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Abstract. We use DEM simulations on a simple 2D model of a granular material to
measure its deformation response to small stress increments of arbitrary directions (stress
probes) and assess the applicability of the classical concepts of elastoplasticity. We impose
stress increments in the space of principal stresses components, to numerical specimens
selected at various intermediate states along the biaxial compression path. The elastic
part of the incremental response is systematically identified by building the elastic stiff-
ness matrix of well-equilibrated configurations. Plastic strain increments are computed
standing on the partition hypothesis for strain increments into elastic- and plastic parts.
The domain of validity of the partition hypothesis is discussed, playing extensively with
the magnitude of the stress increments, in order to identify a range in which the incre-
mental response is homogeneous of degree 1 and the essential features of plasticity models
can be observed. We investigate in particular the existence of a plastic flow rule with a
clearly defined plastic flow direction and yield criterion. The robustness of these features
is tested over a range of contact stiffness levels and against the dominant deformation
modes (i.e., based on contact deformation or network rearrangement).

1 Introduction

Elastoplastic models for granular materials under quasistatic loading conditions were
first developed by adapting the key features of metal plasticity models to the frictional-
cohesive nature of soils, on a large basis of phenomenological observation in laboratory
testing [1, 2]. The continuously improving performances of discrete numerical simulation
tools offer nowadays the possibility to run reliable testing campaigns on “virtual” granular

1

72



F. Froiio, J.-N. Roux

specimens. In complement to physical testing, discrete numerical simulations provide
flexibility, repeatability and an open window on the microscopic processes driving the
phenomenologically observable behaviour. This paper summarizes some recent advances
of an ongoing work that should be ascribed in the relatively small number of studies where
the essential features of elastoplastic models for granular materials are investigated by a
systematic use of a numerical implementation of the stress probing technique [3, 4, 5], as
first addressed by Bardet [6, 7] since 1989. The simple idea of this technique is to measure
the deformation response of “identical” specimens to a rose of supposedly-infinitesimal
stress increments (stress probes) in a comprehensive spectrum of stress directions. Clearly,
a prerequisite for this technique is the capability to obtain as many identical specimens
as the number of stress increment directions under considerations. This facts makes its
application prohibitive, therefore rare, in physical testing [8], while it entails no major
difficulty in numerical testing.

Among the classical features of elastoplasticity that have been investigated by previous
researchers applying the stress probing technique to granular materials, one can mention
(i) the character of rate-independence of the material response, (ii) the partition hypothesis

for the deformation increments into elastic- and plastic components and (iii) the existence
of a plastic flow rule with clearly identified plastic flow direction and yield criterion. In
this study, those features are reconsidered in an enlarged and unified context, by varying
a small number of material- and texture parameters. In addition, we pay particular
attention to (iv) the identification of an appropriate range of stress increment amplitudes

for the measurements to be actually expressive of the incremental (tangent, infinitesimal)
response. We show why this apparently technical aspect can affect the measurement
results substantially. We limit ourselves, in this paper, to some results concerning stress
probes under biaxial conditions. For some anticipations on the extension of the method
to the incremental response under rotation of principal stress axes, we refer the interested
reader to a preliminary study in Ref. [9].

In the following sections we introduce briefly the numerical procedure of specimen
preparation and the inherent parameters. Next, we address some results concerning the
issues at points (i)-(iv) in the above list and conclude with a short summary.

2 Specimen preparation and investigation points

The numerical samples tested in this work are disk assemblies of 5600 particles, with
diameters uniformly distributed in the range [0.7d, 1.3d] about the average diameter d.
Two contacting particles interact by a unilateral normal contact force FN and a tangential
contact force FT . The simple rheological model for the normal contact force consists of
an elastic- plus a viscous contribution as functions of the contact deflection hN ≥ 0 and
its time rate, respectively:

FN = KNhN + αN ḣN .
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The tangential contact force is computed as the elastic response to the relative contact
sliding hT and is bounded by Coulomb-friction, i.e.,

FT = KThT , FT ≤ µFN ,

where µ is the contact-friction coefficient. We neglect any volume actions but inertial
ones.

