si of the second Piola-Kircchoff stress tensor, corresponding to a maximum
of 25.92 Mpa and minimum with 0.68 Mpa. In this case, both solutions are almost
identical because the orientation for the principal fiber of the material follows the
vectors of the 1st principal component of the stress tensor, as shown in Fig. 3.55.

On the contrary, Fig. 3.56 gives values of the second Piola-Kircchoff stress
tensor S. On the left part of the figure, values for Sxx are plotted, where the local
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direction for xx is given by the horizontal orientation of the fibers, as illustrated
in Fig. 3.53. The corresponding local values for Sxx are maximum with 8.22 MPa
and minimum with −0.57 Mpa. The right part of Fig. 3.56 shows values for the 1st
principal component Si of the second Piola-Kircchoff stress tensor, corresponding
to a maximum of 24.46 Mpa and minimum with 0.72 Mpa. In this case, both
solutions are very different because the orientation for the principal fiber of the
material is horizontal, which is completely different from the vectors of the 1st
principal component of the stress tensor that give an optimal material usage.

-0.57 25.92[MPa]

Figure 3.54 Second Piola Kircchoff stresses: optimal fiber orientation
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Figure 3.55 Optimal fiber orientation and 1st principal stress direction
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-0.57 25.92[MPa]

Figure 3.56 Second Piola Kircchoff stresses: horizontal fiber orientation



Chapter 4

Fluid Dynamics

In this chapter, the fluid dynamics equations used in this work to solve incompress-
ible flow problems are presented. The objective here is only to explain the tools
implemented to solve the fluid equations that later will be used as an application
in the fluid-structure interaction problem.

4.1 Introduction

Fluid mechanics deals with the flow of fluids. The main difference between a fluid
and a solid is that while solids have very strong intermolecular attractive forces,
fluids are characterized by the relative mobility of its molecules. It is common
that the stress in a solid is proportional to the strain, while the stress in a fluid is
proportional to the rate of strain. This proportional parameter in fluids is known
as the viscosity .

Fluid mechanics is usually divided into smaller areas based on characteristics
of the fluid properties. An inviscid fluid is one where the viscosity is assumed to
be zero. An incompressible fluid is one which density variations compared to a
reference density are negligible.

The motion of a fluid is governed by the laws of conservation of mass, momen-
tum (resulting in the Navier-Stokes equation) and energy, all of them described in
chapter 2. When temperature effects are not important, as assumed in this work,
the energy equation is uncoupled and only the Navier-Stokes equation and the con-
tinuity equation are solved. With the help of computers, predictions of fluid flow
based on the governing equations can be done, and the science responsible for this
is called computational fluid dynamics (CFD).

4.2 Governing Equations

In fluid mechanics problems, Lagrangian methods are totally inappropriate. La-
grangian elements become severely distorted when the material is similar deformed
since they follow the material. On the other hand, in fluid mechanics problems the

105
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interest is focused on a particular spatial subdomain, therefore this type of problem
is more suited to Eulerian elements. This kind of elements are fixed in space, thus
undergo no distortion. However other kind of problems emerge as a consequence
of the convection of the material through the elements.

4.2.1 Weak Form

The strong for consists of the Navier-Stokes and continuity equation, the velocity
boundary conditions v̄i on the Dirichlet boundary ΓD and the traction boundary
conditions t̄i on the Neumann boundary ΓN , where the boundary Γ0 is defined by
Γ0 = ΓD ∪ΓN . To develop the weak form of the Navier-Stokes equation, the space
of the test functions for the Eulerian description is defined as

δvi(x) ∈ V0, V0 =
{
δvi|δvi ∈ H1(Ω), δvi = 0 on ΓD

}
(4.2.1)

where H1(Ω) consists of vector functions whose components and their derivatives
of order 1 are square-integrable. The space of the trial functions for the velocities
is given by

vi(x, t) ∈ V V =
{
vi|vi ∈ H1(Ω), vi = v̄i on ΓD

}
(4.2.2)

The development of a Galerkin-type weak form consists in taking the product of the
general form of the Navier-Stokes equation, Eq. (2.6.1), by the test function δvi,
integrating over the current domain and using appropriate boundary conditions,
yielding

∫

Ω

δvi

(
ρ

(
∂vi

∂t
+ vj∂jvi

)
+

∂p

∂xi
− ρbi − µ

(
∇2vi +

1

3

∂

∂xi
(∇ · v)

))
dΩ = 0

(4.2.3)

where Eq. (2.6.2) has been substituted into Eq. (2.6.1) and µ is the dynamic
viscosity . Integrating by parts1 the underlined terms of Eq. (4.2.3), leads to

∫

Ω

δvi

(
ρ
∂vi

∂t
+ ρvj

∂vi

∂xj
− ρbi

)
dΩ −

∫

Ω

p
∂δvi

∂xi
dΩ +

∫

Ω

µ
∂vi

∂xj

∂δvi

∂xj
dΩ +

∫

Ω

1

3
µ (∇ · v)

∂δvi

∂xi
dΩ =

∫

ΓN

µδvinj
∂vi

∂xj
dΓ +

∫

ΓN

1

3
µδvinj (∇ · v) δijdΓ −

∫

ΓN

δvinjpδijdΓ

(4.2.4)

The boundary integrals of this equation can be developed as detailed next

1
R

d(uv) =
R

udv +
R

vdu,
R

udv = uv −
R

vdu
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∫

ΓN

δvinj

(
−pδij + µ

∂vi

∂xj
+

1

3
µ

∂vj

∂xj
δij

)
dΓ =

∫

ΓN

δvinj

(
−pδij + µ

∂vi

∂xj
+ µ

∂vj

∂xi
− 2

3
µ

∂vj

∂xi

)
dΓ =

∫

ΓN

δvinj

(
−pδij + 2µdij −

2

3
µ (∇ · v) δij

)
dΓ

(4.2.5)

From Eq. (2.5.21), we can see that the term inside the parenthesis of Eq. (4.2.5)
is equal to the stress tensor for Newtonian fluids. This allow us to express the
boundary integral as

∫

ΓN

δvinjσijdΓ =

∫

ΓN

δvitidΓ (4.2.6)

For simplicity, in this work the homogeneous no-slip Dirichlet boundary condition
is taken, therefore the Neumann boundary, Eq. (4.2.6), vanishes. Moreover, if the
incompressibility condition given by Eq. (2.4.7) is used, i.e. ∇ · v = 0, which is
widely acceptable in the application range of civil engineering and other areas2,
then Eq. (4.2.4) yields

∫

Ω

δvi

(
ρ
∂vi

∂t
+ ρvj

∂vi

∂xj

)
dΩ −

∫

Ω

p
∂δvi

∂xi
dΩ +

∫

Ω

µ
∂vi

∂xj

∂δvi

∂xj
dΩ =

∫

Ω

δviρbidΩ

(4.2.7)
These equations are known as the weak form for the incompressible Navier-Stokes
equations. To develop the weak form of the continuity equation, their space of test
function is defined as

δp(x) ∈ Q, Q =

{
δp|δp ∈ L2(Ω),

∫

Ω

δpdΩ = 0

}
(4.2.8)

where L2(Ω) consists of square-integrable functions. The space of the trial function
for the pressure is given by

p(x, t) ∈ Q (4.2.9)

The development of a Galerkin-type weak form consists in taking the product of
the continuity equation, Eq. (2.4.7), by the test function δp, integrating over the
current domain and using appropriate boundary conditions, yielding

∫

Ω

δp
∂vj

∂xj
dΩ = 0 (4.2.10)

which is known as the weak form of the continuity equation for incompressible
materials. These weak forms can be written in a simple form, first dividing Eq.

2For Mach number < 0.3, air can be considered incompressible
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(4.2.7) by the density and next using the following mathematical definitions. The
standard L2 inner product for functions belonging to L2(Ω) is given by

(u , v) =

∫

Ω

u · vdΩ (4.2.11)

Also the following bilinear forms are defined

a(u , v) = ν

∫

Ω

∇u : ∇vdΩ ∀u , v ∈ H1(Ω) (4.2.12)

b(q, v) =

∫

Ω

q ∇ · vdΩ ∀v ∈ H1(Ω) and ∀q ∈ L2(Ω) (4.2.13)

and the trilinear form

c(u , v ,w) =

∫

Ω

u · ∇v ·wdΩ ∀u , v ,w ∈ H1(Ω) (4.2.14)

With these definitions, the incompressible flow equations given by Eq. (4.2.7) and
Eq. (4.2.10) can be simplify to yield respectively

(∂tv, δv) + c(v,v, δv) − b(p, δv) + a(v, δv) = (b, δv) (4.2.15)

b(δp,v) = 0 (4.2.16)

In this work, these equations are going to be called the compact form for the incom-
pressible Navier-Stokes equations. More details of this mathematical formulation
can be found in Gunzburger (1989).

In Eq. (4.2.12), the term ν is the kinematic viscosity which is defined by ν =
µ/ρ. In Eq. (4.2.15), the density has been absorbed into the pressure yielding a
kinematic pressure.

4.2.2 Finite Element Discretization

Finite elements discretization of the incompressible flow equations is presented in
this section for the Galekin-type weak form. The velocities are approximated by

vh
i (x, t) =

nnode∑

I=1

NI(x)viI(t) ∀i = 1, ndime (4.2.17)

where NI(x) are the shape functions in Eulerian coordinates and viI(t) are the
nodal values of the velocity field. The space of the test functions for the momentum
equations is time independent and its discretization yields

δvh
i (x) =

nnode∑

I=1

NI(x)δviI ∀i = 1, ndime (4.2.18)

The material time derivative of the velocity gives the acceleration, which is approx-
imated by
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∂vh
i (x, t)

∂t
=

nnode∑

I=1

NI(x)v̇iI(t) ∀i = 1, ndime (4.2.19)

Gradients of the velocity and gradients of the test functions of the momentum
equations yield the following Cartesian derivatives

∂vh
i (x, t)

∂xj
=

nnode∑

I=1

∂NI(x)

∂xj
viI(t) ∀i, j = 1, ndime (4.2.20)

∂δvh
i (x)

∂xj
=

nnode∑

I=1

∂NI(x)

∂xj
δviI ∀i, j = 1, ndime (4.2.21)

The divergence of the test and trial functions are given by

∂δvh
i (x)

∂xi
=

nnode∑

I=1

ndime∑

i=1

∂NI(x)

∂xi
δviI (4.2.22)

∂vh
i (x, t)

∂xi
=

nnode∑

I=1

ndime∑

i=1

∂NI(x, t)

∂xi
viI(t) (4.2.23)

The pressure is approximated by

p(x, t) =

nnode∑

I=1

NI(x)pI(t) (4.2.24)

and the test function for the continuity condition gives

δp(x) =

nnode∑

I=1

NI(x)δpI (4.2.25)

These equations allow to express the incompressible Navier-Stokes equations, Eq.
(4.2.7), in the form given ahead. The kinetic term can be discretized as

∫

Ω

δvh
i ρ

∂vh
i

∂t
dΩ = δviI

∫

Ω

NIρNJ v̇iJdΩ

= δviI

∫

Ω

NIρNJδijdΩ v̇jJ

= δviIMijIJ v̇jJ

(4.2.26)

where the mass matrix for the eulerian description is given by

MijIJ = δij

∫

Ω

ρNINJdΩ (4.2.27)

Discretization of the convective term yields
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∫

Ω

δvh
i ρvh

j

∂vh
i

∂xj
dΩ = δviI

∫

Ω

NIρ v
h

∂NJ

∂xj
viJdΩ

= δviI

∫

Ω

NIρ v
h

∂NJ

∂xj
δijdΩ vjJ

= δviIK
c
ijIJvjJ

(4.2.28)

where v
h

is the discretized velocity vector given by Eq. (4.2.17) and the convective
stiffness matrix is defined by

Kc
ijIJ = δij

∫

Ω

ρNI v
h

∂NJ

∂xj
dΩ (4.2.29)

The pressure term can be discretized in the form of

∫

Ω

p
∂δvh

i

δxi
dΩ = δviI

∫

Ω

∂NI

∂xi
NJpJdΩ

= δviIGiIJpJ

(4.2.30)

where the pressure matrix is expressed as

GiIJ =

∫

Ω

∂NI

∂xi
NJdΩ (4.2.31)

The viscous term can be discretized following the same procedure to obtain

∫

Ω

µ
∂vh

i

∂xj

∂δvh
i

∂xj
dΩ = δviI

∫

Ω

∂NI

∂xj
µ

∂NJ

∂xj
viJdΩ

= δviI

∫

Ω

∂NI

∂xj
µ

∂NJ

∂xj
δijdΩ vjJ

= δviIK
v
ijIJvjJ

(4.2.32)

where the viscous stiffness matrix is given by

Kv
ijIJ = δij µ

∫

Ω

∂NI

∂xj

∂NJ

∂xj
dΩ (4.2.33)

Since the variation δviI is arbitrary, then the forces yielding from the Navier-Stokes
equations can be written in the following discretized matrix form

Mv̇ + K(v)v − Gp = f ext (4.2.34)

where the stiffness matrix is given by K(v) = Kc(v) + Kv. The compact form for
these equations can be written as

(∂tvh
,w

h
) + c(v

h
, v

h
,w

h
) − b(p

h
,w

h
) + a(v

h
,w

h
) = (b

h
,w

h
) (4.2.35)
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where the discretized test functions for the velocity are given by

w
h
(x) =

nnode∑

I=1

NI(x) (4.2.36)

The incompressibility condition given by Eq. (4.2.10) can be discretized and the
divergence term leads to

∫

Ω

δp
∂vh

j

∂xj
dΩ = δpI

∫

Ω

NI
∂NJ

∂xj
vjJdΩ

= δpIG
T

jIJvjJ

(4.2.37)

where divergence matrix is expressed by

GT

jIJ =

∫

Ω

NI
∂NJ

∂xj
dΩ (4.2.38)

Since the variation δpI is arbitrary, then the continuity equation can be written in
the following discretized matrix form

GT v = 0 (4.2.39)

which can be written in compact form as

b(q
h
, v

h
) = 0 (4.2.40)

where the discretized test function for the pressure is given by

q
h
(x) =

nnode∑

I=1

NI(x) (4.2.41)

Note that the discretized incompressible flow equations are coupled, and the prob-
lem is expressed by

Mv̇ + K(v)v − Gp = f ext

GT v = 0
(4.2.42)

which are used to find the velocity field and pressure of the problem monolithically.
These equations can also be expressed by

(v̇
h
,w

h
) + c(v

h
, v

h
,w

h
) − b(p

h
,w

h
) + a(v

h
,w

h
) = (b

h
,w

h
)

b(q
h
, v

h
) = 0

(4.2.43)

which is the compact form to express the coupled discretized incompressible flow
equations. Eq. (4.2.43) has the advantage that no matrices need to be built to
later be multiplied by a vector, which results in a more optimal code.
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4.3 Time Integration Schemes

In this part, the same ideas of section 3.5 for time integration schemes of solids
are followed. Therefore only implicit schemes are solved for incompressible flow
problems. The semi-discrete equations to be solved are given by

Mv̇n+1 + K(vn+1)vn+1 − Gpn+1 = f ext
n+1

GT vn+1 = 0
(4.3.1)

where the acceleration vector v̇n+1 has to be integrated in time to solve the algebraic
equations for vn+1,pn+1 from the first-order differential equations. The compact
form of the above equations yields

(v̇n+1
h

,w
h
) + c(vn+1

h
, vn+1

h
,w

h
) − b(pn+1

h
,w

h
) + a(vn+1

h
,w

h
) = (bn+1

h
,w

h
)

b(q
h
, vn+1

h
) = 0

(4.3.2)

Among the different numerical integration methods available to integrate first-order
equations, the simplest choice in fluid dynamics problems is the θ f-family of ap-
proximation. Multistep schemes of the type of backward differentiation are also
used in fluid dynamics problems. Both of these methods are better described in
Gunzburger (1989). The tendency of these methods for high frequency noise to per-
sist in the solution for long time periods can lead to non-physical instabilities. To
avoid this problem, Jansen et al. (2000) have developed the generalized-α method
for fluid dynamics, with the same dissipation properties that the generalized-α
method for structural dynamics problems. An analysis of time integration algo-
rithms for incompressible fluids flow is detailed in Dettmer and Peric (2003).

