
939

III International Conference on Particle-based Methods – Fundamentals and Applications
PARTICLES 2013
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Abstract. This paper presents a novel coupling algorithm for a Smoothed Particle
Hydrodynamics-Arbitrary Lagrange Euler (SPH-ALE) and a mesh-based Finite Volume
(FV) method where information is transferred in two ways. On the one hand, we use
the FV calculation points as SPH neighbors in the regions where the mesh is overlapping
the SPH-ALE particles. On the other hand, the boundary conditions for the FV domain
are interpolated from the SPH-ALE particles, similar to what is done in the CHIMERA
method of overlapping meshes. In contrast to the CHIMERA method, interpolation
is not performed on a structured grid but on a set of unstructured points. Hence, an
interpolation technique for scattered data is used. The approach is carefully validated by
means of well-known academic testcases that show very encouraging results. Our final
aim is the simulation of transient flows in hydraulic machines.

1 INTRODUCTION

The meshless method Smoothed Particle Hydrodynamics - Arbitrary Langrange Euler
(SPH-ALE) is very well adapted for the simulation of highly dynamic free surface flows
with moving geometries. In the past years, increasing computational power opened the
door to real industrial applications like for example the flow in the casing of a Pelton
turbine shown in Figure 1, computed within the Research & Development Department
of ANDRITZ Hydro. However, the approach has rarely been applied to internal flows
because it has difficulties to correctly represent rapidly changing gradients of the field
variables like they typically occur close to wall boundaries [1]. In mesh-based methods a
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Figure 1: Free surface flow in the casing of a Pelton turbine computed with SPH-ALE at three different
instants. High velocity is colored in red and low velocity in blue [2].

non-constant spatial discretization size is used and the mesh is strongly refined in these
regions. The equivalence for SPH, particle refinement, is difficult to implement if particles
are moving in Lagrangian motion and the isotropic nature of most SPH formalisms makes
it complicated to refine particles in an anisotropic way, like it is for example done for
solving boundary layers with mesh-based methods.

Finite Volume (FV) methods are well established in CFD because of their accuracy
and stability. However, they can be tedious for simulations with moving geometries and
free surfaces. In addition, they often necessitate an interface between moving and static
parts of the mesh which introduces additional errors. To overcome the shortcomings of
both methods, we propose a coupling where we use SPH-ALE in the whole computational
domain and an overlapping FV mesh in regions where a refined solution is desired.

2 NUMERICAL METHODS

Considering the weakly-compressible Euler equations in an arbitrarily moving frame of
reference, an SPH and a FV method are derived that are then used for the coupling.

2.1 SPH-ALE

SPH was first introduced in 1977 by Lucy [3] and Gingold and Monaghan [4] for astro-
physical applications and was then further developed for fluid applications. The compu-
tational domain is discretized by a set of unstructured points without any connectivity,
called particles. The value of a function f(x) at a point i is computed by convolution
with a kernel function W and we obtain the following discrete form,

〈f(xi)〉 =
∑
j∈Di

ωjf(xj)Wij. (1)

The kernel support area of particle i is denoted by Di and Wij = W (xj − xi, h) is the
kernel function evaluated at the distance between two particles i and j and depending on
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the smoothing length h that determines the size of the kernel support. The integration
weight ωj is the volume of particle j. Applying partial integration, we obtain the following
formula for the gradient of a function f that is valid far away from wall boundaries,

〈∇f(xi)〉 =
∑
j∈Di

ωjf(xj)∇Wij, (2)

where the gradient of the kernel function can be computed analytically. Eq. (2) is used
to discretize the fluid equations, where a strong point of this method is that the particles
move with the flow in Lagrangian motion. The approach is therefore able to capture
free surfaces easily. In 1999 Vila [5] introduced SPH-Arbitrary Lagrange Euler (ALE)
which is a more accurate and stable variant of SPH. The starting point is a conservative
formulation of the Euler equations, written in an arbitrarily moving frame of reference,

Lv0(Φ) + ∇ · F (Φ, v0) = Q, (3)

with
F (Φ, v0) = FE(Φ) − v0Φ, (4)

where Φ denotes the vector of the conservative variables, FE(Φ) the vector of the Euler
fluxes, Q the source term and Lv0 is the transport operator associated with the transport
field v0. A system of SPH equations is obtained that is quite similar to finite volume
formulations. Riemann solvers are introduced and mass can be exchanged between pairs
of particles. That means that particles should be rather considered as moving control
volumes than particles, even if we continue to call them particles to underline the meshless
character of the method. We obtain the following discrete SPH-ALE formulation of the
weakly compressible Euler equations,




d

dt
(xi) = v0(xi, t),

d

dt
(ωi) = ωi

∑
j∈Di

ωj(v0(xj) − v0(xi))∇Wij,

d

dt
(ωiρi) = −ωi

∑
j∈Di

ωj2ρ
E
ij

(
vE

ij − v0(xij, t)
)
· ∇Wij,

d

dt
(ωiρivi) = −ωi

∑
j∈Di

ωj2
[
ρE

ijv
E
ij ⊗ (vE

ij − v0(xij, t)) + pE
ij

]
· ∇Wij + ωiρig,

(5)

where ρ(x, t) is the density, p(x, t) the pressure, v(x, t) the flow velocity and g the gravity.
The system of equations is closed by a weakly compressible state equation, often referred
to as Tait’s equation,

pi =
ρ0c0

γ

[(
ρi

ρ0

)γ

− 1

]
, (6)
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Figure 2: Sketch of the coupling algorithm. FV calculation points are used as SPH neighbours, while
FV boundary values are interpolated from SPH particles.