At the virgin state, the disk assembly fills a rectangular cell, approximately square,
aligned along directions 1 (lateral) and 2 (axial). The cell can undergo generic affine
deformations in order to accommodate the most general deformation of a granular REV
under small strains. Bi-periodic boundary conditions are implemented according to the
Parrinello-Rahman and Lees-Edwards techniques for molecular dynamics [10, 11]. The
components of the Cauchy stress tensor σ can be retrieved at any time either from inter-
particle forces inside the REV, via the classical Love formula, or by simple averages on
inter-particles forces across the cell boundaries. Quasi-static conditions being ensured in
our tests, the two procedures provide sensitively the same measurements. The components
of the infinitesimal strain tensor ε are obtained by a direct quantification of the affine
deformation of the bounding periodic cell. The loading history of the generic specimens to
be tested against stress probes consists of a standard biaxial compression procedure, with
a first stress-rate-controlled isotropic compression and a subsequent axial compression at
constant axial strain-rate and constant value P of the lateral pressure σ11.

The biaxial tests executed for this study can be classified with respect to a small
comprehensive number of non-dimensional parameters taking into account material prop-
erties and test conditions: (i) the stiffness parameter κ = KN/P , setting the scale of
contact deflections; (ii) the contact friction coefficient µ; (iii) the damping parameter
ζ = αN/

√
2KNm (with m the mass of the typical particle of diameter d) discriminating

the underdumped- from the overdamped regime of an elementary oscillator connecting two
particle of mass m by a spring of constant KN ; (iv) the inertia parameter γ = ε̇22

√
m/P ,

setting the scale of inertia forces. In our study we set KT=KN and fix µ = 0.3 for sake of
simplicity. We choose ζ = 0.9 in order to keep particle interactions slightly overdumped
and so accelerate the numerical convergence. The inertia parameter γ is bound to 10−4,
to ensure quasistatic conditions of testing. Finally, the stiffness parameter κ takes the
values 103, 104 and 105. This first set of parameters controlling the condition of biaxial
testing can be extended by introducing the stress ratio ς = Q/P , where Q is the value of
axial pressure σ22 at which the specimen is tested against stress probes. This extended
set of parameter controls the conditions of stress probing. In the large majority of the
tests considered here, the stress probes were applied at the investigation points ς = 1.2,
1.4, 1.6 and 1.8.

A numerical refinement of the isotropic consolidation procedure (prior to axial load-
ing in biaxial tests) allows to obtain “twin” specimens that are macroscopically undis-
tinguishable, namely in terms of stress σ and solid fraction Φ, but differ in terms of
texture [12, 13, 14]. As shown in Table 1, we apply here this procedure in order to im-
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Table 1: Biaxial test families and values of variable parameters.

Family κ ς (ca.)
A3 103 1.2, 1.4, 1.6, 1.8
A4 104 1.2, 1.4, 1.6, 1.8
A5 105 1.8, 1.9
B3 103 1.2, 1.4, 1.6, 1.8
B4 104 1.2, 1.4, 1.6, 1.8
B5 105 1.2, 1.4, 1.6, 1.8

prove the variety of the population of our specimens. Biaxial tests of type A4 and B4,
for example, share the same stiffness parameter κ = 104, but the tests in the first family
were “numerically lubricated” during the isotropic consolidation by temporarily dimming
µ = 0, which lead to much larger, almost maximal, values of the coordination number z
(about 4, vs. 3 ca. for a specimen of type B4). The same difference can be acknowledged
between tests of the type A3 and B3 (both for κ = 103) or A5 and B5 (κ = 105, resp.).
Typical axial loading curves are shown in Fig 1 for biaxial tests of type A3, A4 and A5.
At small strains, comparing different curves at equal stress ratio ς, the axial strain scales
with κ−1, indicating that the contact deformation drives the macroscopic response [12].
Fig 2 refers to axial compression in biaxial tests of type B3, B4 and B5. The inherent
microscopic mechanism of deformation at small strains is now the continuous network
rearrangement by microscopic instabilities, which makes the macroscopic behaviour ac-
tually independent from the contact deformations and therefore almost insensitive to the
stiffness parameter κ: the loading curves superposes at small strains.