4.3.1 θ-Family Method

In this section, the θ f-family method for implicit schemes is presented. The solution
at time step tn is assumed to be known for vn, pn. In this method, the time
derivative of the velocity is approximated for two consecutive time steps by linear
interpolation, yielding

v̇n+θf = (1 − θ f)v̇n + θ fv̇n+1
∼= vn+1 − vn

∆t
(4.3.3)

with 1
2 ≤ θ f ≤ 1 for unconditionally stable implicit schemes and ∆t = tn+1 − tn.

The velocity field is approximated according to

vn+1 =
1

θ f

(
vn+θf − (1 − θ f)vn

)
(4.3.4)

which is usually written as

vn+θf = (1 − θ f)vn + θ fvn+1 (4.3.5)
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For θ f = 1, the method is first-order accurate and is known as the backward Euler
method. For θ f = 1

2 , the method is known as the Crank-Nicolson method. Only
when θ f = 1

2 the method is second-order accurate. The semi-discrete equations to
be solved for the θ f-family method are then given by

M
1

∆t
(vn+1 − vn) + K(vn+θf)vn+θf − Gpn+1 = f ext

n+θf

GT vn+θf = 0
(4.3.6)

and the unknowns for the algebraic equations to be solved are vn+1, pn+1 since all
values at time tn are known. Also we can write

(v̇n+θf

h
,w

h
) + c(vn+θf

h
, vn+θf

h
,w

h
) − b(pn+1

h
,w

h
) + a(vn+θf

h
,w

h
) = (bn+θf

h
,w

h
)

b(q
h
, vn+θf

h
) = 0

(4.3.7)

which is the compact form for incompressible fluids.

4.3.2 Backward Differentiation Method

Backward differentiation methods are also known as Gear schemes. The backward
differentiation method used in this work are of first and second-order of accuracy.
The simplest prototype of backward differentiation is the backward Euler, which
coincides with the θ f-family method when θ f = 1. Then the time derivative for the
velocity can be approximated by

v̇n+1 =
vn+1 − vn

∆t
(4.3.8)

and the semi-discrete equations to be solved for the BDF1 (Backward DiFferenti-
ation method order 1) method are then given by

M
1

∆t
(vn+1 − vn) + K(vn+1)vn+1 − Gpn+1 = f ext

n+1

GT vn+1 = 0
(4.3.9)

and the unknowns for the algebraic equations to be solved are vn+1, pn+1 since all
values at time tn are known. For second-order accuracy, the method is known as
BDF2 and the velocity is expressed as

v̇n+1 =
3vn+1 − 4vn + vn−1

2∆t
(4.3.10)

and the semi-discrete equations to be solved are then given by
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M
1

2∆t
(3vn+1 − 4vn + vn−1) + K(vn+1)vn+1 − Gpn+1 = f ext

n+1

GT vn+1 = 0
(4.3.11)

and the unknowns for the algebraic equations to be solved are vn+1, pn+1. One
advantage of these methods is that they do not require an initial guess for the
pressure, as reported in Gunzburger (1989). One disadvantage for the BDF2 is
that it requires more starting values that just v0. But this problem can be avoided
if always the first iteration is perform with the BDF1 method and then for the
second iteration change to the BDF2 method.

4.3.3 Generalized-α Method

The generalized-α method for first-order systems was introduced by Jansen et al.
(2000). The idea is to achieve high-frequency dissipation while minimizing un-
wanted low-frequency dissipation for analysis with long time periods. This method
was motivated from the excellent results of the same method for second-order sys-
tems given by Chung and Hulbert (1993). In the generalized-α method, the semi-
discrete equations for incompressible fluids flow are given by

Mv̇n+αf
m

+ K(vn+αf
f
)vn+αf

f
− Gpn+1 = f ext

n+1

GT vn+1 = 0
(4.3.12)

where the changes are given by

vn+1 = vn + ∆t
(
1 − γf

)
v̇n + ∆t γf v̇n+1 (4.3.13)

vn+αf
f

=
(
1 − αf

f

)
vn + αf

f vn+1 (4.3.14)

v̇n+αf
m

=
(
1 − αf

m

)
v̇n + αf

mv̇n+1 (4.3.15)

where αf
f , αf

m and γf are integration parameters defined ahead. From Eq. (4.3.13)
we can obtain

v̇n+1 =
1

∆tγf
(vn+1 − vn) −

(
1

γf
− 1

)
v̇n (4.3.16)

which will allow us to update the acceleration at time tn+1 when the velocities
vn+1 are found. Substituting Eq. (4.3.16) into Eq. (4.3.15) yields

v̇n+αf
m

=
αf

m

∆t γf
(vn+1 − vn) +

(
1 − αf

m

γf

)
v̇n (4.3.17)

This last equation together with Eq. (4.3.14) are the ones that are substituted
into Eq. (4.3.12) and allow us to find the unknowns vn+1, pn+1 for the algebraic
equations since all values at time tn are known.
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The method is second-order accurate and posses high frequency dissipation when
the integration parameter γf is selected such that

γf =
1

2
+ αf

m − αf
f (4.3.18)

Low frequency dissipation is optimal when

ρf
∞ ∈ [0, 1], αf

f =
1

1 + ρf
∞

, αf
m =

1

2

3 − ρf
∞

1 + ρf
∞

(4.3.19)

For ρf
∞ = 1 the method is identical to the Crank-Nicolson method given by in the

θ f-family. Numerical damping of the method increases with smaller values of ρf
∞.

4.4 Pressure Segregation Methods

The monolithic coupled equations for incompressible fluid problems have the dis-
advantage that take great computer effort to solve the algebraic system for each
time step in a transient analysis.

Since the original works of Chorin (1967) and Temam (1969), fractional step
methods for the incompressible Navier-Stokes equations have earned widespread
popularity because of the computational efficiency given by the uncoupling of the
pressure from the velocity field. A detailed stability analysis of fractional step
methods for incompressible flows is given in Codina (2001).

Another proposal in the context of fractional step methods is the predictor-
multicorrector algorithm born from the ideas of Brooks and Hughes (1982). Devel-
opment of this method can be found in Blasco et al. (1998), and Codina and Soto
(2004). Stability analysis for these methods are given by Codina and Badia (2006).

4.4.1 Fractional Step Method

The easiest form to understand the development of the fractional step method is
to part from the incompressible Navier-Stokes equations given by

M
1

∆t
(vn+1 − vn) + K(vn+1)vn+1 − Gpn+1 = f ext

n+1 (4.4.1)

GT vn+1 = 0 (4.4.2)

where Eq. (4.4.1) can be split and yield the equivalent incompressible flow equations

M
1

∆t
(ṽn+1 − vn) + K(ṽn+1)ṽn+1 − Gpn = f ext

n+1 (4.4.3)

M
1

∆t
(vn+1 − ṽn+1) − G(pn+1 − pn) = 0 (4.4.4)

GT vn+1 = 0 (4.4.5)
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where ṽn+1 is an auxiliary velocity variable and the essential approximation

K(vn+1)vn+1 ≈ K(ṽn+1)ṽn+1 (4.4.6)

has been taken. From Eq. (4.4.4), vn+1 can be expressed in terms of ṽn+1 yielding

vn+1 = ṽn+1 + ∆t M−1G(pn+1 − pn) (4.4.7)

Substituting this last equation into Eq. (4.4.5) yields

−∆t GT M−1G(pn+1 − pn) = GT ṽn+1 (4.4.8)

Now observe that GT M−1G represent an approximation to the Laplacian operator,
as mentioned in Codina (2001), given by LIJ = ρ (∇NI ,∇NJ ).

Finally the incompressible fluid flow equations Eq. (4.4.3)-(4.4.5) to be solved
using the θ f-family integration scheme are expressed as

M
1

∆t
(ṽn+1 − vn) + K(ṽn+θf)ṽn+θf − Gpn = f ext

n+1 (4.4.9)

−∆t L(pn+1 − pn) = GT ṽn+1 (4.4.10)

M
1

∆t
(vn+1 − ṽn+1) − G(pn+1 − pn) = 0 (4.4.11)

with 1
2 ≤ θ f ≤ 1 for unconditionally stable implicit schemes. Remember that for

θ f = 1, the method coincides with the backward differentiation BDF1 method.
These equation are expressed in a different form when the integration scheme used
is the BDF2, yielding

M
1

2∆t
(3ṽn+1 − 4vn + vn−1) + K(ṽn+1)ṽn+1 − Gpn = f ext

n+1 (4.4.12)

−2

3
∆t L(pn+1 − pn) = GT ṽn+1 (4.4.13)

M
1

2∆t
(3vn+1 − 3ṽn+1) − G(pn+1 − pn) = 0 (4.4.14)

In this work we use a different time integration scheme that those find in the
literature for the fractional step method. This scheme is the generalized-α method,
used in the monolithic problem, that for fractional steps take the form of

M
αf

m

∆t γf
(ṽn+1 − vn) + K(ṽn+αf

f
)ṽn+αf

f
− Gpn = f ext

n+1 − M

(
1 − αf

m

γf

)
v̇n

(4.4.15)

−∆t γf

αf
m

L(pn+1 − pn) = GT ṽn+1 (4.4.16)

M
αf

m

∆t γf
(vn+1 − ṽn+1) − G(pn+1 − pn) = 0 (4.4.17)
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The compact form for these equations is given by

αf
m

∆t γf
(ṽn+1

h
− v

n
h

,w
h
) + c(ṽ

n+αf
f

h , ṽ
n+αf

f

h ,w
h
) − b(pn

h
,w

h
) +

a(ṽ
n+αf

f

h ,w
h
) = (bn+1

h
,w

h
) −

(
1 − αf

m

γf

)
(v̇n

h
,w

h
)

(4.4.18)

−∆t γf

αf
m

(∇(pn+1
h

− pn
h

),∇q
h
) = b(q

h
, ṽn+1

h
) (4.4.19)

αf
m

∆t γf
(vn+1

h
− ṽ

n+1
h

,w
h
) − b(pn+1

h
− pn

h
,w

h
) = 0 (4.4.20)

As mention before, these equations have the advantage that no matrices need to
be built to later be multiplied by a vector, which results in a more optimal code.

4.4.2 Predictor-Corrector Method

Here the predictor multicorrector scheme emerging from Eqs. (4.4.9)-(4.4.11)
proposed by Codina and Soto (2004) is used. The goal of this method is to converge
to the monolithic problem.

The linearized algebraic system for this method using the θ f-family for integra-
tion in time is taken directly from Codina and Badia (2006), yielding

M
1

∆t
(vn+1,i − vn) + K(vn+θf,i−1)vn+θf,i − Gpn+θf,i−1 = f ext

n+θf (4.4.21)

−∆t L(pn+θf,i − pn+θf,i−1) = GT vn+θf,i (4.4.22)

which is an iterative algebraic system where the pressure is uncoupled from the
velocity field. If the BDF2 time integration method is used, then Eqs. (4.4.21)-
(4.4.22) are written as

M
1

2∆t
(3vn+1,i − 4vn + vn−1) + K(vn+1,i−1)vn+1,i − Gpn+1,i−1 = f ext

n+1

(4.4.23)

−2

3
∆t L(pn+1,i − pn+1,i−1) = GT vn+1,i

(4.4.24)

Note that for the first iteration, i = 1, a predictor for the pressure and the velocity
is required. The first order predictor for the pressure and velocity are taken as

pn+1,0 = pn, vn+1,0 = vn (4.4.25)

while the second order predictor yields
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pn+1,0 = 2pn − pn−1, vn+1,0 = 2vn − vn−1 (4.4.26)

Again in this work we use a different time integration scheme that those find in
the literature for the predictor-corrector method. This scheme is the generalized-α
method, that for the predictor-corrector algorithm take the form of

M
αf

m

∆t γf
(vn+1,i − vn) + K(vn+αf

f
,i−1)vn+αf

f
,i − Gpn+αf

f
,i−1 =

f ext
n+αf

f
− M

(
1 − αf

m

γf

)
v̇n (4.4.27)

−∆t γf

αf
m

L(pn+αf
f
,i − pn+αf

f
,i−1) = GT vn+αf

f
,i (4.4.28)

The compact form for these equations is given by

αf
m

∆t γf
(vn+1,i

h
− v

n
h

,w
h
) + c(v

n+αf
f

,i−1

h , v
n+αf

f
,i

h ,w
h
) − b(p

n+αf
f

,i−1

h ,w
h
) +

a(v
n+αf

f
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h ,w
h
) = (b

n+αf
f

h ,w
h
) −

(
1 − αf

m

γf

)
(v̇n

h
,w

h
) (4.4.29)

−∆t γf

αf
m

(∇(p
n+αf

f
,i

h − p
n+αf

f
,i−1

h ),∇q
h
) = b(q

h
, v

n+αf
f

,i

h ) (4.4.30)

This mathematical form is the one that is used in the code implemented for solving
the computational fluid dynamics equations. We note that for ρf

∞ = 1 the method
is identical to the Crank-Nicolson method given by Eqs. (4.4.21)-(4.4.22) when
θ f = 1

2 .

4.5 Stabilization Methods

It is well known that two sources of potential numerical instabilities emerge for
incompressible flow problems. The first is presented when the Reynolds number
for the flow is high, and the convective term tend to dominate the flow equations
which yield oscillations in the velocity field. These oscillations can be avoided with
a refinement of the finite element mesh for the problem. Unfortunately this is not
a solution to the problem due to the high computational cost for very fine meshes.

The other source of instabilities is due to the incompressibility constraint which
has several inconveniences due to the zero divergence condition for the velocity
field. When the standard Galerkin formulation is used, compatible spaces for the
pressure and the velocity field have to be used and must satisfy the Babuška-Brezzi
(BB) stability condition, see i.e. Babuska (1973), Brezzi (1974).

To circumvent these problems, several stabilization techniques have been pro-
posed. Essentially, the stabilizing terms added to the original Galerkin formulation
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involve the residual of the momentum equation as a factor. The stabilization tech-
niques are consistent in the sense that when an exact solution is substituted into the
stabilized formulation, these added terms vanish and the exact solution is satisfied.

One of the stabilization techniques that has been extensively used in conven-
tion dominated problems is the streamline-upwind/Petrov-Galerkin method, which
acronym is SUPG. The original SUPG method was designed for the steady state
version of the advection-diffusion equation to avoid the numerical oscillations found
using the standard Galerkin formulation. This misbehavior could be avoided by
introducing numerical diffusion only along the streamlines as explained in the work
of Hughes and Brooks (1979). The final step was the use of the streamline diffusion
in the context of weighted residual methods, as given in Hughes and Brooks (1982),
that satisfy the BB stability condition.