where γ = 7 and ρ0 and c0 denote the reference density and the reference speed of
sound, respectively. The vE

ij , ρE
ij and pE

ij are the solutions of a moving Riemann problem
between two particles obtained with approximate linearized Riemann solvers that are
computationally less expensive than iterative solvers. The transport field v0 is the particle
velocity and can be chosen freely. If the particle velocity is chosen equal to the fluid
velocity v0 = v we obtain a Lagrangian description as in standard SPH, if we set v0 = 0
we obtain an Eulerian description as in many classical mesh-based methods. However, we
can also choose an arbitrary particle velocity, for example following the movement of the
solid geometries (cf. [1]). For more information about SPH-ALE see [6, 7].

2.2 Finite Volume solver

Starting from the same set of Euler equations in an arbitrary frame of reference Eq.
(3) as in the above section, the semi-discrete flow equations in conservation form for FV
schemes can be written as

d

dt
(ΦlVl) +

∑
sides

(F̂ (Φ, v0) · S) = QlVl, (7)

where we sum over the flux terms of the sides of cell l. The Φl = (ρl, ρlvl)
T denotes the

state vector of cell l, Vl its volume and F̂ the numerical flux of Eq. (4) through the sides
with surface S and Ql the source term. For more information about FV methods see for
example [8]. In this paper we use a one-dimensional weakly compressible inviscid in-house
FV solver that is very similar to the above described SPH-ALE formalism. The same
linearized Riemann solver, the same time integration scheme, the same reconstruction of
the state variable for the Riemann solver and the same state equation are used.

3 THE COUPLING ALGORITHM

In the following, we assume that the whole computational domain is covered by SPH
particles that are overlapped by FV meshes in regions where a refinement is necessary. The
flow information has to be transferred in two ways, indicated by two arrows in Figure 2.
On the one hand the FV calculation points are used as SPH neighbors in the overlapping
regions, while on the other hand the boundary values for the FV domain are interpolated
from the SPH particles.
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(a) Only FV calculation points are acting as SPH
neighbours.

(b) FV and SPH calculation points are act-
ing as SPH neighbours.

Figure 3: Sketch of the coupling algorithm: Integration in the SPH domain.

3.1 Information transfer from FV to SPH-ALE

In the above section we explain that the FV meshes are added to the SPH simulation
for local refinement. Thus, we can assume that the physical fields, computed by the FV
solver, are the more accurate ones. Therefore, the FV calculation points are used as
neighbors for the SPH integration in the overlapping region. Figure 3(a) illustrates the
transfer and shows that the smoothing length is determined by the SPH discretization
size. In Figure 3(b) the considered SPH particle is situated close to the boundary of the
FV domain. Its kernel support traverses the FV domain, so that FV calculation points
as well as SPH particles have to be considered as neighbors. If the boundary of the FV
mesh does not coincide with the interfaces between particles, SPH particles have to be
cut in order to obtain a correct space discretization for the integration over the neighbors,
as indicated in Figure 4. Consider the example of Figure 4. The modified volume of the
cut particle ω̄i is equal to the difference between the volume of the original particle and
the volume of the finite volume cells that are overlapping the original particle. Hence, we
obtain ω̄i = ωi − (Vl1 + Vl2). In the general case, we write

ω̄i ≈
{

ωi −
∑

l Vl, (ωi −
∑

l Vl) > 0
0, elsewhere.

(8)

It is known that in SPH the errors increase significantly if particles are not situated at their
barycenters [9]. For that reason a correction of the position of the cut particles is applied.
We reconsider the example in Figure 4. If we assume that the particles are situated at
their barycenters in the beginning, we know from the definition of the barycenter that the
modified position x̄i can be expressed as x̄i = 1

ω̄i
(xiωi − (xl1Vl1 + xl2Vl2)). In the general

case, we have

x̄i ≈
1

ω̄i

(
xiωi −

∑
l

xlVl

)
(9)
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Figure 4: Example of an SPH particle (indicated in blue) that is partially overlapped by FV cells (in
red). The modified SPH particle for the integration over neighbouring particles is indicated in purple.