3 Incremental response under biaxial loading conditions

The values of stress ratio in Table 1 indicate the investigation points for the stress
probing procedure, depending on the biaxial test family. At least two specimens from each
family were submitted to parallel tests, in order to assess the degree of repeatability, which
was found satisfactory. The stress probes were applied along sixteen different directions,
uniformly distributed in the plane of principal stresses (from “0A” to “0P”in Fig. 3).
Along each stress direction we applied twelve stress increment levels, corresponding to
as many multiples of 2

√
2P × 10−3. The anelastic (supposedly-plastic) strain increments

δεP were obtained by computing the difference

δεP = δε− δεE (1)

between the total strain increments δε and the elastic strain increments δεE. The validity
of the partition hypothesis (Eq. 1) is checked here a posteriori, by giving evidence of a
plastic flow rule and a yield criterion, as detailed in the following paragraphs where we
will be focusing on results from stress probing on specimen issued from biaxial tests of
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Figure 1: Normalised deviatoric stress vs. axial strain and volumetric strain vs. axial
strain for typical biaxial tests of type A3, A4 and A5.
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Figure 2: Normalised deviatoric stress vs. axial strain and volumetric strain vs. axial
strain for typical biaxial tests of type B3, B4 and B5.
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Figure 3: Rose of normalised stress increments.

type A4 and B4. We will finally point out the main differences with respect to other
families of specimens, when relevant.

The elastic strain increments cannot be observed directly and were systematically com-
puted according to the assigned stress increments via an elasticity tensor built by assem-
bling the contribution of the contact stiffnesses across the contact network [14]. As an
example, in Fig. 4 we represent the incremental elastic response of a specimen of type A4
to the stress probes in Fig. 3, applied at the investigation points ς = 1.2 and ς = 1.8. The
specimen exhibits a marked elastic anisotropy, slightly evolving during the axial loading.

For the same specimen and investigation points, Fig. 5 shows the plastic strain incre-
ments δεP computed according to Eq. 1 and compared to the elastic strain increments.
The plastic strain increments align neatly along a plastic flow direction in the plane of
principal strains. The inclination of such direction with respect to the ε11 axis ranges
from 132◦ (for ς = 1.2) to 138◦ (for ς = 1.8, resp.). A plastic flow direction is clearly
identified also for specimens from biaxial tests in the family B4, as shown in in Fig 6
for the investigation point ς = 1.8. The inherent plastic flow direction, measured by an
angle of 142◦ with respect to the ε11 axis, is approximately the same as the homologue
case in Fig. 5, but the plastic strain increments are about one order of magnitude larger.
The elastic contribution appears now negligible in comparison. It is interesting to remark
how the plastic strain increments in Fig. 5 group in segments along the plastic flow direc-
tion, consistently with the leading deformation mechanism for this type of specimens, by
alternate instabilities and rearrangement of the contact network (cf. Sec. 2).

Qualitatively-similar features or the same features where observed for all tested spec-
imens: (i) a clear plastic flow direction can always be identified; (ii) compared to plastic
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Figure 4: Elastic response for a specimen at stress ratio ς � 1.2 (left) and ς � 1.8 (right)
from a biaxial test of family A4.

strain increments, the contribution of the elastic increments tends to reduce with increas-
ing values of the stress ratio and of the stiffness parameter; (iii) such contribution is much
weaker, in some cases negligible, for low-coordination specimens (i.e., from families B3,
B4 and B5).

We now consider the flow rule

δεP =




1
EP (δσ · ξ)π if f(σ) = 0 and δσ · ξ ≥ 0

0 if f(σ) = 0 and δσ · ξ < 0

0 if f(σ) < 0

, (2)

where the second-order tensor π ( ‖π‖ = 1 ) represents the plastic flow direction discussed
previously, EP is the plastic stiffness modulus and the second-order tensor ξ ( ‖ξ‖ = 1 )
identifies the outward-oriented normal to the yield locus seen here as an hyper-surface
in the associated stress space. It is worth recalling that these three quantities should
not depend on the applied stress increment, but only on the actual state variables. The
directional issue, i.e. that of the existence of a plastic flow direction π, has just been
settled and in order to validate the flow rule one just needs to exhibit a satisfactory fitting
of the numerical data with Eq. 2 in norm. A plot of this type is shown in Fig. 7 for the
four investigation points of a biaxial test in the family A4. The norm ‖δεP‖ of the plastic
strain increments is plotted against the component of the respective stress increments δσ
along ξ. The plot takes into account only positively-oriented stress increments (i.e., such
that δσ · ξ ≥ 0) and all the stress increment amplitudes are represented, undistinguished.
Following Eq. 2, for small-enough stress increments, the four curves should conform to as
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Figure 5: Elastic vs. plastic response of a specimen at stress ratio ς = 1.2 (inner frame)
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Figure 6: Elastic vs. plastic response for a specimen at stress ratio ς = 1.8 from a biaxial
test of family B4.
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many straight lines passing by the origin of the plot. In practical terms, the appropriate
size of the stress increments should note exceed the range put in evidence by the frame in
the figure, out of which the measurements deviate substantially from a linear relation. The
suggested range corresponds roughly to the eighth level of stress increment amplitudes in
Fig. 3. According to the results obtained insofar from specimens of type A3, A4 and A5,
this range seems also to depend sensitively on stiffness parameter κ: the higher its value
the smaller the maximal allowed relative amplitude ‖δσ‖/P of the stress increments for
an efficient fitting of the flow rule.