As demonstrated in Hughes et al. (1986), elements that do not satisfy the BB
condition still can achieve a proper stabilization for the Petrov-Galerkin method
with equal-order interpolations. Another kind of stabilization is the pressure-
stabilizing/Petrov-Galerkin method, which acronym is PSPG. The PSPG proposed
by Tezduyar et al. (1990) and Tezduyar et al. (1992) consists of a generalization of
the Petrov-Galerkin stabilization term proposed in Hughes et al. (1986) for Stokes
flows. Coefficients of the PSPG stabilization terms vary with the Reynolds number
just as the SUPG terms do. In the zero Reynolds number limit, the PSPG sta-
bilization term reduces to the one proposed in Hughes et al. (1986). In Tezduyar
et al. (1990), the SUPG and PSPG stabilization methods are used together with
equal-order interpolations. Because the PSPG stabilizing terms involve the residual
of the momentum equation as a factor, the stabilized formulation is consistent.

A more general stabilization approach that includes in essence the SUPG and
PSPG methods for stabilization was found by Hughes et al. (1989). This idea
leads to the well known formulation of the Galerkin least-square method, which
acronym is GLS. For time-dependent problems, the GLS stabilization needs finite
element discretization in both space and time, and therefore leads to a space-time
finite element formulation of the problem. Since the stabilizing terms added to
the GLS method are obtained by minimizing the sum of the square residual of the
momentum equation as a factor, the stabilized formulation is consistent.

With the idea to better understand the origins of stabilized methods, which
can be derived from a firm theoretical foundation and a precise definition of the
intrinsic time scale parameter, Hughes (1995) developed the subgrid scale method.
This technique is known as the SGS method and consists in splitting the unknown
into a part which can be represented by the finite element mesh and another part
that accounts for the unresolvable scales that cannot be reproduced because of the
mesh size. In fact the SGS is a family of stabilization techniques where various
methods can be recovered as a particular case. In the context of these methods,
the orthogonal sub-scales method was introduced by Codina (2000). The acronym
used for this method is OSS. The main idea here is to assume that the subgrid
components are orthogonal to the finite element space. The stabilization of both,
convection dominated flows and pressure with transient problems can be found in
Codina (2002).

So far all the stabilization methods described require the addition of some ar-
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tificial diffusion terms. However another technique where the stabilization terms
emerge from the governing equations of the problem is the finite calculus method
given by Oñate (1998), which acronym is FIC. In this method the concept of flow
equilibrium is taken over a finite domain that allows to reinterpret the stabilization
terms as an intrinsic and natural contribution to the original differential equations,
instead of a correction term introduced at the discrete level. With this natural sta-
bilization concept, the standard forms of the balancing terms appearing in many
well known stabilized schemes are easily recognized and can be reinterpreted in
a more physical manner. An application for incompressible viscous flows can be
found in Oñate (2000).

Other well known stabilization methods are the characteristic Galerkin method
(CG) developed by Douglas and Russell (1982), and the Taylor-Galerkin method
(TG) introduced by Donea (1984). A detailed comparison of the most popular
stabilization techniques is given by Codina (1998). An interesting comparison be-
tween the GLS and the SUPG/PSPG methods can be found in Tezduyar (1992).
These stabilization techniques are also explained in Donea and Huerta (2003). In
this work the stabilizations used are the SUPG/PSPG, OSS and FIC techniques.
They are only implemented in our code to be used for fluid-structure interaction
problems.

4.5.1 SUPG/PSPG Stabilization

The stabilization procedure introduced in this section can be found in Tezduyar
(1992). In order to account for the linear finite element interpolation chosen for
this kind of stabilization, we refer to the work of Dettmer and Peric (2003), where
the final outcome consists of adding the discretized term
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h + ∇pn+1
h

, τvṽ
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) (4.5.1)

to the compact form of the Galerkin method for the fractional step with the
generalized-α time discretization. The contribution to the momentum equation
is obtained when the pressure test function q

h
= 0, whereas the contribution to the

continuity equation is found when w
h

= 0. The final result for the fractional step
method are the stabilized equations
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n+αf

f

h · ∇ṽ
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where τv and τp are the intrinsic time parameters which multiply the advection
term and the pressure term respectively. In this work, the stabilization parameters
are the ones chosen by Dettmer and Peric (2003), which are

τv =
he

2 ‖v
h
‖ ρ

1√
1 +

(
3

Re
h

)2
(4.5.5)

τp =
he

2 ‖v
h
‖ ρ

ζ1√
1 +

(
3ζ2

Re
h

)2
(4.5.6)

where Re
h

is the element Reynold number given by

Re
h

=
‖v

h
‖heρ

2µ
(4.5.7)

Here the characteristic element size he is defined as the diameter of the circle,
the area of which correspond to the finite element e in two dimensions. For 3D
problems, he is taken as given by Codina (2000). All numerical examples with this
stabilization take ζ1 = 30 and ζ2 = 100 in this work.

Observe that the pressure in the first equation is treated explicitly, in order
to keep the uncoupling of the velocity and pressure calculations. Only the first
equation is a nonlinear system, while the second is a linear system. The third
equation is simply an update of the velocity.

4.5.2 OSS Stabilization

The orthogonal sub-scales stabilization procedure described in this section is given
by Codina (2000). In order to account for the stabilized fractional step method,
we refer to the work of Codina (2001), where the final outcome consists in adding

τ(ṽ
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h
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) (4.5.8)

to the compact form of the Galerkin method for the fractional step with the
generalized-α time discretization, where π

h
is a projection explained ahead. The

contribution to the momentum equation is obtained when the pressure test function
q
h

= 0, whereas the contribution to the continuity equation is found when w
h

= 0.
The final result for the fractional step method are the stabilized equations
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Observe that in the last equation, π
h

has the meaning of being the projection of
ṽ

h
· ∇ṽ

h
+ ∇p

h
onto the finite element space. This last equation is just an update

of the orthogonal projection, just as the third equation is simply an update of the
velocity. The stabilization parameter τ is given in Codina (2001), which is

τ =

(
4ν

h2
e

+
2 ‖v

h
‖

he

)−1

(4.5.13)

This equation is also used to estimate the critical time step size for explicit schemes,
where ∆tcrit is substituted instead of τ in Eq. (4.5.13).

4.5.3 FIC Stabilization

The FIC stabilization introduced by Oñate (2000) for incompressible flow equa-
tions is described in this section. The idea behind the method consists in applying
the standard conservation laws expressing balance of momentum and mass over a
control domain. Assuming that control domain has finite dimensions and repre-
senting the variation of mass and momentum over the domain using Taylor series
expansions of one order higher than those used in standard infinitesimal theory, the
following expressions for the momentum and mass balance respectively are found

rmi
− 1

2
hj

∂rmi

∂xj
= 0 (4.5.14)

rd − 1

2
hj

∂rd

∂xj
= 0 (4.5.15)

where rmi
is the residual of the momentum equation obtained from Eq. (4.2.35)

and rd is the residual of the divergence of the velocity given by Eq. (4.2.40). In
Oñate et al. (2006), the following assumption is obtained

∂rd

∂xj
≈ hj

2ai

∂rmi

∂xi
(4.5.16)

where
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ai =
2ν

3
+

vihi

2
(4.5.17)

and the following alternative expression for the stabilized mass balance equation is
found

rd − τi
∂rmi

∂xi
= 0 (4.5.18)

with

τi =

(
8ν

3h2
i

+
2vi

hi

)−1

(4.5.19)

τi are the intrinsic time parameters. After integrating by parts the resulting mo-
mentum and mass balance equations is weak form are
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∫

Ω

δp
∂vi

∂xi
dΩ =

∫

Ω

τi
∂δp

∂xi
rmi

dΩ (4.5.21)

where the only new terms involving the residual rmi
appear on the right hand

side of both equations. The computation of the residual terms can be simplified if
we introduce the convective projection ĉi and the pressure gradient projection πi

defined respectively as

rmi
= ĉi − vj

∂vi

∂xj
= 0 (4.5.22)

rmi
= πi −

∂p

∂xi
= 0 (4.5.23)

Now rmi
can be expressed in Eqs. (4.5.20) and (4.5.21) in terms of ĉi and πi respec-

tively which then become additional variables. The system of integral equations is
now augmented in the necessary number of additional equations by imposing that
the residual vanished for both forms given by Eqs. (4.5.22) and (4.5.23). This gives
the final system of governing equations as
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∫
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)
dΩ = 0 (4.5.26)

∫

Ω

δπi

(
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∂p

∂xi

)
dΩ = 0 (4.5.27)

If the fractional step method is applied to Eqs. (4.5.24)-(4.5.27) together with the
generalized-α method, the final result for the stabilized equations in compact form
yields
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n+αf

f

h ,w
h
) − b(pn

h
,w

h
) + a(ṽ

n+αf
f

h ,w
h
) +

1

2
(ṽ
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Observe that the third equation is simply an update of the velocity, just as the
fourth and fifth equations are the updates for the convective projection and pressure
projections terms respectively. Advances of the FIC formulation with applications
to fluid-structure interaction is been developed by Lynga (2005).

4.6 Solution Strategies

The numerical procedures used to solve nonlinear algebraic equations are iterative,
given i.e. by Eqs. (4.5.2), (4.5.9) or (4.5.28), for the only nonlinear terms in frac-
tional steps or predictor corrector schemes. Among the many different procedures
available to solve nonlinear problems, in this work only the Picard iteration method,
see i.e. Reddy (2004), is outlined for computational fluid dynamic problems.

4.6.1 Picard Iteration Method

The Picard iteration method of successive substitution, also known as the direct
iteration technique, is the simplest method used in nonlinear problems. In the
Picard method, the solution at the ith iteration is obtained from

K(vi−1) vi = f (4.6.1)
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where the nonlinear matrix K(v) is evaluated using the known solution from the
i−1 iteration. It is assumed that the initial or guess vector v0 satisfies the specified
boundary conditions of the problem and the nonlinear matrix is invertible.

The Picard iteration method converges when the nonlinearity is mild, and it
diverges if the nonlinearity is severe. In this last case, other initial conditions
should be taken or a different iterative procedure can be used. The linearized
algebraic system for the fractional step method using the generalized-α method for
integration in time, applied to Eqs. (4.5.2), (4.5.9) and (4.5.28) yields
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n+αf

f
,i

h − ĉ
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which are the nonlinear terms of the SUPG/PSPG, OSS and FIC stabilization
techniques respectively.

4.7 Code Development

In this work the fluid problem with the presented stabilizations have been imple-
mented in the finite element program COMET (2007). The dynamic analysis with
the θ-family method, backward differencing method and Generalized-α method for
fluids have also been added to the code. This software is developed at the Inter-
national Center for Numerical Methods in Engineering (CIMNE) and is used for
coupled contact, mechanical and thermal analysis using the finite element method.

4.8 Example Problems

4.8.1 Wall-Driven Cavity Flow

The wall-driven cavity flow problem is often used as a benchmark problem since it
has been extensively studied by analytical, numerical and experimental methods.
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v = , v =0 0x y

v = , v =1 0x y

v = , v =0 0x y v = , v =0 0x y

p=0

Figure 4.1 Cavity four-node finite element mesh

Assuming a unit square and that the velocity of the top wall is unity, the problem is
solved with a 40×40 quadrilateral mesh which has been refined near the boundaries,
as shown in Fig. 4.1.

In the literature this problem is solved for various Reynolds numbers, which
are given by Re = ρvclc/µ. In this problem the characteristic velocity vc = 1 and
characteristic length lc = 1. If the viscosity is kept constant as µ = 1, then the
Reynolds number is given by Re = ρ. In this example the wall-driven cavity flow
for a Reynold number of 400 is studied. Consequently, the density for the problem
is taken as ρ = 400. The generalized-α time integration method has been used with
ρf
∞ = 0.9.

Singularities for this problem exists at each corner where the moving lid of the
top meets the side fixed walls. Here it is assumed that vx = 1, vy = 0 at singularity
points. In this example, the FIC stabilization technique has been used with a mesh
of 1600 elements, 1681 nodes and a time step size ∆t = 0.05. The pressure contours
reached at the steady state for the problem are shown in Fig. 4.2.

The accuracy of the numerical results have been compared to those presented

Figure 4.2 Pressure contours for Re=400
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by Ghia et al. (1982), which were obtained with finite difference solutions and using
a very fine grid that made them become a standard reference. The comparison of
the x-velocity profile along the cavity mid-section for x = 0.5 versus the vertical
distance is given in Fig. 4.3.

Ghia et al.

Present work

-0.50 -0.25 0.0 0.25 0.50 0.75 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x-velocity

y

Figure 4.3 Velocity vx(0.5, y) vs. y

Again the solution of this work is compared to the numerical results presented by
Ghia et al. (1982) for the y-velocity profile along the cavity mid-section for y = 0.5
versus the horizontal distance, as shown in Fig. 4.4.
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Figure 4.4 Velocity vy(x, 0.5) vs. x

Figs. 4.3-4.4 show that the implementation of the computational fluid dynamics
methods used in this work together with the FIC stabilization described in section
4.5 lead to the expected solution for this problem.
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4.8.2 Flow Past a Circular Cylinder in 2D

The transient flow past a circular cylinder is another widely solved benchmark
problem. The interest of this problem is the periodic flow patterns that develops
for values of the Reynolds number Re > 40. In this case vortex shedding are
generated periodically and alternately from each side of the cylinder, leading to the
well known von Karman vortex street.

v = , v =1 0x y

p=0

v = , v =1 0x y

v = , v =1 0x y

Figure 4.5 Finite element mesh and boundary conditions

To describe the geometry of the problem, a circular cylinder of unit diameter is
placed inside the domain Ω = {−8 ≤ x ≤ 25,−8 ≤ y ≤ 8}. The center of the
cylinder is placed at the point (0,0). The boundary conditions are given by a
value of 1.0 for the x-velocity at the inflow, top and bottom boundaries. At these
boundaries, the y-velocity is set to zero. Additionally, the pressure is set to zero at
the outflow boundary, as shown in Fig. 4.5.

Figure 4.6 Pressure contours

The material properties are density ρ = 0.01 and viscosity µ = 0.0001, yielding
a Reynolds number Re = 100. The finite element mesh used for this problem is
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shown in Fig. 4.5 and consists of 2880 four-node quadrilateral elements and 3000
nodes. Second order time integration is employed with the Generalized-α scheme
with ρf

∞ = 0.9. The number of time steps studied are 1500 with a time step
size ∆t = 0.20. In this problem, the FIC, OSS and SUPG/PSPG stabilization
techniques have been employed and compared. Fig. 4.6 shows pressure contours
for a time t = 154.2.

Figure 4.7 x-velocity contours

Fig. 4.7 shows x-velocity contours for a time t = 154.2, while Fig. 4.8 shows
y-velocity contours at the same time.

Figure 4.8 y-velocity contours

Fig. 4.9 shows a typical plot of the time history of the velocity component vy at
the point (x, y) = (2, 0) given by the SUPG/PSPG stabilization technique.

