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Abstract. In this paper, with focusing particular attention on a major issue — the
lack of consistency conditions on the spatial discretization schemes of the existing MPS
method, we develop a new meshfree particle method named Least Squares Moving Particle
Semi-implicit/Simulation (LSMPS) method. The new schemes have arbitraly higher order
consistency conditions, make treatment of boundary conditions exceedingly easy, and can
be applied for both Eulerian and Lagrangian framework. Moreover, applications of the
new schemes for numerical analysis of incompressible flows with the free surfaces result
in enhancement of numerical accuracy and stability.

1 INTRODUCTION

Recently, meshfree particle methods have been receiving a lot of interest in compu-
tational mechanics. The MPS (Moving Particle Semi-implicit, or Moving Particle Sim-
ulation) method[1] for numerical analysis of incompressible flows with the free surfaces
has been shown useful in engineering applications widly. With expanding the techniques
of the MPS method, analysis of compressible flows, weakly compressible flows with fully
explicit algorithm, and of structural dynamics achieved successful outcomes; however,
numerical discretization schemes of the existing MPS method have a major issue — the
lack of consistency conditions, which results in contradictory effects for computational
accuracy and stability.

With taking particular note of this matter, we develop a new consistent meshfree par-
ticle method, named Least Squares Moving Particle Semi-implicit/Simulation (LSMPS)
method. As its name suggests, new spatial discretization schemes are derived based on the
weighted Least Squares method, and have arbitrary higher order consistency conditions.
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The new schemes can be applied for methods with collocation points (scattered points)
in both Eulerian and Lagrangian frameworks, without grid or mesh.

By the way, as a common problem in strong-form meshfree particle methods including
the MPS method and the SPH (Smoothed Particle Hydrodynamics) method[2], treat-
ment of boundary conditions, especially in enforcing the Neumann boundary condition is
difficult. In order to overcome this difficulty, new schemes (named Generalized LSMPS
schemes) based on the locally Hermite interoperation technique and weighted least squares
method are also developed. In calculation of spatial derivatives, Generalized LSMPS
schemes use not only the values of a function but also their derivatives up to a certain de-
gree of order; therefore, with using the values of a function and their first order derivatives,
Generalized LSMPS schemes make the treatment of Neumann boundary condition easy.
In other words, they can enforce Neumann boundary conditions simply, on the second or-
der partial differential equations like Pressure Poisson equations. Moreover, Generalized
LSMPS schemes can be used as the Meshfree Compact scheme like the compact schemes
used in FDM[3], and provide extra higher-order accuracy.

In this paper, we introduce the new schemes, and test their accuracy and convergence
rate in comparison with the Moving Least Squares(MLS) method[4] and the Reproducing
Kernel Particle method(RKPM)[5]. Additionally, application of the LSMPS method for
numerical analysis of incompressible flows with the free surfaces shows improvement of
numerical accuracy and stability compared with the existing MPS method.

2 THE LSMPS METHOD

In this section, spatial discretization schemes of the existing MPS method and the
LSMPS method, and time marching algorithm for the LSMPS method are described.

2.1 The existing MPS method

The MPS(Moving Particle Semi-implicit) method[1] is developed by Koshizuka and
Oka for numerical analysis of incompressible flow with the free surfaces. Let φ(x) and
u(x) be sufficiently smooth functions defined on a domain Ω ⊂ (Rd, � · �), where d is the
number of dimension. Formulations of the spacial discretization schemes on each particle
xi are the following,

�∇φ�xi
=

d

n0

∑
Ωi

[
w

(
�xj − xi�

re

)
xj − xi

�xj − xi�
φj − φi

�xj − xi�

]
, (1)

�
∇2φ

�
xi

=
2d

λ0n0

∑
Ωi

[
w

(
�xj − xi�

re

)
(φj − φi)

]
, (2)

�∇ · u�xi
=

d

n0

∑
Ωi

[
w

(
�xj − xi�

re

)
xj − xi

�xj − xi�
· uj − ui

�xj − xi�

]
, (3)
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where w(� · �; re) : R+ → R+ is the weight function with support, re is the dilation pa-
rameter, n0 and λ0 are the normalization parameters, and the set of neighboring particles
Ωi is defined as