On the other hand, the stress increments cannot be chosen arbitrarily small. A first
technical but obvious reason is that they cannot be assigned at the scale set by the
accuracy of the numerical algorithm. A second reason appears from Fig. 7, in which the
dashed line interpreting the plot for ς = 1.8 gives evidence of a slight offset from the origin.
This feature, appearing systematically for this type of specimens, might be interpreted
as a parasite effect of the specimen preparation procedure. After the investigation point
was reached during the axial compression, the numerical simulation was continued, at
constant stress, for the time needed to reach a finely-equilibrated configuration, in order
not let dynamical effects interfere with the response to stress probes. The observed offset
might therefore be seen as a restored minimal elastic region, close to the origin of the
plot, due to a slight unavoidable rearrangement of the contact network and consequent
loss of plastic memory during the “creep” transition before stress probing.

The values measured on the horizontal axis in Fig. 7 depends on the choice of the
quantity ξ, i.e., of the outward-orient normal to the yield locus. The direction ξ of the
stress space selects the component of the stress increment that is retained as “active” by
the flow rule. Arbitrary choices of ξ produce extremely scattered plots, and meaningful
curves can only be obtained when ξ points at a precise direction of the stress space. The
existence of this particular direction is an implicit, final confirmation of the validity of
the flow rule in Eq. 2. Moreover, the minimisation of the plot scattering proves also to
be a robust procedure for the detection of the normal to the yield locus. We refer the
interested reader to Ref. [9] for systematic measurements of ξ quantity and the plastic
flow direction π in the whole range of parameters and specimen families considered in
this work. We anticipate that those masurement confirm the non-associative character of
the flow rule, which is a classical result in granular plasticity. We finally remark that the
same qualitative observation concerns the specimen from biaxial tests of type A3 and A5.

The case of a specimen from biaxial tests of type B4 is represented in Fig. 8, where
the main differences with respect to the case A4 can be found by looking at the plot for
the investigation point ς = 1.8. The latter can be observed in more detail as it sets the
scale of the vertical axis. The staircase shape of the plot is consistent with the leading
deformation mechanisms for specimens from biaxial tests in the families B3, B4 and B5,
that deform by repeated instabilities and rearrangements of the contact network. This
observation is in accordance with the analogous remark on Fig. 6. Practically speaking, in
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Figure 7: Plastic strain increment amplitude vs. active part of the stress increments for
specimens at stress ratios ς � 1.2 to 1.8 from a biaxial test of family A4. Stress increment
amplitudes as mutliples of 2

√
2P × 10−3.

order to get meaningful measurements of the plastic stiffness modulus EP for specimens
of this type, one needs to set the order of magnitude of the stress increments at a larger
scale, at which the segmentation of the plot is averaged out. The result of this rescaling is
suggested in Fig. 9 which results from the application of stress increments of four different
amplitudes, for as many multiples of 2

√
2P×10−2, roughly one order of magnitude higher

than those in Figs. 7 or 8.

4 Conclusions

We have presented a robust numerical method, via DEM simulations, for the mea-
surement of the incremental response of model (2D) granular materials. The numerical
implementation of this technique, called stress probing, was first proposed by Bardet in
1989 and is now being considered with growing interest by several authors, in particular
for the assessment of the basic features of granular elastoplasticity. In this work, those
features were studied in a wide range of material properties (in particular the contact
stiffness) and for different deformation regimes (either driven by contact deformation or
by network rearrangement). By this method, the validity of the partition hypothesis for
the deformation response into separate elastic- and plastic contributions can be clearly
assessed; under biaxial loading conditions, the plastic incremental response obeys closely
a standard non-associated flow rule with well defined plastic flow direction and yield cri-
terion. A key point for an effective application of the method was clearly the proper
choice of the range of stress increments amplitudes for the stress probes, depending on
the inherent material properties and deformation regimes.
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