The forces around the cylinder are used to compute the evolution of the drag
CD and lift CL coefficients given respectively by
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Figure 4.9 Time history of y-velocity component

CD =
fD

1
2ρv2A

(4.8.1)

CL =
fL

1
2ρv2A

(4.8.2)

where fD is the drag force measured in the direction of the flow while fL is the lift
force perpendicular to the direction of flow. The solution using the three methods
in this example is plotted in the temporal evolution of the drag coefficient CD, as
well as the evolution of the lift coefficient CL as shown in Figs. 4.10 and 4.11.
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Figure 4.10 CD for a flow around a cylinder at Re=100

For this example, the lift coefficient is almost the same for the three different meth-
ods, while in the case of the drag coefficient, the FIC stabilization technique shows
a little bit more diffusive behavior than the OSS and SUPG/PSPG stabilization
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Figure 4.11 CL for a flow around a cylinder at Re=100

techniques. However the amplitude between the three methods is practically the
same. For the drag coefficient, the amplitude is about 0.027, while a value of 0.865
is obtained for the lift coefficient. These values are in good agreement with those
presented in the numerical comparison of CBS and SGS stabilization techniques
presented by Codina et al. (2006).

The Strouhal number or adimensional frequency of the solution is one of the
most studied quantities and describes the oscillating flow mechanisms, which is
given by

St =
freq · lc

vc
(4.8.3)

where St is the dimensionless Strouhal number, freq is the frequency of vortex
shedding, lc is the characteristic length (in this example taken as the cylinder
diameter) and vc is the characteristic velocity of the fluid.
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Figure 4.12 Fourier spectrum of the lift coefficient
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A Fourier analysis of the lift coefficient CL is performed within the time range
[120,300] in order to find the dominant frequency of the solution. In Fig. 4.12, the
Fourier spectrum obtained is shown, leading to a frequency freq = 0.16602 Hz,
equivalently to a period of 6.02 s. This value gives a dimensionless Strouhal number
St = 0.16602 which is in good agreement with the experimental result St = 0.166
reported by Hammache and Gharib (1991).
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Figure 4.13 CD for a flow around a cylinder at Re=100

This problem is solved again using a finer mesh, consisting of 32000 four-node
quadrilateral elements and 32400 nodes. The same second order time integration
is employed. The number of time steps studied are 1500 with a time step size
∆t = 0.20. Again, the FIC, OSS and SUPG/PSPG stabilization techniques have
been used. Drag and lift coefficients for this mesh are given in Figs. 4.13 and 4.14
respectively.

For the finer mesh, the lift coefficient is practically the same for the three
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Figure 4.14 CL for a flow around a cylinder at Re=100
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different methods, while in the case of the drag coefficient some little differences
are presented. The amplitude between the three methods for the drag coefficient
is about 0.04, while a value of 1.0 is obtained for the lift coefficient. It can be seen
that when the mesh is refined, all methods lead to the same solution. Very small
frequency discrepancies between these methods are found, but all of them give a
period about 6.0 s.

In this problem, it is shown that the stabilization techniques of these three
methods are in fact very similar. The numerical comparison yields no conclusive
remarks, but shows that a finer mesh leads to close numerical solutions.

4.8.3 Flow Past a Circular Cylinder in 3D

Here the transient flow past a circular cylinder in 3D is solved using a high quality
mesh constructed by Rainald Löhner. The objective of the example is to verify the
behavior of the formulations implemented in this work, using a large example and
comparing it with a code specialized for fluids.

To describe the geometry of the problem, a circular cylinder of unit diameter
is placed inside the domain Ω = {−4 ≤ x ≤ 15,−4 ≤ y ≤ 4, 0 ≤ z ≤ 0.2}. The
center of the cylinder is placed at the point (0,0,0). The boundary conditions are
given by a value of 1.0 for the x-velocity at the inflow, and free x- and z-velocity
at top and bottom boundaries. At these boundaries, the y-velocity is set to zero.
The right and left boundaries have the z-velocity component set to zero while the
x- and y-velocity components are free. Additionally, the pressure is set to zero at
the outflow boundary, as shown in Fig. 4.15.

p=0

v =0y

v =0y

v =1x

v =0y

v =0z

Figure 4.15 Finite element mesh and boundary conditions

The material properties are density ρ = 1.0 and viscosity µ = 0.005263, yielding
a Reynolds number Re = 190. The finite element mesh used for this problem is
shown in Fig. 4.15 and consists of 108,147 four-node tetrahedral elements and
30,000 nodes. A detail of the mesh around the cylinder is shown in Fig. 4.16.

Second order time integration is employed with the Generalized-α scheme and
ρf
∞ = 0.9. The number of time steps studied are 2000 with a time step size
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x
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z

Figure 4.16 Detail of the mesh around the cylinder

∆t = 0.05, beginning from an initially stable configuration. In this problem, the
OSS stabilization techniques is been employed and the solution is compared with
the one obtained by Coppola-Owen (2006) using the same stabilization and the
BDF2 time integration scheme. Fig. 4.17 shows pressure contours for time t = 100.

Figure 4.17 Pressure contours

Fig. 4.18 shows x-velocity contours for a time t = 100, while Fig. 4.19 shows
y-velocity contours at the same time.

Figure 4.18 x-velocity contours
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Figure 4.19 y-velocity contours

The forces around the cylinder are used to compute the evolution of the drag CD

and lift CL coefficients given respectively by Figs. 4.20 and 4.21.
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Figure 4.20 CD for a flow around a cylinder at Re=190

In this case, the drag coefficient has an amplitude of 0.10, while a value of 1.45 is
obtained for the lift coefficient.

A Fourier analysis of the lift coefficient CL is performed within the range [65,100]
in order to find the dominant frequency of the solution. In Fig. 4.22, the Fourier
spectrum obtained is shown, leading to a frequency freq = 0.19531 Hz. The
Strouhal number for this example yields a dimensionless value of 0.19531 and a
period of 5.12 s.

The solution found by Coppola-Owen (2006) for this example is the same as
the one presented in this work.
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Figure 4.21 CL for a flow around a cylinder at Re=190
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Figure 4.22 Fourier spectrum of the lift coefficient



Chapter 5

Fluid-Structure Interaction

Many physical problems of different fields in engineering and applied sciences belong
to multiphysic problems. Recently numerical simulation of Fluid-Structure Interac-
tion (FSI) problems have gained great interest from the computational mechanics
community in order to reduce development time and cost in coupled systems.

In case of civil engineering applications, the interaction of wind flow and struc-
tural motion may lead to aeroelastic instabilities which may cause the collapse of
the structure. This problem can occur on constructions such as long-span bridges,
high-rise buildings and light weight roof structures.

Maybe the most analyzed FSI problem is found in aerospace applications, which
are concerned with aeroelastic instabilities for the study of wind flow around flexible
wings of aircrafts. Recently, on the other hand, biomechanical applications are
interested in the study of hemodynamics, i.e. blood flow through large arteries,
which are simulated using numerical FSI of large structural membrane deformations
interacting with viscous flows.

FSI problems are complex because they consist of structural nonlinear bound-
ary conditions imposed on fluid moving boundaries where the position is part of
the solution. Because the moving position of the structure prescribes part of the
fluid boundary, it becomes necessary to perform the integration of the Eulerian
fluid equations on a moving mesh. Among the several methods proposed for this
problem, in this work it is used the Arbitrary Lagrangian-Eulerian (ALE) formu-
lation.

This kind of FSI problems usually are viewed as a two-field coupled problem,
however the moving mesh can be viewed as another structural problem, and there-
fore the complete coupled problem can be formulated as a three-field system: the
structure, the fluid and the moving mesh.

5.1 Coupling Strategies

The implementation of a coupled problem can be done using two different global
strategies, which are the monolithic methods and the partitioned methods. In

137
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monolithic methods, the discretized fluid-structure system is solved together with
the mesh movement system in a single iteration loop, leading to a very large system
of nonlinear equations to be solved simultaneously. Some advantages of this method
are that it ensures stability and convergence of the whole coupled problem. On the
contrary, in simultaneous solution procedures the time step has to be equal for all
subsystems, which may be inefficient if different time scales are presented for the
problem. An important disadvantage is the considerably high computing time effort
required to solve each algebraic system and sometimes the necessity to develop new
software and solution methods for the coupling method. A monolithic approach to
FSI is presented by Hübner et al. (2004).

In partitioned methods application of existing appropriate and sophisticated
solvers for either structural or fluid subsystems will continue to be used. These
methods enjoy great popularity due to the simplified coupling procedure in many
cases. Partitioned methods are divided into weak or loose coupling algorithms and
strong or implicit coupling schemes. Weak algorithms are also known as staggered
or explicit schemes. The major drawbacks of partitioned methods are lack of ac-
curacy and stability problems, which sometimes may diverge from the solution.

Partitioned methods were introduced by Park and Felippa (1983). The key idea
for these methods is clearly described in Felippa et al. (1998). Partitioned solu-
tions with staggered coupling algorithms are developed by Farhat et al. (1997) to
be used in aeroelastic wing problems. Strong coupling of partitioned algorithms
are applied to large displacements 2D structural problems coupled to viscous in-
compressible fluids by Wall and Ramm (1998) and Wall (1999). They also applied
the same method for a coupled fluid structure environment with an initially flat
three-dimensional shell model as given in Wall and Ramm (2000). Other large dis-
placements structural problems interacting with incompressible fluids are detailed
in Mok (2001), Mok and Wall (2001) and Tallec and Mouro (2001). FSI with large
displacements applied to wind problems is developed by Rossi (2005), Wüchner
and Bletzinger (2005), Badia (2006) and Wüchner (2006).

More sophisticated developments on strong partitioned method for FSI prob-
lems can be found in Steindorf (2002), Matthies and Steindorf (2004), Matthies
and Steindorf (2005), Matthies and Steindorf (2006) and Tezduyar et al. (2006).
A study on strong coupling partitioned methods for FSI applied to hemodynamic
problems can be found in Nobile (2001), Causin et al. (2005), and Fernández and
Moubachir (2005). Strong coupling of fluid-structure interaction including free sur-
faces is studied in Dettmer (2004) and Wall et al. (2007). Recently, a new approach
based on Robin transmissions conditions for fluid-structure interaction problems is
given in Badia et al. (2007).

These concepts are better explained next. A simple example for a two-field x
and y scalar problem, as given in Felippa (2004), is assumed to be governed by the
differential equations

2x(t) + 4y(t) = f(t)

ẏ(t) − 3y(t) + 5x(t) = g(t)
(5.1.1)
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in which f(t) and g(t) are the external forces. Using the backward Euler time
integration leads to

ẏn+1 =
yn+1 − yn

∆t
(5.1.2)

where ∆t is the time step size. Assuming known all values at time step n, and
substituting Eq. (5.1.2) into Eq. (5.1.1) yields the following algebraic system

[
2 4

5∆t 1 − 3∆t

] [
xn+1

yn+1

]
=

[
fn+1

∆t gn+1 + yn

]
(5.1.3)

which can be solved simultaneously for xn+1 and yn+1 as a monolithic approach,
where a general multi-field solver has to be used or developed. However if we want
to use our existing codes that solve independently xn+1 with the F field solver,
and yn+1 with the S field solver, then a partitioned approach has to be used. It is
assumed that the solvers F and S are two separate but communicating programs.
A simple partitioned solution procedure is obtained with the following steps for a
staggered partition.

1) Make a prediction for yn+1,

yn+1 = yp (5.1.4)

where the usual choices for the prediction are yp = yn or yp = yn + ∆t ẏn. Send
this information to the F field solver as an external force.

2) With the F field solver, find xn+1 from the partitioned system extracting the
first equation from the algebraic system in Eq. (5.1.3) yielding

xn+1 =
1

2
(fn+1 − 4yp) (5.1.5)

3) Send xn+1 to the S field solver.
4) Perform a correction with the S field solver for yn+1 from the partitioned

system extracting the second equation from the algebraic system in Eq. (5.1.3)
giving

yn+1 =
1

1 − 3∆t
(∆t gn+1 + yn − 5∆t xn+1) (5.1.6)

5) Now the time step is advanced and the process is repeated for the next time
step.

This coupling procedure is known as the staggered partitioned scheme or weak
coupling scheme. It is common to use this kind of coupling method for explicit
field solvers where little time steps are used and no convergence of the coupling is
checked.

For implicit field solvers, the time step is usually 10 to 100 times larger than
the critical time step used for explicit field solvers. In this case, convergence of
the coupling after step 4) is required. If the convergence is not reached, step 5)
is not performed and the procedure is repeated within each time step, i.e. steps 2
to 4, where yp of step 2) is substituted by yn+1 of step 4). These iterations turn
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the staggered approach over a strong coupling partitioned procedure which tends
to the solution of the monolithic problem.

For fluid-structure interaction problems, the system to solve is nonlinear and
adds difficulty to the problem being studied, which sometimes diverge. However
the basic idea for solving the problem keeps.

5.2 ALE Framework

Solid and structural formulations are commonly based on Lagrangian descriptions
since they deform with the material. On the contrary, fluids are usually formulated
on Eulerian descriptions since they involve fixed spatial domains where interest is
focused on a particular part of the fixed mesh, i.e. the flow around a solid. In FSI
problems, the Eulerian mesh of the fluid is not fixed in space anymore since the
motion of the structural mesh moves the fluid mesh and consequently the Eulerian
fluid equations must be formulated using a mesh movement technique.

Hybrid techniques such as the ALE descriptions combine the advantages of La-
grangian and Eulerian methods while minimizing the disadvantages. Since ALE
descriptions are an arbitrary combination of the Lagrangian and Eulerian descrip-
tions, the user must select an adequate mesh motion as a result of the combination
of both descriptions. Equations describing the ALE methods are very similar to
those used for the Eulerian formulations. In fact, Eulerian methods can be consid-
ered as a special case of ALE methods. A complete description and state of the art
for ALE methods can be found in Belytschko et al. (2000) and Donea and Huerta
(2003).

Until now for Lagrangian and Eulerian descriptions two configurations have
been used: the reference configuration and the deformed configuration. In ALE
description, another configuration is needed which is the ALE configuration. The
domain for an ALE configuration is denoted by Ω̂, which coordinates X are called
ALE coordinates. Two different motions are described in ALE methods: material
motion and mesh motion. Material motion is described just as Eq. (2.1.2) yielding

x = φ(X, t) (5.2.1)

The corresponding velocity and acceleration is given in Eq. (2.1.7) and Eq. (2.1.8)
respectively. The mesh motion is described by

x = φ̂(X , t) (5.2.2)

where x represents the deformed or spatial configuration. ALE coordinates can be
obtained from Eq. (5.2.2) leading to

X = φ̂−1(x, t) (5.2.3)

Substituting Eq. (5.2.1) into Eq. (5.2.3) gives the relation between material and
ALE coordinates yielding

X = φ̂−1(φ(X, t), t) = ψ(X, t) (5.2.4)
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where ψ represents the composition of functions φ̂−1◦φ. With all these equations,
the material motion can also be expressed as a composition of functions given by

x = φ̂(ψ(X, t), t) (5.2.5)

and it is concluded that φ = φ̂ ◦ψ. The mesh displacement is defined by

û = x − X = φ̂(X , t) − X (5.2.6)

The corresponding mesh velocity and mesh acceleration is given respectively by

v̂ =
∂û(X , t)

∂t
=

∂φ̂(X , t)

∂t
(5.2.7)

â =
∂v̂(X , t)

∂t
(5.2.8)

The material time derivative can be obtained similar to the Eulerian description.
Therefore, the material time derivative of a function f(X , t) yields

Df(X , t)

Dt
=

∂f

∂t
+

∂f

∂xj

∂xj

∂Xi

∂Xi

∂t
=

∂f

∂t
+

∂f

∂xj
cj (5.2.9)

where cj is the convective velocity given by the difference between the material and
mesh velocities c = v − v̂ = v − vmesh. In general the material time derivative of
any function, vector or tensor given in ALE variables X and time t can be obtained
with

D(•)
Dt

=
∂(•)
∂t

+ c · ∇(•) (5.2.10)

It is obvious to think that the conservation equations, expressed before in La-
grangian and Eulerian coordinates, must now be expressed in ALE coordinates.
Since we are dealing with incompressible fluid equations, the only equation that we
need to describe is the momentum equation, yielding

ρ

(
∂v

∂t
+ c · ∇v

)
= ∇ · σ+ ρb or ρ

(
∂vi

∂t
+ cj∂jvi

)
=

∂σij

∂xj
+ ρbi (5.2.11)

where the material time derivative of the velocity has been employed. The result-
ing equations for the fractional step method using the OSS stabilization in ALE
configuration yields
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The final equations for the fractional step method using the FIC stabilization in
ALE configuration are expressed by
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From the OSS and FIC stabilizations described in ALE coordinates, it can be
shown that when the mesh velocity vmesh = 0, the convective velocity c = v and
the Eulerian methods described in chapter 4 are recovered.