Ωi :=
{

j
��� xj ∈ supp(wi) ∩ Ω , xj �= xi

}
, supp(wi) :=

{
x ∈ Rd

��� �x − xi�
re

< 1

}
. (4)

The schemes(eq.(1),(2),(3)) have second order consistency condition (accuracy) if and
only if the set {xi}1≤i≤N constructs a lattice with some symmetry; therefore, they are
inconsistent schemes generally. In other words, if the particles xi are randomly distributed,
or, they are on or near the boundaries, the schemes of existing MPS method do not have
any consistency condition. Actually, their accuracy become 0-th order or less[6]. To solve
this major issue, in the next subsection, LSMPS method is developed.

2.2 The LSMPS method

2.2.1 Stone-Weierstrass theorem of locally compact version

Let f : Rd → R be a sufficiently smooth function (at least f(x) ∈ C0(Ω̄)) that is
defined on a simply connected open set Ω ∈ Rd. According to the Stone-Weierstrass
theorem of locally compact version, for a fixed point x̄ ∈ Ω̄, one should always be able
to approximate f(x) by a polynomial series locally. Thus, we can define a local function
and the open sphere

f l(x, x̄) :=

{
f(x) ∀x ∈ B(x̄),

0 otherwise.
(5)

B(x̄) :=
{
x ∈ Ω̄ | �x − x̄� < re

}
. (6)

If the function f(x) is smooth enough as assumed, there exists a local operator Lx̄ :
C0(B(x̄)) �→ Cp(B(x̄)), s.t.

f l(x, x̄) ≈ Lx̄f(x) = qT (x)a(x̄), (7)

where q(x) = {xα | 0 ≤ |α| ≤ p} is p-th order polynomial basis, and a(x̄) is coefficient
vector. With using Taylor expansion , we can denote the locally approximated func-
tion Lx̄f(x) with given values such as xi,xj, f(xi), f(xj), and unknowns such as Fréchet
derivative Dα

x f(·) and error of approximation Rp+1
ij ,

p∑
|α|=1

[
1

α!
(xj − xi)

α Dα
x̄ fh(xi)

]
− {f(xj) − f(xi)} = Rp+1

ij

(
= Lx̄f(x) − f l(x)

)
, (8)

where α = (α1, · · · , αd) is an d-tuple non-negative integers, called multi-index. Through-
out this paper, Taylor expansions of locally approximated function(eq.(8)) according to
the Stone-Weierstrass theorem and multi-index notation are used without note again.
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2.2.2 LSMPS scheme (Standard type)

Let f : Rd → R be a sufficiently smooth function that is defined on a simply con-
nected open set Ω ∈ Rd. Standard type spatial discretization schemes for each calculation
point(particle) xi are defined as the following.

Definition 2.1. (Standard LSMPS scheme)

Dxf
h(xi) := Hrs

[
M−1

i bi

]
(9)

where

Dx := {Dα
x | 1 ≤ |α| ≤ p} , (10)

Hrs := diag
{{

rs
−|α|α!

}
1≤|α|≤p

}
, (11)

Mi :=
∑
Ωi

[
w

(
�xj − xi�

re

)
p

(
xj − xi

rs

)
pT

(
xj − xi

rs

)]
, (12)

bi :=
∑
Ωi

[
w

(
�xj − xi�

re

)
p

(
xj − xi

rs

)
{f(xj) − f(xi)}

]
, (13)

p (x) := {xα | 1 ≤ |α| ≤ p} , (14)

re : dilation parameter (0 < re), rs : scaling parameter (0 < rs < re).