In summary, we obtain the coupled SPH flow equations that are written as

d(ωiΦi)

dt
= ωi


 ∑

l∈DFV
i

VlFil∇Wil +
∑

j∈DSPH
i

ω̄jFij∇Wij


 , (10)

where ω̄j denotes the modified weights, Φi the vector of state variables of particle i and
Fij the numerical flux between calculation points i and j. Note that ω̄j = 0 if particle j
is completely overlapped by FV cells and ω̄j = ωj if the particle is not at all overlapped.
That ensures a correct space discretization of the computational domain for the SPH
integration over the neighbors. The kernel support area of particle i in the FV domain is
denoted by DFV

i and in the SPH domain by DSPH
i . As mentioned above, in both cases

the smoothing length h is determined by the SPH particle size.

3.2 Information transfer from SPH-ALE to FV

The FV mesh that is overlapping the SPH particles is used for refinement, to obtain a
more accurate solution. Boundary values have to be imposed to this domain. Therefore,
velocity and density are interpolated from the SPH points similar to the CHIMERA
method of overlapping grids [10, 11]. In contrast to the CHIMERA method where the
interpolation is performed on blocks of structured grids, the fields are interpolated from a
set of unstructured SPH particles and scattered data approximation techniques have to be
used like Shepard interpolation or higher order moving least square (MLS) interpolation.

4 TESTCASES

4.1 Sinusoidal initial velocity

Figure 5 shows the velocity of a one-dimensional coupled simulation where a sinusoidal
velocity is imposed at the inlet of the domain, situated at x = 0, and constant static
pressure at the outlet. We use 50 SPH particles distributed in the whole computational
domain and 50 FV cells distributed in xl ∈ [0.45, 0.55]. That means that ∆xSPH = 0.02m
and ∆xFV = 0.002m. The discretization size of the FV cells is ten times smaller than the
discretization size of the particles. This corresponds to the fact that we want to use the
FV mesh to obtain a refined solution. In our future applications, the refined FV mesh
often will be used to simulate the boundary layer. In this case the mesh size will be much
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Figure 5: Velocity of a coupled one-dimensional simulation. A sinusoidal velocity is imposed at the inlet
situated on the left hand side (x = 0), while constant static pressure is imposed at the outlet (x = 1). The
green line indicates the solution obtained by the Finite Volume method, while the red points represent
the SPH particles in Lagrangian motion.

smaller than the particle size. In Figure 5 it can be seen that the sinusoidal velocity is
transferred without any problems from the SPH to FV domain and back again to the
SPH particles.

4.2 Shock tube

The above testcase illustrates that the coupling correctly transfers information for
Lagrangian moving particles. This case shows an example of how the coupling can be
used to achieve a more accurate solution with an equal number of calculation points. We
consider the one dimensional shock tube testcase presented in [12, 13]. The initial data
was chosen according to [12] with a density discontinuity in the middle of the domain at
x = 0.5, {

ρL = 1100, vL = 0,
ρR = 1000, vR = 0,

with the reference density ρ0 = 1000 and the reference speed of sound c0 = 1450. The
analytical solution is known and consists of a rarefaction wave travelling from the disconti-
nuity to the left and a shock wave travelling to the right. In addition, a coarse (1000 SPH
particles) and a refined (5000 SPH particles) SPH reference solution have been computed.
Using the same number of calculation points as for the coarse SPH solution, a coupled
simulation is launched with 800 SPH particles in the whole computational domain and
200 FV cells equally distributed in xl ∈ [0.48, 0.52]. The discretization size of the FV cells
corresponds to the discretization size of the refined SPH simulation. Figure 6 and 7 show
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Figure 6: Pressure of the shock tube testcase computed by a coarse and a refined SPH simulation
compared to a coupled SPH-FV solution with 800 SPH particles and 200 FV cells. The FV domain is
situated in xl ∈ [0.48, 0.52].

that the coupled solution is much more accurate than the coarse SPH simulation that uses
the same number of calculation points because the points for the coupled simulation are
refined around the initial discontinuity. This illustrates how the coupling will be applied
to real industrial applications in the future.

5 CONCLUSIONS

A novel coupling algorithm of an SPH-ALE and a FV method was presented. The fields
computed in the more accurate FV domain are transferred to the SPH domain by using the
FV calculation points as SPH neighbors. Interpolation from SPH particles determines the
boundary conditions for the FV domain. The approach shows very encouraging results for
acadamic one-dimensional testcases and no obstacle has been identified for its successful
implementation in two or three space dimensions. For the industrial applications, that we
are interested in, it will be indispensable to include the simulation of viscous phenomena
into the approach.
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gie), Thèse 1120/2010, the CIRT (Consortium Industrie-Recherche en Turbomachines)
and the European Reintegration Grant ERG (No. 267072). Many thanks to the colleages
of the R&D department of ANDRITZ Hydro Vevey (Switzerland) for their support.

8



947

M. Neuhauser, J.-C. Marongiu and F. Leboeuf

Figure 7: Velocity of the shock tube testcase computed by a coarse and a refined SPH simulation
compared to a coupled SPH-FV solution with 800 SPH particles and 200 FV cells. The FV domain is
situated in xl ∈ [0.48, 0.52].
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