5.3 Governing Equations

The governing equations for the couple incompressible fluid-structure problem con-
sist of the momentum equations together with the continuity equation. However
the fluid and the structural parts of the domain must be treated differently. Then
the problem is split into the fluid test functions over the fluid domain and the solid
test function operating over the structural part.

For convenience, the boundary of the coupled problem is divided into the Dirich-
let boundary for the fluid ΓD

f and the solid ΓD
s , the Neumann boundary for the

fluid ΓN
f and the solid ΓN

s , and a common interface boundary ΓI between the fluid
and the solid. Then the boundary of the couple problem is Γ = ΓD ∪ ΓN ∪ ΓI ,
where ΓD = ΓD

f ∪ ΓD
s and ΓN = ΓN

f ∪ ΓN
s .
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Also the coupled problem domain is divided into a solid part Ω s and a fluid
part Ω f, where Ω = Ω s ∪ Ω f. In particular, the solid motion xs sets the solid
displacements us yielding

us(X, t) = xs − X (5.3.1)

where X ∈ Ω s
0 . The fluid mesh motion xf is defined as a function of the solid

interface displacements xs ∈ ΓI as an extension over the fluid domain Ω f, where
the fluid (mesh) displacements are given by

û = uf = Ext(us
ΓI) (5.3.2)

where different forms to make this extension are presented ahead in section 5.5.
Since our fluid domain is moving, the ALE formulation is needed. The corre-
sponding mesh velocity is found substituting Eq. (5.3.2) into Eq. (5.2.7) yielding
vmesh = v̂(uf).

Before writing the continuous formulation of the couple fluid-structure inter-
action problem, the subspace test functions for the fluid, with a homogeneous
Dirichlet boundary condition, are defined by

δwi ∈ W0, W0 =
{
δwi ∈ H1(Ωf), δwi = 0 on ΓD

f ∪ ΓI , δwi = 0 on Ωs
}

(5.3.3)
and the subspace test functions for the structure are expressed as

δwi ∈ W0, W0 =
{
δwi ∈ H1(Ωs), δwi = 0 on ΓD

s , δwi = Ext(δwi|ΓI) on Ωf
}

(5.3.4)
Note that the test functions for the fluid vanish at the interface and inside the
solid subdomain, while the solid test functions are nonzero on the interface and
extend inside the fluid subdomain. In this way, the kinematic continuity for the
displacement and velocity field is imposed as Dirichlet boundary conditions on the
fluid by the interface, and kinetic continuity for the traction is given as Neumann
boundary conditions on the structure at the interface.

Since the continuity equation is the same that for CFD problems, then the fluid
problem is obtained by substituting into the momentum equation the corresponding
test functions, which vanish in the solid part, yielding after integrating by parts

∫

Ωf

δwi

(
ρ
∂vi

∂t
+ ρcj

∂vi

∂xj

)
dΩ +

∫

Ωf

σij
∂δwi

∂xi
dΩ =

∫

Ωf

δwiρbidΩ (5.3.5)

This equation must be complemented by adequate boundary conditions dictated by
the fluid space test functions. Since fluid the test functions vanish at the interface,
then the displacement and velocity field can only be governed by imposing the
kinematic compatibility given by the Dirichlet condition

uf
ΓI = us

ΓI (5.3.6)



144 5. Fluid-Structure Interaction

vf
ΓI = vs

ΓI (5.3.7)

Similarly, the structural problem is obtained by considering the space of the
solid test functions on the momentum equations, yielding

∫

Ωs
0

δwiρ0üidΩ0 +

∫

Ωs
0

δEijSijdΩ0 =

∫

Ωs
0

δwiρ0bidΩ0 +

∫

ΓN
0;s

δwit̄
0
i dΓ0 + L(δwi|ΓI)

(5.3.8)
where L is the interface load corresponding to the part of the momentum equation
which is integrated on the fluid domain, and is given by the choice of the solid test
functions in Eq. (5.3.4). Then L can be written as

L(δwi|ΓI) =

∫

Ωf

Ext(δwi|ΓI)ρbidΩ −
∫

Ωf

Ext(δwi|ΓI)

(
ρ
∂vi

∂t
+ ρcj

∂vi

∂xj

)
dΩ

−
∫

Ωf

σij

∂Ext(δwi|ΓI)

∂xi
dΩ

(5.3.9)

which is the residual of the fluid equations evaluated with the extension of the inter-
face test functions Ext(δwi|ΓI), as given in Tallec and Mouro (2001). Remembering
that the fluid is considered with a homogeneous Dirichlet boundary condition, the
last term in Eq. (5.3.9) is integrated by parts yielding

∫

Ωf

σij

∂Ext(δwi|ΓI)

∂xi
dΩ =

∫

ΓI

δwin
f
jσijdΓ −

∫

Ωf

Ext(δwi|ΓI)
∂σij

∂xj
dΩ (5.3.10)

Substituting Eq. (5.3.10) into Eq. (5.3.9) leads to

L(δwi|ΓI) =

∫

Ωf

Ext(δwi|ΓI)ρbidΩ −
∫

Ωf

Ext(δwi|ΓI)

(
ρ
∂vi

∂t
+ ρcj

∂vi

∂xj

)
dΩ

+

∫

Ωf

Ext(δwi|ΓI)
∂σij

∂xj
dΩ −

∫

ΓI

δwin
f
jσijdΓ

(5.3.11)

Since the first three terms in the above equation are the solution of the fluid part,
Eq. (5.3.11) is finally expressed as

L(δwi|ΓI) = −
∫

ΓI

δwin
f
jσ

f
ijdΓ =

∫

ΓI

δwin
s
jσ

f
ijdΓ (5.3.12)

which shows the interface traction obtained directly from the momentum conser-
vation equation and not considered as an additional independent equation.

The continuity equation for the fluid part remains the same that for the CFD
problem, which is given by Eq. (4.2.10). The stabilization terms involve are ex-
pressed by Eq. (5.2.12) or Eq. (5.2.13).
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The fluid solver F for the couple problem is given by the following weak formu-
lation

∫

Ωf

δwi

(
ρ
∂vi

∂t
+ ρcj

∂vi

∂xj

)
dΩ −

∫

Ωf

p
∂δwi

∂xi
dΩ +

∫

Ωf

µ
∂vi

∂xj

∂δwi

∂xj
dΩ

−
∫

Ωf

δwiρbidΩ −
∫

Ωf

δp
∂vj

∂xj
dΩ +

∫

Ωf

δwm
i

(
uf − Ext(us

ΓI)
)
dΩ

+

∫

ΓI

δwu
i

(
uf − us

)
dΓ +

∫

ΓI

δwv
i

(
vf − vs

)
dΓ + Stabilization = 0

(5.3.13)

where the ALE framework for the momentum equation, with its corresponding
stabilization technique, has been considered together with the incompressibility
constraint. Besides the mesh movement in the fluid subdomain and the kinematic
compatibility at the interface are included in the formulation.

The corresponding solid solver S for the couple problem is given by the weak
formulation shown next

∫

Ωs
0

δwiρ0üidΩ0 +

∫

Ωs
0

δEijSijdΩ0 −
∫

Ωs
0

δwiρ0bidΩ0

−
∫

ΓN
s

δwit̄idΓ −
∫

ΓI

δwin
s
jσ

f
ijdΓ = 0

(5.3.14)

where the momentum equation is complemented with the traction fluid forces of
the couple problem at the interface.

5.4 Partitioned Methods

With the developed equations for the fluid solver F and the solid solver S given in
the last section, the problem consist in finding the appropriate partitioned method
to solve the fluid-structure interaction problem.

Numerical simulation of FSI problems is not only difficult because of the prob-
lems associated with the fluid or structure solution, but also because of the coupling
interface between these two fields which sometimes represents another challenge.
These difficulties depend strongly on the added mass effect introduced by the fluid
over the structure, as given in Causin et al. (2005). When the structure density
ρs is much larger than the fluid density ρf, the added mass effect of the fluid is
not significant and the problem can be solved with staggered partitioned schemes
or strong coupling partitioned techniques as in the case of aeroelasticity . However
when the structure and fluid densities are of the same order, as in the case of hemo-
dynamics, the added mass effect of the fluid over the structure is very important
and the coupling algorithm to be used must be a strong coupling partitioned scheme
with relaxation, or even better techniques as the exact Newton or inexact Newton
method for strong coupling problems, or the recently partitioned procedures based
on Robin transmissions conditions given by Badia et al. (2007).
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To explain these methods, assume that the fluid unknowns are grouped together
in the vector x and that the nonlinear iterative fluid solver is written as

xi = F(xi−1, y) (5.4.1)

where y represent the displacements of the structure, which also define the current
configuration of the interface. The nonlinear iterative solid solver is given by

yi = S(yi−1, x) (5.4.2)

where x defines the nodal fluid velocities and pressure including the traction fluid
forces at the interface for the structure. With these equations, the following strong
coupling schemes are described within a time step.

5.4.1 Block Jacobi Method

The easiest method to perform an iterative strong coupling scheme between differ-
ent field solvers is the Block Jacobi method. This method consist in iterating the
fluid and solid solvers independently as shown next

xi = Fp(xi−1, yi−1) (5.4.3)

yi = Sq(yi−1, xi−1) (5.4.4)

where p and q are the number of times that the solvers F and S are repeated
respectively. Also for i = 1, x0

n+1 = xn and y0
n+1 = yn. Once the tolerance

or maximum number of iterations is reached, the time step is advanced and the
process is repeated.

5.4.2 Block Gauss-Seidel Method

With a simple modification to Eqs. (5.4.3)-(5.4.4), the Block Gauss-Seidel method
is obtained. As before, this method consist in iterating the fluid and solid solvers
independently yielding

xi = Fp(xi−1, yi) (5.4.5)

yi = Sq(yi−1, xi) (5.4.6)

where in Eq. (5.4.5) a predicted value for y1 is needed when i = 1, as explained
in step 1) of section 5.1 for the staggered partition. When the tolerance or maxi-
mum number of iterations is reached, the time step is advanced and the process is
repeated.

This method is the most common to find in fluid-structure interaction problems
with strong coupling schemes, because existing and sophisticated solvers for each
field can be used with minor modifications.
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Even though the iterations within each time step lead to the monolithic solution,
sometimes relaxation techniques are combined with this method when important
values for the added mass effect are presented to ensure a convergence of the prob-
lem, or simply to accelerate the convergence of the coupling scheme when the added
mass effect is negligible. Such technique is described in the works of Mok (2001),
Mok and Wall (2001), Tallec and Mouro (2001), Wüchner and Bletzinger (2005),
Causin et al. (2005), Wüchner (2006), and Wall et al. (2007). The relaxation
technique used in this work is detailed in section 5.6.

5.4.3 Inexact Block Newton Method

The inexact Block Newton method, or quasi-Newton method, is derived from the
monolithic Newton-Raphson procedure, which for a two-field couple problem can
be written as

[
∂xF − I ∂yF

∂xS ∂yS − I

]

xi−1,yi−1

[
xi − xi−1

yi − yi−1

]
=

[
x − F

y − S

]

xi−1,yi−1

(5.4.7)

where ∂x and ∂y are the partial derivatives with respect x and y respectively. Since
a strong coupling partitioned procedure is being developed, then Eq. (5.4.7) is split
into two separate equations.

However the problem emerges when the cross Jacobians ∂yF and ∂xS, which
represents the sensitivity of the fluid state with respect to the structure and vice
versa, need to be evaluated. This is due to the fact that existing solvers are used
and we do not have direct access to the cross Jacobians of Eq. (5.4.7).

Approximation of the cross Jacobians is developed in the work of Steindorf
(2002) and Matthies and Steindorf (2004) where finite differences are used with an
auxiliary vector z and a small time step-size h yielding

∂yF(x, y)z =
1

h

(
F(x, y + hz) − F(x, y)

)
(5.4.8)

More details can also be found in Matthies and Steindorf (2005) and Matthies and
Steindorf (2006). Another method that evaluate approximately the cross Jacobians
is given by Tezduyar et al. (2006), where a mixed analytical/numerical element-
vector based technique is introduced.

5.4.4 Exact Block Newton Method

The exact Block Newton method, or simply Newton method, is derived from the
monolithic Newton-Raphson procedure, just as the inexact block Newton method
does, where the Eq. (5.4.7) is used again.

In the exact block Newton method, the cross Jacobians are derived exactly using
the existing solvers with some more advanced ideas, as given in Dettmer (2004),
Fernández and Moubachir (2005) and Dettmer and Peric (2006).

The exact block Newton method shows superior convergence properties that
any of the above methods mentioned with just a few iterations. While sometimes
the Gauss-Seidel method with relaxation or the quasi-Newton fail to converge, it is
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demonstrated in Fernández and Moubachir (2005) that the Newton method does
converge. However the cost of each Newton and quasi-Newton iteration is much
higher that the Gauss-Seidel method. Consequently, Newton based methods do
not imply an overall reduction of computational cost. Besides the computational
implementation is harder than the Gauss-Seidel method. These reasons make the
block Gauss-Seidel partitioned method still be an attractive method in the fluid-
structure interaction community.

5.5 Mesh Movement Techniques

Since the interface of the fluid-structure interaction problem follows the solid dis-
placements, it is necessary to use mesh movement techniques, also known as mesh
update equations, to update the internal nodes of the finite element mesh inside
the fluid subdomain. The mesh moving algorithm updates the nodal coordinates
of the fluid mesh in response to the deforming boundaries at the interface, and
maintaining freeze the rest of the boundary.

Among the wide possibilities to update meshes in this field, the most common
are mentioned next. The simplest one is the Laplacian method which can be found
in Belytschko et al. (2000). Other methods are based on the pseudo-structural
system, which can be done through the elastic spring analogy, i.e. see Farhat
(1997) and Degand and Farhat (2002), or by solving the elasticity equation as a
pseudo-elastic system, i.e. see Johnson and Tezduyar (1994), Belytschko et al.
(2000) and Chiandussi et al. (2000). In this way, the mesh is considered as another
system. Therefore the fluid-structure interaction problem yields a couple three-field
system.

The Laplacian method, used in this work, updates the position of the nodes
by solving the Laplace equation, where the contours solution are approximately
orthogonal. This method in strong form consists in finding the mesh displacements
such that

∇2û = 0 in Ωf

û = u on ΓI

û = 0 on ΓD
f

(5.5.1)

where ∇2 is the Laplacian of the mesh displacements û, and u are the displacements
on the interface given by the structural deformation.

This method has the advantage that it can be uncoupled for the displacements
and find independently ûx, ûy and ûz, which represents a faster solution of the
mesh displacements. Since it is desirable to retain the original shape of the elements
in the refined areas, this method can be improved by assigning different element
stiffness to small and large elements by simply dividing (instead of multiplying)
the Jacobian determinant during element integration.