Derivation: With locally approximated function and its denotation described in sub-
section 2.2.1., we can obtain

p∑
|α|=1

[
1

α!
(xj − xi)

α Dα
x fh(xi)

]
− {f(xj) − f(xi)} = Rp+1

ij , (15)

and by using scaling parameter rs, eq.(15) can be rewritten as

p∑
|α|=1

[{
(xj − xi)

α

r
|α|
s

}{
r
|α|
s

α!
Dα

x fh(xi)

}]
− {f(xj) − f(xi)} = Rp+1

ij , (16)

i.e.

pT

(
xj − xi

rs

)[
H−1

rs
Dxf

h(xi)
]
− {f(xj) − f(xi)} = Rp+1

ij . (17)

If we define functional J associated with residual Rp+1
ij and the weight function w by

J(H−1
rs

Dxf
h(xi)) :=

∑
Ωi

[
w

(
�xj − xi�

re

)(
Rp+1

ij

)2
]

, (18)
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and by minimizing the quadratic functional J with the weighted least squares method,
one can obtain normal equations (Linear system) Mi

[
H−1

rs
Dx̄f

h(xi)
]

= bi. If and only if

rank(Mi) = −1 + 1
d!

∏d
k=1(p + k), normal equations have a unique solution s.t.

Dxf
h(xi) := Hrs

[
M−1

i bi

]
. (19)

■.

Remark 2.2. It is so important to introduce the scaling parameter rs. Without
scaling for basis p, the moment matrix M becomes ill-conditioned, which creates an
adverse effects both numerical accuracy and stability. To avoid this problem, the Moving
Least Squares Reproducing Kernel Particle Method(MLSRKPM)[5] also introduce scaling
for basis; however, in the MLSRKPM, dilation parameter re = � is used for scaling, on the
other hand, in the LSMPS method, scaling parameter rs is kept to be smaller than dilation
parameter re. This difference yields smaller condition number of moment matrices which
provides more improvement of accuracy and stability.

Theorem 2.3. Let Mrs be the moment matrix with scaling, and M be the one without
scaling. One can obtain about determinant of the moment matrices,

det(Mrs)

det(M)
≈ rs

−2d(p+d
d+1), (20)

and one can obtain about the condition number of them,

cond(Mrs)

cond(M)
≤ rs

2p. (21)

Remark 2.4. The MLS or the MLSRKPM is suitable for construction of shape func-
tions for weak-form formulations, but is unsuited for calculation of spatial derivatives for
strong-form formulations; since the calculation of shape function’s derivatives requires
high computational costs. On the other hand, the LSMPS schemes can calculate deriva-
tives directly. Moreover, the dimension of moment matrix in the LSMPS is just one smaller
than the one in the MLS and the MLSRKPM. These differences bring in advantage of
computational costs for strong-form formulations.

Definition 2.5. Let X := {xi}1≤i≤N be the set of particles on the domain Ω ⊂ Rd,
closed ball B̄(x, r) :=

{
x′ ∈ Rd | �x − x′� ≤ r

}
, fill distance hx,Ω := supx∈Ω min1≤i≤N �x−

xi�, separation distance ηx := 1
2
minj �=i �xj − xi�, and Nmin := card

{
xα

�� 1 ≤ |α| ≤ p
}
.

An admissible particle distribution for the standard LSMPS schemes is defined as

Ω ⊂
N∪

i=1

B̄(xi, hx,Ω/2), (22)

Nmin ≤ card
{
j
�� xj ∈ B̄(xi, chx,Ω)

}
, c ≥ 1,∀ i, (23)

∃δ > 0 s.t. ηx ≤ hx,Ω ≤ δηx. (24)
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Theorem 2.6. Assume f(x) ∈ Cp+1(Ω), where Ω ⊂ Rd is a bounded open set, there
exists a constant 0 < C1 < ∞ and the Standard LSMPS schemes have the following error
bounds

|Dα
x f(x) − Dα

x fh(x)| ≤ C1r
p+1−|α|
e |f(x)|Cp+1(Ω) (25)

2.2.3 Generalized LSMPS scheme type-1

Definition 2.7. (Generalized LSMPS scheme type-1)

Dxf
h(xi) := Hrs

[
M−1

i bi

]
(26)

where

Dx := {Dα
x | 1 ≤ |α| ≤ p} , (27)

Hrs := diag
{{

rs
−|α|α!