On the other hand, in the pseudo-elastic structural technique, the mesh is as-
sumed to be an elastic body, and a standard linear problem is solved. This method
in strong form consists in finding the mesh displacements such that
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Kû = 0 in Ωf

û = u on ΓI

û = 0 on ΓD
f

(5.5.2)

where K is the stiffness matrix for the elastostatic system, û are the unknown
mesh displacements, and u are the displacements on the interface given by the
structural problem. For small displacements on the interface, the linear elastic
system is sufficient, however in the presence of large deformations at the interface,
a nonlinear model for the mesh may be more accurate. For example, Dettmer and
Peric (2006) use a nonlinear hyperelastic Neo-Hookean model, which after a few
iterations yield a mesh with a uniform element distortion.

In this work the pseudo-structural system of Chiandussi et al. (2000) is used,
which is simple to implement and instead of solving an iterative nonlinear structural
problem, a linear-elastic problem is solved twice. Of course this method is more
expensive than the Laplacian method, but for large displacements of the interface
this method yields a better mesh distributions of the internal fluid nodes. The
method is described next.

First, assign an isotropic homogeneous material with constant Young properties,
i.e. E = 1 and υ = 0, to each element. Then solved the pseudo-structural problem
with the appropriate boundary conditions at the interface.

After the solution of the first analysis pseudo-structural problem is found, the
strain field is computed together with its principal strains εi. Then the new Young
modulus for each element is found with

E =
1

ε̄ 2 ndime

ndime∑

i=1

ε2
i (5.5.3)

where ε̄ is the uniform strain. Now the second pseudo-structural problem is solved
with the appropriate boundary conditions at the interface. In this second analysis,
a uniform mesh distortion is obtained. Further details on this method including
other alternatives for evaluating the Young modulus and measurements of the mesh
quality using a mesh quality indicator are given in Chiandussi et al. (2000). Since
this method is more expensive than the Laplacian method, applying only a few
iterations when using iterative solvers, instead of iterating until convergence, gives
a good alternative to move nodes inside the fluid subdomain.

5.6 Strong Coupling with Relaxation

In this work, the strong coupling block Gauss-Seidel partitioned method with re-
laxation has been implemented. The structural solver S given by Eq. (5.3.14) is
now referred to as the computational solid dynamic (CSD) solver. The fluid solver
F given by Eq. (5.3.13) solves the fluid equations plus the movement of the mesh,
yielding in a high-cost task from the computational point of view. Therefore the
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fluid solver F is split into the computational mesh dynamic (CMD) solver that
moves the interior nodes of the finite element mesh of the fluid subdomain with the
methods given in section 5.5, and the computational fluid dynamic (CFD) solver
that uses the fractional step method described in chapter 4 and the ALE technique
incorporated in the momentum equation as given in section 5.2. All solvers of each
field use an implicit scheme.

There are several methods in the literature to accelerate the solution of the
problem by means of relaxation, i.e. Mok (2001). In this work the Aitken method
is implemented, i.e. Irons and Tuck (1969), which yields excellent solutions with
simple modifications to the code.

In order to compute the coupled fluid-structure interaction problem, a unified
algorithmic framework for the whole procedure is presented next. Considering
known all values of solid, fluid and mesh at time step tn, the new step tn+1 is found
following the simple steps given ahead:

1. Advance time step: tn+1 = tn + ∆t

2. Set iteration i = 1

3. Compute interface predictor displacement with one of the following methods

(a) Structural predictor: Solve the CSD problem to find û
n+1
|ΓI ,i at the inter-

face from un+1
|Ωs,i with a predicted external force given by:

i. Pressure:

· Order 1: pn+1 = pn

· Order 2: pn+1 = 2pn − pn−1, (for n ≥ 2)

ii. Force tf = nsσf
|ΓI : (where σf

|ΓI ,0 = 0)

· Order 1: tf
n+1 = tf

n

· Order 2: tf
n+1 = 2tf

n − tf
n−1, (for n ≥ 2)

(b) Interface displacement predictor: Set u1
|ΓI ,1 = 0 and find directly û

n+1
|ΓI ,i

at the interface with a prediction of the form

i. Order 0: û
n+1
|ΓI ,i = û

n
|ΓI

ii. Order 1: û
n+1
|ΓI ,i = û

n
|ΓI + ∆t v̂n

|ΓI

iii. Order 2: û
n+1
|ΓI ,i = û

n
|ΓI + ∆t

(
3
2 v̂

n
|ΓI − 1

2 v̂
n−1
|ΓI

)
, (for n ≥ 2)

4. Iterate the coupled FSI problem

(a) CMD solver: Move Mesh with Eq. (5.5.1) or Eq. (5.5.2)

i. Transfer û
n+1
|ΓI ,i to the mesh solver

ii. Solve the CMD problem and find û
n+1
i = û

n+1
|Ωf,i

iii. Compute mesh velocities v̂
n+1
i

(b) CFD solver: Solve fluid with Eq. (5.2.12) or Eq. (5.2.13)

i. Transfer v̂
n+1
i to the fluid solver

ii. Solve the CFD problem and find vn+1
i , pn+1

i

iii. Compute fluid stress tensor at interface σf
|ΓI
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(c) CSD solver: Solve structure with Eq. (5.3.14)

i. Transfer σf
|ΓI to the solid solver and compute structure forces tf

ii. Solve the CSD problem and find un+1
i+1

(d) Relaxation phase

i. Compute optimal relaxation parameter w̄i via Aitken method

ii. Relaxation of predicted interface position with

û
n+1
|ΓI ,i+1 = (1 − w̄i)û

n+1
|ΓI ,i + w̄iu

n+1
|ΓI ,i+1

(e) Advance iteration: i = i + 1

(f) Check convergence. If reached, go to 5, else go to 4

5. Check time step. If end of time not reached, go to 1, else end of calculation

The Aitken method of relaxation is based on Aitken’s acceleration method for
vectors. The method can be easily implemented in any code which then ensures
converge of the coupled problem for adequate time step parameters. The Aitken
relaxation parameter is computed with the following algorithm, as given in Wall
et al. (2007).

1. For the first time step and i = 1, µ̄n+1
1 = 0 and w̄1 = 1

2. For i = 1, µ̄n+1
0 = µ̄n

imax
and û

n+1
|ΓI ,0 = û

n
|ΓI ,imax

3. Compute Aitken optimal relaxation parameter w̄i

(a) Compute the difference between previous and actual interface solution

∆û
n+1
i = û

n+1
|ΓI ,i−1 − un+1

|ΓI ,i

∆û
n+1
i+1 = û

n+1
|ΓI ,i − un+1

|ΓI ,i+1

(b) Compute Aitken factor

µ̄n+1
i = µ̄n+1

i−1 + (µ̄n+1
i−1 − 1)

(∆û
n+1
i

−∆û
n+1
i+1)·∆û

n+1
i+1

(∆û
n+1
i

−∆û
n+1
i+1)

2

(c) Compute Aitken optimal relaxation parameter

w̄i = 1 − µ̄n+1
i

More sophisticated and computationally expensive methods, such as the gradient
method, lead to solutions as good as the Aitken method for fluid-structure inter-
action problems. Additional computational cost for this technique is insignificant
since only vector operations over the interface nodes are performed.

5.7 Code Development

In this work the fluid-structure interaction problem has been implemented in the
finite element program COMET (2007) following the algorithm given in section 5.6.
The dynamic analysis with the θ-family method, backward differencing method and
Generalized-α method for fluids have also been added to the code. This software
is developed at the International Center for Numerical Methods in Engineering
(CIMNE) and is used for coupled contact, mechanical and thermal analysis using
the finite element method.
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5.8 Example Problems

5.8.1 Nonlinear Shell Vibration Excited by Fluid Vortex

This model problem was originally proposed by Wall and Ramm (1998) to demon-
strate the ability of their FSI formulation to deal with complex flow-flexible struc-
ture interactions exhibiting large deformations. Later Steindorf (2002) and recently
Dettmer (2004) test their numerical simulations with this problem. Also, with a
modification at the inflow velocity, Hübner et al. (2004) have used this problem to
test their FSI monolithic code.

The problem consists of a thin elastic nonlinear shell attached to a fixed square
rigid body, which are submerged in an incompressible fluid flow. Vortices separating
from the corners of the rigid body generate oscillating forces on the shell. Geometry
and boundary conditions are given in Fig. 5.1.

p=0

v =0y

v =0y

v =vx

v =0y
12.0

5.5 15.5

1.0 4.0

1.0 0.06

Figure 5.1 Geometry and boundary conditions [cm]

5.8.1.1 Hübner’s problem

The easiest couple problem involving fluid and structural large deformations was
proposed by Hübner et al. (2004), where the material properties are given for
the structure with a density ρs = 2.0 g/cm3, Young’s modulus E = 2.0 × 106

g/(cm s2) and Poisson’s ratio υ = 0.35. The fluid material properties are density
ρf = 1.18×10−3 g/cm3 and viscosity µ = 1.82×10−4 g/(cm s). The inflow velocity
is taken as v̄ = 31.5 cm/s, leading to a Reynolds number Re = 204 if the length of
the square rigid body is taken as the characteristic length.

The finite element mesh used for this problem is shown in Fig. 5.2 and consists
of 14218 three-node triangular elements and 7278 nodes for the fluid part, and 20
nine-node quadrilateral elements in one layer over the thickness with 123 nodes for
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the structural part using plane stress conditions. The fluid part uses the second
order backward differencing BDF2 time integration scheme, while the generalized-
α time integration method with ρs

∞ = 0.8 is used for the structural part. The
time interval studied is of 25 s using a time step size ∆t = 0.005. Since the
density ρs >> ρf, a staggered coupling technique is used together with a structural
predictor of 1st order.

Figure 5.2 Reference finite element mesh

For this example, the FIC stabilization technique has been employed. Mesh
movement is obtained by employing the pseudo-elastic structural technique pre-
sented in section 5.5. Initially the fluid and the structure are at rest, and at t = 0
the inflow velocity is applied instantaneously. Fig. 5.3 shows the maximum vertical
tip displacement of the structure, that oscillates mainly in the second mode and it
is compared with the work of Hübner et al. (2004).

The first two natural frequencies of the structural part in its initial configuration
become freqs

1 = 0.607 Hz and freqs
2 = 4.087 Hz. The dominant frequency of the

fluid field yields freqf = 3.71 Hz.
A Fourier analysis of the coupled problem for lift forces fL is performed in order

to find the dominant frequency of the solution. Fig. 5.4 shows the Fourier spectrum
obtained, leading to a frequency for the couple problem freqc = 3.22 Hz. This
value is in good agreement with the result reported by Hübner et al. (2004) with a
frequency of the couple problem of 3.10 Hz. It can be seen that even the dominant
frequency of the fluid field and the second natural frequency of the structural part
are similar, the coupled problem dominant frequency is lower that both of them.
This may be though as a consequence of the influence of the first frequency of the
structure over the couple problem.

A close-up of the fluid mesh around the shell is given in Fig. 5.5 for a time
instant when the structure has a maximum tip displacement. There can also be
observed that the structure displacements oscillates in its second mode of vibration.
Figs. 5.6-5.7 show different time instants of the pressure field and its corresponding
structural displacements.
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Figure 5.3 History of maximum vertical tip displacement
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Figure 5.4 Fourier spectrum of the lift forces

Figure 5.5 Detail of the fluid mesh around the shell
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t s= 22.575

t s= 22.600

t s= 22.675

1.38-2.32 [g/(cm s )]
2

Figure 5.6 Pressure fields for different time steps
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t s= 22.750

t s= 22.775

t s= 22.825

1.38-2.32 [g/(cm s )]
2

Figure 5.7 Pressure fields for different time steps (cont.)
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5.8.1.2 Wall’s problem

Hübner’s problem is solved again, but with the material properties and boundary
conditions proposed by Wall and Ramm (1998). This problem is more complicated
to solve that the one proposed by Hübner et al. (2004). The material properties
are given for the structure with a density ρs = 0.1 g/cm3, Young’s modulus E =
2.5× 106 g/(cm s2) and Poisson’s ratio υ = 0.35. The fluid material properties are
density ρf = 1.18×10−3 g/cm3 and viscosity µ = 1.82×10−4 g/(cm s). The inflow
velocity is taken as v̄ = 51.3 cm/s, leading to a Reynolds number Re = 333 if the
length of the square rigid body is taken as the characteristic length.

The finite element mesh used for the coupled problem is the same that the
one used for the former problem and it is shown in Fig. 5.2. The fluid part uses
the generalized-α time integration scheme with ρf

∞ = 0.8 while the generalized-α
time integration method with ρs

∞ = 0.5 is used for the structural part. The time
interval studied is of 10 s using a time step size ∆t = 0.005. In this example, the
OSS stabilization technique has been employed. After 100 initial steps for the fluid
with the inflow velocity applied instantaneously, the coupling between the fluid and
the structure is performed. For this problem, a strongly coupling procedure is used
with a structural predictor of 1st order and without relaxation. Fig. 5.8 shows the
maximum vertical tip displacement of the structure, that oscillates mainly in the
first mode and it is compared with the work of Steindorf (2002).
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Figure 5.8 History of maximum vertical tip displacement

The first two natural frequencies of the structural part in its initial configuration
become freqs

1 = 3.033 Hz and freqs
2 = 19.023 Hz. The dominant frequency of the

fluid field yields freqf = 5.761 Hz. A Fourier analysis of the coupled problem for
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lift forces fL is performed in order to find the dominant frequency of the solution
yielding a frequency for the couple problem freqc = 3.125 Hz. In this case, there
are no similarities between the dominant frequency of the fluid and the structural
part. However the couple dominant frequency is higher than the first frequency of
the structure, maybe because of the little influence of the fluid dominant frequency
over the couple interaction problem.

Figs. 5.9-5.10 show different time instants of the pressure field and its corre-
sponding structural displacements, corresponding mainly to the oscillation of the
first structural mode.

2.33-4.13 [g/(cm s )]
2

t s= 7.85

t s= 7.88

Figure 5.9 Pressure fields for different time steps
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Figure 5.10 Pressure fields for different time steps (cont.)
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5.8.2 Cavity with Flexible Bottom Membrane in 2D

This example is taken from the work of Mok (2001) which consists of a modification
of the well known wall-driven cavity flow problem used in fluid dynamics. In this
problem the originally constant top velocity is change for an oscillatory top velocity,
including the corner nodes, given by

v̄ = 1 − cos

(
2πt

5

)
(5.8.1)

yielding a velocity interval between vx = 0 m/s and vx = 2 m/s. The cavity
bottom originally fixed is changed for a flexible bottom membrane. Also the fluid
inflow and outflow is allowed near the top face which allow the volume to change in
time. Geometry and boundary conditions for this problem are shown in Fig. 5.11.

v = , v =0 0x y

v =v, v =0x y

v =0x

p=0 0.125

0.875v =0y

v =0x

v =0y

v =vx

0.002

1.0

bottom membrane

Figure 5.11 Geometry and boundary conditions [m]

The fluid mesh consists of a four-node quadrilateral mesh of 32 × 32 divisions
and the structural part is constructed with 16 nine-node quadrilateral plane-stress
elements. The fluid properties are taken with a density ρf = 1.0 Kg/m3 and a
viscosity ν = 0.01 m2/s. For the structure, the density is taken as ρs = 500
Kg/m3, Young’s modulus E = 250.0 N/m2 and a Poisson ratio of υ = 0.0. The
time interval analyzed is t ∈ [0.0, 70.0], using a time-step size of ∆t = 0.01 s. Time
integration for the fluid is made with the generalized-α method with ρf

∞ = 0.9 and
the structural time integration uses the generalized-α technique with ρs

∞ = 0.8.
As shown in Mok (2001), this example can be solved without any relaxation

method. In this case, the number of Gauss-Seidel coupling iterations needed to
reach a tolerance of 10−6 varies between 12 and 20 iterations. If the relaxation
method is used with a fixed value w = 0.825, the range of iterations to reach
the tolerance is reduced between the interval 8 to 10 iterations. Finally if the
Aitken optimal relaxation parameter is computed automatically, the number of
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iterations to reach the tolerance is reduced to an interval between 6 and 8 iterations.
Consequently, the Aitken relaxation method shows an excellent behavior that is
preferable to use instead of the standard block Gauss-Seidel coupling technique.

Fig. 5.12 shows the vertical displacement of the membrane midpoint. It can
be noted that the present solution is indeed different from the solution presented
by Mok. The reason is that not all the boundary conditions used by Mok to solve
the problem are available in the reference cited. The amplitude obtained by Mok
is of 7.3 cm while the amplitude obtained in this work is of 7.4 cm. The period
of both solutions is the same with a value of 5.12 s. The main difference between
both works is that while Mok yield a mean vertical displacement of 18.1 cm, the
present solution has a mean vertical displacement of 23.5 cm. However the general
tendency of the coupled problem is the same. Also Rossi (2005) find this general
tendency using cable elements in the bottom of the cavity instead of nonlinear
plane-stress elements as used in this work.
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Figure 5.12 Bottom midpoint vertical displacement

In this example the structural density is two orders of magnitude greater than
the fluid density and it can be thought that also the faster staggered coupling
technique can be employed in the problem solution. However Mok (2001) showed
that staggered schemes failed to obtain the problem solution even if any predictor
is used and only strong coupling iterative methods yield a stable long-time solution.

Fig. 5.13 shows different time instants of the pressure field together with their
deformation associated to the bottom membrane displacements. In this figure,
when time t = 2.54 s the vertical displacement is just beginning. After time
t = 17.04 s, the deformation cycle is repeated with a period of 5.12 s. From
Fig. 5.12, it can be seen that for time t = 17.04 s, the minimum displacement is
presented and has a value of 19.8 cm. Graphically this deformation is shown in
Fig. 5.13. This value is repeated every 5.12 s. For time t = 19.54 s, the maximum
displacement is given with a value of 27.2 cm, and it is repeated every 5.12 s.
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t s= 2.54

t s= 17.04

t s= 19.54

0.898-0.394 [N/m ]2

Figure 5.13 Pressure fields for different time instants
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5.8.3 Cavity with a Thin Bottom Shell in 3D

This example is also taken from the work of Mok (2001) which consists of an
extension to 3D of the well known wall-driven cavity flow problem used in fluid
dynamics. In this problem the originally constant top velocity is change for an
oscillatory top velocity, including the corner edges, given by

v̄ = 1 − cos

(
2πt

5

)
(5.8.2)

yielding a velocity interval between vx = 0 m/s and vx = 2 m/s. The cavity bottom
originally fixed is changed for a thin bottom shell. Also the fluid inflow and outflow
is allowed near the top face which allow the volume to change in time, everywhere
else the velocity is fixed to zero in all directions. Geometry and boundary conditions
for this problem are shown in Fig. 5.14.

1.0

1.0

0.875

0.125

v = 0x

v =vx

v =vx

v = 0x

p= 0

Bottom Shell

Figure 5.14 Geometry and boundary conditions [m]

The fluid mesh consists of an eight-node hexahedral mesh of 24×24×24 divisions
and the structural part is constructed with 1152 three-node triangular rotation-free
shell elements with 625 nodes. The fluid properties are taken with a density ρf = 1.0
Kg/m3 and a viscosity ν = 0.01 m2/s. For the structure, the density is taken as
ρs = 500 Kg/m3, Young’s modulus E = 250.0 N/m2, Poisson ratio of υ = 0.0
and the thickness is 0.002 m. The time interval analyzed is t ∈ [0.0, 70.0], using
a time-step size of ∆t = 0.1 s. Time integration for the fluid is made with the
generalized-α method with ρf

∞ = 0.9 and the structural time integration uses the
generalized-α technique with ρs

∞ = 0.9.



164 5. Fluid-Structure Interaction

As shown by Mok (2001), this problem can be solved with the staggered coupling
scheme using a displacement predictor of order zero. If a displacement predictor
of order 1st or 2nd is used, the coupling scheme fails. If the Gauss-Seidel coupling
technique is used, the method converges yielding a stable long-time solutions. In
this example the iterative coupling scheme is used together with the automatic
Aitken relaxation method for faster convergence. The number of iteration needed
to reach a tolerance of 10−6 lies between 3 and 4 per time step with the Aitken
method.

Fig.5.15 shows the vertical displacement of the shell middle point. As in the
previous problem, the solution obtained is different from the solution presented by
Mok. Again the reason is that not all boundary conditions used by Mok to solve
this problem are available in the reference cited. The amplitude obtained by Mok
is of 6.0 cm while the amplitude obtained in this work is of 8.8 cm. The period
of both solutions is the same with a value of 5.12 s. Another difference between
both works is that while Mok yield a mean vertical displacement of 11.0 cm, the
present solution has a mean vertical displacement of 20.1 cm. However the general
tendency of the coupled problem is the same.
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Figure 5.15 Shell midpoint vertical displacement

Figs. 5.16-5.17 show different time instants of the bottom shell deformation
together with their displacement field. Fig. 5.16 shows the vertical displacement
for time t = 4.0 s and t = 6.0 s where the deformation process has just began.
After time t = 21.8 s the deformation process become cyclical with a period of 5.12
s. From Fig. 5.15, it can be seen that for time t = 21.8 s, the minimum vertical
displacement of the cycle is 16.3 cm, which is plotted in Fig. 5.17 and is repeated
each 5.12 s. For time t = 24.3 s, the maximum vertical displacement is given with
a value of 25.3 cm, which is repeated every 5.12 s.



5.8 Example Problems 165

t s= 4.0

0.253-0.004 [m]

t s= 6.0

Figure 5.16 Shell vertical displacement field
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t s= 21.8

0.253-0.004 [m]

t s= 24.3

Figure 5.17 Shell vertical displacement field (cont.)
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5.8.4 Channel with Flexible Wall

This model problem was originally proposed by Mok (2001) and Wall and Mok
(2001) as a challenging test for coupled problems involving similar densities be-
tween the fluid and the structure. Obviously, if the Gauss-Seidel strong coupling
method is used, this kind of problems can only be solved if a relaxation technique
is employed. Standard Gauss-Seidel methods fail to solve problems with similar
densities. Geometry and boundary conditions of the problem are given in Fig.
5.18.
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Figure 5.18 Channel geometry and boundary conditions [m]

The material properties are taken for the structure with a density ρs = 1500.0
kg/m3, Young’s modulus E = 2.3 × 106 N/m2 and Poisson’s ratio υ = 0.45. The
fluid material properties are density ρf = 956.0 Kg/m3 and viscosity µ = 0.145
kg/(m s). The inflow velocity is parabolic and is applied slowly with the function
shown in Fig. 5.19, where after 10 s the x-velocity component is kept constant with
a value of 0.06067 m/s.
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Figure 5.19 Channel inflow x-velocity component

The finite element mesh used for this problem has 6008 three-node triangular el-
ements and 3218 nodes for the fluid part, and 6 nine-node quadrilateral elements
in one layer over the thickness with 39 nodes for the structural part using geo-
metrically nonlinear plane stress conditions. The fluid part uses the generalized-α
time integration method with ρf

∞ = 0.9, while the generalized-α time integration
method for second-order equations with ρs

∞ = 0.6 is used for the structural part.
The time interval studied is 25 s using a time step size ∆t = 0.1. The FIC stabi-
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lization technique has been employed in this example. Mesh movement is obtained
by using the pseudo-elastic structural technique.

Fig. 5.20 shows a comparison between the pressure history solution obtained
by Mok (2001) and the present work. At point B, the solution of both works is
practically the same, while point A present little variations. However the solution
of point A is the same that the solution given by Rossi (2005).
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Figure 5.20 Time history for pressure

Fig. 5.21 shows a comparison between the x-velocity component time history so-
lution. The tendency between both works is the same, presenting little changes
probably because of the mesh and geometry studied.
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Figure 5.21 Time history for x-displacement component

Figs. 5.22-5.23 show different time instant of fluid-structure interaction for the
x-velocity component together with its associated deformation. This solution is in
accordance with the solution presented by Mok (2001) and Wall and Mok (2001).
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t s= 2.5

t s= 5.0

t s= 7.5

12.75-4.23 [m/s]

Figure 5.22 Contour field for x-velocity component and deformed geometry
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t s= 10.0

t s= 15.0

t s= 25.0

12.75-4.23 [m/s]

Figure 5.23 Contour field for x-velocity component and deformed geometry (cont.)



5.8 Example Problems 171

5.8.5 Pressure Pulse in a Compliant Vessel

This model problem was originally proposed by Nobile (2001) and Formaggia et al.
(2001) to consider the fluid-structure interaction arising in the modelling of blood
flow in large arteries. Recently Fernández and Moubachir (2005) has made a varia-
tion at the inlet data using the same geometry and physical parameters to demon-
strate the quadratic convergence of their FSI formulation.

The problem consists of a thin elastic vessel, that here is modelled with rotation-
free shell elements, conveying the blood flow modelled by an incompressible fluid
using the Navier-Stokes equations .

The geometry used for the computation has been made with a straight cylinder
of radius r0 = 0.5 cm and length L = 5 cm. The fluid physical parameters are
taken as those given by Formaggia et al. (2001) with a density ρf = 1 g/cm3 and
viscosity µ = 0.03 g/(cm s). The surrounding solid parameters are density ρs = 1.2
g/cm3, Young’s modulus E = 3.0 × 106 g/(cm s2), Poisson ratio υ = 0.3 and a
thickness of 0.1 cm. The structure is clamped at the inlet and outlet. The fluid is
initially at rest and an overpressure of 1.3332×104 g/(cm s2) (10 mmHg) has been
imposed at the inlet boundary for 0.003 s. To introduce this Neumann boundary
condition, Eq. (4.2.6) has to be added to the momentum equation.

The fluid mesh consists of 1600 hexahedral eight-node elements and 1869 nodes,
while the structure mesh has 1280 three-node triangular rotation-free shell elements
and 656 nodes. The structure has also been modelled with 640 hexahedral eight-
node elements with two layers over the thickness and 1008 nodes for comparison
purposes. The fluid solver uses the generalized-α time integration method with
ρf
∞ = 0.9, while the solid solver uses the generalized-α time integration method

with ρs
∞ = 0.8. The time interval studied is of 0.01 s using a time step size of

∆t = 0.0001 s. The FIC stabilization technique has been employed in this example.
Mesh movement is obtained by using the Laplacian method. The Gauss-Seidel
strong coupling technique is used together with the automatic Aitken relaxation
method. The number of iterations needed to reach a tolerance of 10−6 lies between
12 and 15 per time step.

Figs. 5.24-5.25 shows a pressure wave propagation together with the fluid de-
formed configuration for different time steps. A reflection wave is expected due to
the numerical side-effect of the outlet boundary condition. As can be seen, these
results are similar to those given by Formaggia et al. (2001) and Fernández and
Moubachir (2005). Fig. 5.26-5.27 shows the half solid deformed configuration of
the rotational free shell structure compared with the solid deformed configuration
of the hexahedral structure. It can be observed that the solution obtained with
the rotation-free shell elements is practically the same that the solution found with
the 3D solid elements. But the advantage of using the shell elements is the faster
solution in the CSD solver. It is not the purpose of this example to study realistic
physiological simulation of blood-arteries interaction, but to show the capabilities
of the coupling formulation implemented to deal with this kind of problems. Dis-
placements of all the figures in this example have been magnified by a factor of 20
for clarity.

Fig. 5.28 shows the time history analysis for radial displacements at different
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t s= 0.0025

t s= 0.005

15500-9300 [g/cm s ]2

15500-9300 [g/cm s ]2

Figure 5.24 Wave propagation generated by pressure pulse at the inflow
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t s= 0.0075

t s= 0.01

15500-9300 [g/cm s ]2

15500-9300 [g/cm s ]2

Figure 5.25 Wave propagation generated by pressure pulse at the inflow (cont.)
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t s= 0.0025

t s= 0.005

0.0130.0 [cm]

Shell Solid

0.0130.0 [cm]

Shell Solid

Figure 5.26 Structure deformed configuration. Displacements norm
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t s= 0.0075

t s= 0.01

Shell Solid

0.0130.0 [cm]

0.0130.0 [cm]

Shell Solid

Figure 5.27 Structure deformed configuration. Displacements norm (cont.)
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Figure 5.28 Time history for radial displacements

lengths from the inlet pressure: l = 0.25L cm, l = 0.50L cm and l = 0.75L cm.
Since the outlet pressure is set to zero, it is expected that the maximum radial
displacements become smaller when the distance to the outflow is closer.
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Figure 5.29 Time history for pressure

Fig. 5.29 shows the time history analysis for the pressure at different lengths
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from the inlet pressure. Also the effect of the reflection wave can be observed in
Figs. 5.28-5.29 due to the numerical side-effect of the outlet boundary condition
that develop negative pressures near this boundary.

It is important to remark that the fluid part of this example was solved using
the predictor-corrector scheme because the fractional step method lead to some
oscillations in the solution. A way to avoid these oscillations is the use of the
fractional step method twice per time step. In this form, oscillations are drastically
reduced, but still the predictor-corrector method gives a smoother solution.
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Chapter 6

Conclusions

This monograph deals with the analysis of structures with large deformations, in-
compressible fluid flows and fluid-structure interaction problems, which objectives
pursued were introduced in section 1.3 and have been fulfilled satisfactorily. An
algorithm to solve these three field problems has been developed and implemented
in the context of the finite element method.

Structures. The structural part of this work is concerned with the geometrically
nonlinear analysis of membrane and rotation-free shell structures. Improvement to
the formulations already existing is began with the continuum expression of the
virtual internal work in curvilinear coordinates. Then a new formulation based on
the principal fiber orientation is performed. The idea to use the fiber orientation
of the material for our analysis comes from the manufacturing process where a
direction for the principal fiber of the material is needed to build the structure.
The fiber orientation is mesh dependent and has great advantages, which can be
stated as follow:

• It is based on an idea which is very simple to understand.

• A suitable implementation as a preprocess in a finite element code makes it
a true alternative to take into account for structural analysis, since a wider
range of problems can be solved.

• Allows adequate postprocess of the problem being analyzed since any number
of patches that conform the structure can be postprocessed with different local
orientations.

• It allows to perform analysis with orthotropic and composite materials in-
cluding structures having an initially out-of-plane configuration.

Following a detailed explanation of the classical membrane theory, the inclusion
of the fiber orientation allows to improve the membrane formulation, where the
classical membrane theory is considered as a particular case of this new and general
formulation.

Even though the new finite element discretization for the membrane formulation
is expressed in a general context, in particular the triangular three-node finite
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element is implemented. This particularity is done with the intention to be used
as a part of the rotation-free shell formulation considered in this work.