}
1≤|α|≤p

}
, (28)

M′
i :=

q∑
|β|=0

∑
Ωi

[
w

(
�xj − xi�

re

)
r
|β|
s

β!
Dβ

xp

(
xj − xi

rs

)
r
|β|
s

β!
Dβ

xpT

(
xj − xi

rs

)]
, (29)

b′
i :=

q∑
|β|=0

∑
Ωi

[
w

(
�xj − xi�

re

)
r
|β|
s

β!
Dβ

xp

(
xj − xi

rs

)[
Dβ

xf(xj) − Dβ
xf(xi)

]]
, (30)

p (x) := {xα | 1 ≤ |α| ≤ p} , (31)

re : dilation parameter (0 < re), rs : scaling parameter (0 < rs < re).

Derivation: With locally approximated function Lx̄f(x) described in subsection 2.2.1.,
and with its derivatives Dβ

xLx̄f(x), 0 ≤ |β| ≤ q ≤ p, we can obtain

p−|β|∑
|α|=1

[
1

α!
(xj − xi)

α Dα
x Dβ

xfh(xi)

]
− {Dβ

xf(xj) − Dβ
xf(xi)} = Rp+1

ij,β . (32)

By taking sum of multi-index β : 0 ≤ |β| ≤ q for eq.(32),

q∑
|β|=0

[
r
|β|
s

β!
Dβ

xpT

(
xj − xi

rs

)[
H−1

rs
Dxf

h(xi)
]]

−
q∑

|β|=0

[
Dβ

xf(xj) − Dβ
xf(xi)

]
=

q∑
|β|=0

Rp+1
ij,β .

(33)

If we define functional J ′ associated with residual Rp+1
ij,β and the weight function w

J ′(H−1
rs

Dxf
h(xi)) :=

q∑
|β|=0

∑
j∈Ωi

[
w

(
�xj − xi�

re

)(
Rp+1

ij,β

)2
]

, (34)
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and by minimizing the quadratic functional J ′ with the weighted least squares method,
one can obtain the normal equations (Linear system) M′

i

[
H−1

rs
Dx̄f

h(xi)
]

= bi. If and

only if rank(M′
i) = −1 + 1

d!

∏d
k=1(p + k), the normal equations have a unique solution s.t.

Dxf
h(xi) := Hrs

[
M′−1

i bi

]
. (35)

■.

Theorem 2.8. Assume f(x) ∈ Cp+1(Ω), where Ω ⊂ Rd is a bounded open set, there
exists a constant 0 < C2 < ∞ and the Generalized LSMPS schemes type-1 have the
following error bounds

|Dα
x f(x) − Dα

x fh(x)| ≤ C2r
p+1−|α|
e |f(x)|Cp+1(Ω). (36)

Remark 2.9. Linear independence of the basis Dβ
xp(x), 0 ≤ |β| ≤ q relieves the

requirement of the large number of particles to invert the moment matrix, i.e. the smaller
dilation parameter can be used for Generalized LSMPS schemes type-1 than the one of
the Standard schemes.

2.2.4 Generalized LSMPS scheme type-2

Definition 2.10. (Generalized LSMPS scheme type-2)

Dxf
h(xi) := H ′

rs

[
M−1

i b′′
i

]
(37)

where

Dx := {Dα
x | 1 ≤ |α| ≤ p} , (38)

H ′
rs

:= diag







∑
β: 0≤|β|≤q
β≤α, β�=α

C(β, p, q)rs
−|α|(α − β)!




1≤|α|≤p




, (39)

Mi :=
∑
j∈Ωi

[
w

(
�xj − xi�

re

)
p

(
xj − xi

rs

)
pT

(
xj − xi

rs

)]
, (40)

b′′
i :=

q∑
|β|=0

∑
Ωi

[
w

(
�xj − xi�

re

)
p

(
xj − xi

rs

)

× C(β, p, q)(xj − xi)
β
[
Dβ

xf(xj) − Dβ
xf(xi)

] ]
, (41)

p (x) := {xα | 1 ≤ |α| ≤ p} , (42)

re : dilation parameter (0 < re), rs : scaling parameter (0 < rs < re).

7
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C(β, p, q) =





(−1)|β| |β|!
β!

p!

(p + q)!
(|β| = q)

(−1)|β| |β|!
β!

q(p + q − |β|)!
(p + q!)