An important aspect of the new formulation is the possibility to add prestressed
forces to the membrane structure in a simple and almost direct way. This is possible
because the new formulation of the three dimensional membrane structure has its
manufacturing fibers already oriented and then the prestressed forces can be added
directly to the internal forces.

Since conventional membrane theory allows compression stresses, a wrinkling
algorithm based on modifying the constitutive equation has been developed. With-
out this wrinkling algorithm, finite element analysis of membranes would lead to
inexistent compression stresses that would yield a final configuration of the mem-
brane structure completely different to the real one.

On the other hand, conventional shell formulations require a lot of memory and
computing time for their analysis. Therefore shell formulations with displacements
as the only degrees of freedom have been investigated by several authors. In this
work, the Kirchhoff-Love theory of thin shells is studied. Since the virtual internal
work for this kind of shells is built with a membrane and a bending part, the new
membrane formulation is used to form the membrane part of these elements. For
the bending part, the new formulation presented is based on the fiber orientation
technique. The choice to use triangular three-node finite elements for the rotation-
free shell discretization is due to the higher approximation of the solution compared
to other type of finite elements used in these kind of shell formulations.

The basic shell triangle formulation of Flores and Oñate (2001) has been refor-
mulated using the fiber orientation technique. The resulting new formulation has
improved its range of applications for engineering problems. As in the case of mem-
branes, the new rotation-free shell formulation can be used to analyze orthotropic
and prestressed shells.

Usually the Newmark time integration scheme is used in structural dynamic
problems. However geometrically nonlinear analysis for long periods of time intro-
duce spurious high frequencies that spoil the solution. In order to minimize un-
wanted low frequency dissipation while achieving high frequency dissipation with-
out regarding the order of accuracy, other time integration schemes are studied.
The easiest method to implement in a finite element code is the Bossak method.
Another widely used method is the Hilber-Hughes-Taylor time integration tech-
nique. These last two methods produce very similar solutions for large deformation
structural problems. However the generalized-α strategy is the best choice for
this kind of problems, since it can reproduce the solution of the last two methods
mentioned before, and provide a third option for better results.

The structural problems solved with the improved membrane and shell formu-
lations have demonstrated their robustness and accuracy for the different variety
of applications presented.

Fluids. The fluid part of this work is concerned with the solution of the Navier-
Stokes and continuity equation for incompressible flow problems. The monolithic
solution of these equations take great computer effort to solve the nonlinear sys-
tem of equations, specially for 3D problems. Instead of using a monolithic solu-
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tion for incompressible flow problems, pressure segregation methods have earned a
widespread popularity because of the computational efficiency given by the uncou-
pling of the pressure from the velocity field. In this work, the fractional step and
predictor-corrector methods are explained.

Three well known stabilization techniques have been implemented in the finite
element code used in this work. They are the SUPG/PSPG, OSS and FIC sta-
bilization methods with equal-order interpolation finite elements. Until now, the
SUPG/PSPG stabilization method have been used with monolithic solvers for in-
compressible flow problems. In this work, the SUPG/PSPG scheme is developed
to be used with fractional step and predictor-corrector methods following the ideas
that solve the OSS and FIC techniques with pressure-segregation methods.

Additionally, the generalized-α time integration scheme for fluids is adapted to
these three stabilization techniques with pressure segregation methods, which has
only been used for monolithic solutions. As in the case of structural problems,
the generalized-α technique for fluids seeks to minimize unwanted low frequency
dissipation while achieving high frequency dissipation without regarding the order
of accuracy.

Fluid problems extensively studied by analytical, numerical and experimental
methods are often used as benchmark problems to validate numerical simulations.
In this work, some well-known example problems have validated and demonstrated
the good performance of the fluid formulations implemented.

Coupling. From the available types for coupling fluid and structural problems, the
strong coupling block Gauss-Seidel partitioned technique is implemented in this
work. The fluid-structure interaction problem is built with the structure and fluid
contributions of this work.

A very important aspect to take into account for fluid-structure interaction
problems with large structural deformations is the time integration scheme used
for the simulation. Usually this kind of problem are studied for long periods of
time, which introduced spurious high frequencies that spoil the solution. One
way to avoid this problem is to reduce the time step size used for the analysis
that sometimes is unacceptable. The best way to solve this problem is to used
time integration schemes that minimize unwanted low frequency dissipation while
achieving high frequency dissipation without regarding the order of accuracy. In
this work, the method suggested to use is the generalized-α technique for both, the
structural and the fluid parts.

Many fluid-structure interaction problems are solved with staggered coupling
techniques, which are only acceptable for problems where the added mass effect
do not have influence in the structure. However this kind of problem may become
unstable for long time periods of study. To avoid this problem, strong coupling
partitioned schemes are advised.

However when the added mass effect plays an important role in the structure,
partitioned methods with block Newton schemes are an excellent choice. Another
option is the block Jacobi or block Gauss-Seidel method with relaxation techniques.
These last two methods are useless if they do not include the relaxation technique.
In this work, the strong coupling block Gauss-Seidel partitioned method with a re-
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laxation technique based on Aitken’s method is implemented, yielding an excellent
solution to all the examples presented.

Finally, a detailed algorithm for the fluid-structure interaction problem using
the strong coupling block Gauss-Seidel partitioned method is presented. In there, a
relaxation technique with Aitken’s method is explained. However, other relaxation
techniques can be added with minor modifications.

6.1 Achievements

The achievements made in this work are summarized as follows:

• A methodology for the fiber orientation of materials used for the construction
of light-weight structures is developed based on the finite element mesh of the
discretized problem.

• Development of an improved membrane formulation based on the fiber ori-
entation, where the classical membrane formulation can be considered as a
particular case of this new formulation.

• The new membrane formulation allows the analysis of orthotropic membrane
structures. The initial configuration of the membrane can be flat or curved.

• The inclusion of prestressed forces is accounted for in the new membrane
formulation, since usually membranes have a prestressed field that give the
design shape to the structure.

• Development of an improved rotation-free shell formulation based on the fiber
orientation.

• The new rotation-free shell formulation allows to analyze orthotropic and
prestressed structured.

• Local postprocess for membrane and shell structures with different principal
fiber orientations.

• Development of the incompressible flow formulation with the SUPG/PSPG
stabilization technique in the context of pressure segregation methods. Spe-
cially for fractional step and predictor-corrector methods.

• Adaptation of the generalized-α time integration scheme for fluids to frac-
tional step and predictor-corrector methods, using the SUPG/PSPG, OSS
and FIC stabilization techniques.

• Coupling of large deformation membrane and shell structures with incom-
pressible fluid flow formulations. Membrane and shell new formulation devel-
oped in this work are used in the structural part. Fluid improvements with
the generalized-α technique for pressure segregation methods are used in the
fluid part.
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6.2 Possible Future Research Lines

The following research lines to continue the development of the structure, fluid and
fluid-structure interaction problems of this work are suggested:

• To develop a constitutive equation for membrane and shell finite elements
capable of dealing with composite materials for the study of recent structural
applications.

• Improving the computational fluid dynamic solver to account for turbulence
models and wall-functions will allow the solution of high mean flow Reynolds
numbers problems.

• When excessive large displacements of the structure are transferred to the
moving mesh algorithm, it may fail. Then it is necessary to remesh the fluid
domain. Therefore the implementation of an internal remesh solver in the
actual code will be needed.

• Implementation of strong coupling block Newton partitioned methods for
fluid-structure interaction problems.

• Parallelization of the code to save computer time for complex analysis.

• Develop a form-finding algorithm.
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time integration scheme, 71

θ-method
time integration scheme, 112

acceleration
material, 11

added mass effect, 145
aeroelasticity, 137, 145
ALE formulation, 137

Backward differentiation method
time integration scheme, 113

balance of momentum, 16
base vectors

contracovariant, 34
covariant, 34, 41

Bossak method
time integration scheme, 71

boundary
Dirichlet, 25
Neumann, 25

cable
linearization, 79

cable element
formulation, 54
semidiscretization, 55

configuration
current, 10
deformed, 10
initial, 9
reference, 9

conjugate in power, 20
conservation equations, 15

angular momentum, 17
energy, 19

linear momentum, 16
mass, 15

constitutive equation
plane stress

isotropic material, 47
orthotropic material, 47

constitutive equations, 21
linear elasticity, 22
Newtonian fluids, 23
nonlinear elasticity, 22

continuity equation, 16
contravariant base vectors, 34, 60
convection, 106
convective term, 11
convective velocity, 141
coordinate system

curvilinear, 33
rectangular Cartesian, 10

coupled incompressible flow equations,
111

coupling strategies
monolithic methods, 137
partitioned methods, 137

covariant base vectors, 34, 41, 59

damping
structural, 73
viscoelastic, 73

deformation, 12
gradient tensor, 12, 14, 35

density, 15
Dirichlet boundary, 25
displacement, 11

gradient tensor, 12
divergence, 15, 18
drag coefficient, 129
dynamic viscosity, 106
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elastic constants, 21
elasticity

linear theory, 21
nonlinear theory, 22

energy
conservation, 19
internal, 19
kinetic, 19

equations of motion, 31
equilibrium equation, 18
Euler equation, 24
Eulerian

coordinates, 10
description, 11

Eulerian elements, 106
Eulerian formulation, 17
external forces, 30, 51

fiber orientation, 36
finite element discretization

for Eulerian formulations, 108
for total Lagrangian formulations,

27, 40, 61
finite element semidiscretization, 27, 31,

40, 61
first law of thermodynamics, 19
fluid

incompressible, 105
inviscid, 105

fluid-structure interaction, 137
governing equations, 142
staggered coupling, 139
strong coupling, 149

force
resultants, 67
surface, 14

forces
body, 16
pressure follower, 36

fractional step method, 115
function continuity, 26

Galerkin-type weak form, 26, 106, 107
Generalized-α method

time integration scheme, 72, 114
gradient

left, 11
right, 11

Green-Lagrange strain tensor, 13, 35, 42,
60

hemodynamics, 145
homogeneous Dirichlet boundary condi-

tion, 107

incompressible
flow equations, 111
fluids, 23
material, 16

inertial forces, 31
integration by parts, 26
internal

energy, 19
internal forces, 28, 29, 43, 45, 46, 50, 57,

68
isoparametric coordinates, 40
isotropic material, 21, 47

Jacobian
determinant, 12
matrix, 12

Jacobian transformation tensor, 44, 51,
63

kinematic
pressure, 108
viscosity, 108

kinematics, 9
kinetic

energy, 19
kinetic forces, 30
Kirchhoff-Love theory, 60
Kronecker delta, 12, 35

Lagrangian
coordinates, 10
description, 10

Lagrangian formulation
total, 18
updated, 17

Laplacian, 24
Laplacian operator, 116
lift coefficient, 129
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linearization
cable, 79
membrane, 76
shell, 79

Mach number, 107
mass, 15

conservation, 15
conservative form, 16

mass matrix, 30
master element coordinates, 40
material

coordinates, 10
deformation gradient tensor, 12
description, 10
displacement gradient tensor, 12
isotropic, 47
orthotropic, 47
point, 9, 10
time derivative, 11

material motion, 140
membrane

finite element semidiscretization, 40
formulation, 33
linearization, 76
slack state, 52
state-of-the-art, 31
structures, 31
taut state, 52
thickness, 50
wrinkle state, 52
wrinkling algorithm, 52

membrane analysis
isotropic, 36
orthotropic, 36

membrane element
discretization, 40
fiber orientation, 36
implementation, 47
theory, 33

mesh
movement techniques, 148
update equations, 148

mesh motion, 140
metric tensor, 34, 42, 60
moment resultants, 67

momentum equation, 17
Eulerian description, 17
Lagrangian description, 17
weak form, 26

motion
material, 140
mesh, 140

Navier-Stokes equation, 24
Neumann boundary, 25
Newmark

time integration scheme, 69
Newton-Raphson method, 74
Newtonian fluids, 23
nonlinear solution methods

Newton-Raphson, 74
Picard, 124

normal, 14

orthotropic material, 47

parent element coordinates, 40
partial differential equations, 15
partitioned methods

staggered coupling, 138, 139
strong coupling, 138
weak coupling, 138

Picard iteration method, 124
postprocess

strain and stress field, 36
predictor-corrector method, 117
pressure

kinematic, 108
thermodynamic, 23

pressure follower forces, 36, 51
pressure segregation methods

fractional step, 115
predictor-corrector, 115, 117

prestressed forces, 36, 46, 61
principle of virtual work, 25, 26

quasi-static analysis, 74

rate of deformation tensor, 13
rate of rotation tensor, 13
Reynolds number, 24
Rodrigues’ rotation formula, 39
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rotation matrix

strains, 45
stresses, 45

rotation-free
shell triangle element, 62

Saint Venant-Kirchhoff material, 22, 47,
59

shape functions, 27, 40, 108
three-node triangle, 47
two-node linear, 55

shell
finite element semidiscretization, 61
Kirchhoff-Love theory, 57, 60
linearization, 79
Reissner-Mindlin theory, 57
rotation-free, 58
state-of-the-art, 57

shell analysis
isotropic, 61
orthotropic, 61

shell element
discretization, 61
formulation, 59
theory, 57

solution strategies
Newton-Raphson method, 74
Picard iteration method, 124

space
of the test functions, 25
of the trial functions, 26

spatial
coordinates, 10
deformation gradient tensor, 14
description, 11
rate of deformation tensor, 13
rate of rotation tensor, 13
velocity gradient tensor, 13

spin tensor, 13
stabilization techniques

CG, 120
FIC, 120, 122
GLS, 119
OSS, 119, 121
PSPG, 119

SGS, 119
SUPG, 119
SUPG/PSPG, 120
TG, 120

staggered partitioned coupling, 139
static problems, 18
Stokes flow, 24
strain

energy function, 21
rate tensor, 13

strain tensor
Green-Lagrange, 13, 35, 42
infinitesimal, 13

strain-displacement matrix, 43, 45, 46,
49, 57, 67

strain-displacement tensor, 28, 43
stress

prestressed field, 36
resultants, 67

stress tensor
Cauchy, 14
first Piola-Kirchhoff, 14
nominal, 14
second Piola-Kirchhoff, 14, 35
true physical, 14

Strong coupling
Block Gauss-Seidel, 146
Block Jacobi, 146
exact Block Newton, 147
inexact Block Newton, 147

strong form, 25
Strouhal number, 131
structural damping, 73
surface

force, 14
traction, 14

tangent space, 34, 37
test functions

space, 25, 106, 107
time derivative

material, 11
spatial, 11
total, 11

time integration schemes, 68
for fluids
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θ-family method, 112
Backward differentiation, 113
Gear methods, 113
Generalized-α method, 114

for solids
α-method, 71
Bossak method, 71
Generalized-α method, 72
Newmark method, 69

total Lagrangian elements, 27, 40, 61
traction

surface, 14
transformation

Jacobian tensor, 44
matrix, 45

trial functions
space, 26, 106, 107

triangular three-node
membrane element, 47
shape functions, 47

variation, 28
velocity

gradient tensor, 13
material, 11
spatial, 11
strain tensor, 13

virtual
external work, 36
internal work, 35, 43, 45, 61, 67

bending, 62
viscoelastic damping, 73
viscosity, 105

dynamic, 106
kinematic, 108

Voigt notation, 29
von Karman vortex, 128

weak form, 25, 106
Galerkin-type, 26, 106, 107
of the continuity equation, 107
of the momentum equation, 26
of the Navier-Stokes equation, 106
of the Navier-Stokes equations, 107

wrinkling algorithm for membranes, 52