(0 < |β| < q)

1 (|β| = 0)

(43)

Derivation: With (p+q)-th order locally approximated function Lx̄f(x) and its de-
notation described in subsection 2.2.1., we can obtain

p∑
|α|=1

[
1

α!
(xj − xi)

α Dα
x fh(xi)

]
+

p+q∑
|α|=p+1

[
1

α!
(xj − xi)

α Dα
x fh(xi)

]

−{f(xj) − f(xi)} = Rp+q+1
ij,β=0, (44)

and its derivatives Dβ
xLx̄f(x) (0 ≤ |β| ≤ q < p),

p−|β|∑
|α|=1

[
1

α!
(xj − xi)

α Dα
x Dβ

xfh(xi)

]
− {Dβ

xf(xj) − Dβ
xf(xi)} = Rp+1

ij,β . (45)

The second sum terms (sum of α : p + 1 ≤ |α| ≤ p + q) in eq.(44) can be eliminated
by C(β, p, q)(xj − xi)

β × eq.(45), i.e. taking sum of eq.(44) and eq.(45) with multi-index
β : 0 ≤ |β| ≤ q yields

q∑
|β|=0

[
pT

(
xj − xi

rs

)[
H

′−1
rs

Dxf
h(xi)

]]

−
q∑

|β|=0

[
C(β, p, q)(xj − xi)

β
{
Dβ

xf(xj) − Dβ
xf(xi)

}]
=

q∑
|β|=0

Rp+q+1
ij,β . (46)

By using the weighted least squares method, similar to the Standard schemes and Gen-
eralized LSMPS schemes type-1, we can obtain the normal equations and their solutions

Dxf
h(xi) := H ′

rs

[
M−1

i b′′
i

]
. (47)

■.

Theorem 2.11. Assume f(x) ∈ Cp+q+1(Ω), where Ω ⊂ Rd is a bounded open set,
there exists a constant 0 < C3 < ∞ and the Generalized LSMPS schemes type-2 have the
following error bounds

|Dα
x f(x) − Dα

x fh(x)| ≤ C3r
p+q+1−|α|
e |f(x)|Cp+q+1(Ω). (48)

8
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Remark 2.12. The rational coefficient C(β, p, q) contributes achievement of the extra
higher order consistency conditions for the Generalized LSMPS schemes type-2. Moreover,
with regarding the schemes as implicit formulations, they can be used as Meshless Compact
Schemes.

2.2.5 Time marching

In the LSMPS method for numerical analysis of incompressible flows, the following
pressure-correction schemes[7] with s-th order backorder difference formula, based on the
projection method are applied.

1

∆t

(
βsũ

k+1 −
s−1∑
j=0

βju
k−j

)
= ν∇2ũk+1 −∇p� + fk, ũk+1|ΓN

= 0, (49)

βs

∆t

(
uk+1 − ũk+1

)
+ ∇φk+1 = 0, ∇ · uk+1 = 0, uk+1 · n|ΓN

= 0. (50)

where φk+1 is the modified pressure defined by

φk+1 = pk+1 − p� + ν∇ · ũk+1, (51)

and p� is the r-th order extrapolated pressure defined by

p� =
r−1∑
j=0

γjp
k−j, (52)

in particular,

p� =




0 (r = 0),

pk (r = 1),

2pk − pk−1 (r = 2).

(53)

Also, we tested (s, r) = (1, 0), (1, 1), (2, 0), (2, 1) and confirmed their stability.
Remark 2.13. This time marching scheme is consistent and called rotational form[7].

The key point is enforcing the non-homogeneous Neumann Boundary Conditions for the
pressure, i.e. the Poisson equations of the modified pressure φk+1 with homogeneous
Neumann B.C enforce the pressure pk+1 to satisfy the non-homogeneous Neumann B.C
s.t.

∇pk+1 · n|ΓN
=

(
fk − ν∇×∇× uk+1

)
· n|ΓN

. (54)

Remark 2.14. Although we use the backorder difference method in this paper, the
choice of a particular time discretization is not so important. Of course, Adams-Bashforth
method, Adams-Moulton method, Runge-Kutta method, etc. are perfectly acceptable.

9



849

Tasuku Tamai, Kazuya Shibata and Seiichi Koshizuka

3 NUMERICAL TESTS

In this section, the advantage of introducing the scaling parameter rs, and accuracy
(convergence rate) of new schemes are presented.

3.1 Calculation conditions

Let f(x, y) be the Franke’s test function

f(x, y) =
3

4
exp

{
−(9x − 2)2

4
− (9y − 2)2

4

}
+

3

4
exp

{
−(9x + 1)2

49
− (9y + 1)2

10

}

+
1

2
exp

{
−(9x − 7)2

4
− (9y − 3)2

4

}
− 1

5
exp

{
−(9x − 4)2 − (9y − 7)2

}
(55)

defined on a domain Ω := {(x, y) ∈ R2 | [0, 1] × [0, 1]}. Particles are distributed quasi-
randomly by the following processes; (i) distribute particles {x′

i}1≤i≤N on the square
lattice with the width h, and (ii) give relative perturbation δxi (by normal distribution,
µ = 0, σ = 0.15) to their positions, i.e. quasi-randomly arranged particles are xi = x′

i+δxi.
Maximum condition number κ∞ = maxxi∈Ω{cond(Mi)} is calculated for presenting the
advantages of scaling for basis p with rs, in comparison with the MLS(without scaling) and
the MLSRKPM(with scaling by re = �). Also, discrete relative supreme error norm eα

∞ :=
maxxi∈Ω |Dα

x fh(xi)−Dα
x f(xi)|/ maxxi∈Ω |Dα

x f(xi)| is calculated for testing accuracy and
convergence rate, in comparison with the standard LSMPS schemes, the Generalized
LSMPS schemes, the standard MLS, and the Generalized MLS. 4-th order spline function
is chosen as the weight function. The dilation parameters are re = 3.5h (p = 2), 4.1h (p =
3), 4.5h (p = 4), and the scaling parameters are one-third of them.

3.2 Calculation results

0.10.01

1025

1020

1015

1010

105

1

h

�
�

Figure 1: Maximum condition number of the moment matrix
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e(
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)

�

Figure 2: Convergence rates of e
(1,0)
∞ (the first derivative Dxf(x, y)) with each scheme

3.3 Consideration

According to the Fig.1, the LSMPS schemes have lower condition number of the mo-
ment matrices than other methods’, which provides more improvement of numerical sta-
bility for solving the linear system. Of course, scaling parameter rs(< re = �) can be
applied for the MLS and the MLSRKPM. Then, according to the Fig.2, accuracy of the
Standard LSMPS schemes achieve the same level of the MLS or the MLSRKPM, although
less computational costs are required, and the GMLS and the Generalized LSMPS schemes
type-1 achieve the same or a little better accuracy than the standard MLS and the stan-
dard LSMPS schemes. Finally, worthy of special mention is the excellent accuracy and
higher order convergence rates of the Generalized LSMPS schemes type-2, that they can
obtain the extra higher order truncation limits. The Generalized LSMPS schemes type-2
are the most accurate schemes for the strong-form meshfree methods.

4 NUMERICAL EXAMPLES OF INCOMPRESSIBLE FLOWS

We applied the standard LSMPS schemes ((p, q, r, s) = (2, 0, 1, 2)) for numerical analy-
sis of incompressible flow with the free surfaces, and calculation results of two patch tests
advocated by Colagrossi[8] are shown in Fig.3. The details of the patch tests’ system
are described in [8]. In these calculations, NO stabilization techniques (such as artificial-
viscosity in the SPH method) are introduced. Applications of them result in enhancement
of numerical accuracy and stability, and they can treat not only positive pressure field
problem but also negative pressure field one, which the existing MPS method cannot

11
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Fig. 18 Calculation result of Case 5 with non-

dimensional pressure field.
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Figure 3: Calculation results of patch tests (patch test B cannot be calculated by the existing MPS)

5 CONCLUSIONS

We develop a new consistent particle method, named Least Squares Moving Particle
Semi-implicit/Simulation (LSMPS) method. New schemes including the Standard type,
the Generalized type-1, and the Generalized type-2 are introduced, and their accuracy are
compared with the MLS and so on. Especially, the Generalized LSMPS schemes type-2
as meshfree compact schemes are superior in accuracy and the convergence rates. With
using the LSMPS method, solutions of P.D.E with higher order accuracy can be obtained.
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