Performance study of HPC applications on an
Arm-based cluster using a generic efficiency model

Fabio Banchelli *, Kilian Peiro T, Andrea Querol 1, Guillem Ramirez-Gargallo §
Guillem Ramirez-Miranda ¥, Joan Vinyals I, Pablo Vizcaino **, Marta Garcia-Gasulla 1, Filippo Mantovani i
Barcelona Supercomputing Center
Email: *fabio.banchelli@bsc.es, Tkilian.peiro@bsc.es, iz:mdrea.querol@bsc.es, §guillem.ramirez@bsc.es,
11guillem.ramirez.miranda@bsc.es, I joan.vinyals@bsc.es, **pablo.vizcaino@bsc.es,
TTmarta.garcia@bso.es, Hﬁlippo.mantovani@bsc.es

Abstract—HPC systems and parallel applications are increas-
ing their complexity. Therefore the possibility of easily study and
project at large scale the performance of scientific applications
is of paramount importance. In this paper we describe a
performance analysis method and we apply it to four complex
HPC applications. We perform our study on a pre-production
HPC system powered by the latest Arm-based CPUs for HPC, the
Marvell ThunderX2. For each application we spot inefficiencies
and factors that limit their scalability. The results show that in
several cases the bottlenecks do not come from the hardware
but from the way applications are programmed or the way the
system software is configured.

Index Terms—Performance analysis, High Performance Com-
puting, Parallel Applications, Arm, ThunderX2

I. INTRODUCTION

With the end of Moore’s law both hardware and software
of large High-Performance Computing (HPC) systems are
becoming more complex. They tend to include more and
more specific units accelerating certain workloads orchestrated
by frameworks/programming models that should help the
programmer. In the panorama of HPC architectures emerging
in the recent years there is the Arm architecture. In Nov 2018,
for the first time, an Arm-based system, Astra, has been ranked
in the Top500. Astra is powered by Marvell ThunderX2 CPUs.

As counterpart of this mosaic of architectures we have
complex scientific applications running on HPC clusters. The
domain scientist developing them should focus on the science
not worrying too much about the underlying hardware. So
tools easing the understanding of the performance bottlenecks
of complex parallel applications are needed.

In this paper we leverage a performance analysis and mod-
eling method for an in depth study of four parallel applications
on an HPC cluster powered by the same CPUs as the Astra
supercomputer. For validating our tests we selected a set of
complex HPC applications proposed as challenge within the
Student Cluster Competition held at the ISC conference [1].

The main contributions of this paper are: i) we describe a
performance analysis method that can be applied to parallel
applications; ii) we apply the method to four real HPC
applications used in real scientific use-cases; iii) we study the
outcome of performance analysis data gathered on a state-of-
the-art HPC cluster based on emerging technology Arm CPUs.

The remaining part of the document is structured as follows:
in Section II we report about similar works and how we
contribute to the state-of-the-art. Section III introduces the
experimental setup as well the HPC applications studied in the
rest of the paper. In Section IV we summarize the methodology
and metrics used in the performance analysis. Sections V, VI,
VII, and VIII are dedicated to the single-node and multi-node
analysis of each of the applications. We close the paper with
our comments and considerations in Section IX.

II. RELATED WORK

A review of performance analysis tools is provided by
Niethammer et al. in the book [2]. Burtscher et al. in [3]
present a tool for performance diagnosis of HPC applications.
They focus on analyzing architectural features while we lever-
age portable global metrics for measuring the efficiency of
HPC applications. Stanisic et al. in [4] conduct a performance
analysis studies of HPC applications, but focusing on mobile
Arm-based CPU. Garcia-Gasulla et al. in [5] also evaluate a
CFD code on an Arm-based cluster however their focus is on
portability of performance across multiple architectures. We
complement this work providing an evaluation with a larger
set of HPC applications and we provide an analysis method
that is mostly architecture independent. Calore et al. in [6] use
an approach similar to ours, but they apply it only to a single
CFD code and on a previous generation of server-grade Arm
chips. McIntosh-Smith et al. in [7] focus on comparing the
performance of different applications on Arm-based and Intel-
based architecture. We extend this work including an in depth
study of performance bottlenecks and scalability limitations
on the same Arm-based CPU studied by them.

III. EXPERIMENTAL SETUP

A. The Dibona Cluster

The Dibona cluster has been integrated by Bull/ATOS
within the framework of the European project Mont-
Blanc 3 [8]. It integrates 40 Arm-based compute nodes pow-
ered by two Marvell ThunderX2 CN9980 processors', each
with 32 Armv8 cores at 2.0 GHz, 32 MB L3 cache and 8

Uhttps://en.wikichip.org/wiki/cavium/microarchitectures/vulcan

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works. DOI 10.1109/PDP50117.2020.00032

https://en.wikichip.org/wiki/cavium/microarchitectures/vulcan

Pennant CP2K OpenFOAM Grid
URL github.com/lanl/PENNANT | github.com/cp2k openfoam.com github.com/paboyle/Grid
Scientific domain Lagrangian hydrodynamics | Quantum chemistry / solid state physics CFD Lattice QCD
Version / Commit v0.9 v6.1.0 v1812 251b904
Programming language | C++ F77 & F90 C++ C++
Lines of code 3.5k 860k 835k 75k
Parallelization scheme MPI MPI MPI MPI
Compiler Arm/19.1 GNU/8.2.0 Arm/19.1 Arm/19.1
Scientific libraries - BLAS, LAPACK, FFT via Armpl/19.1 Armpl/19.1 Armpl/19.1
Focus of analysis 4 steps 4 steps QMMM 4 steps SIMPLE solver | 20 steps + 1 eval
Input set Leblancx4 wdftb-1 (FIST, QuickStep DFTB, QMMM) | DrivAer model Lanczos algorithm

TABLE I: Summary of HPC applications and their configurations.

DDR4-2666 memory channels. The total amount of RAM
installed is 256 GB per compute node.

Compute nodes are interconnected with a fat-tree network,
implemented with Mellanox IB EDR-100 switches. A sepa-
rated 1 GbE network is employed for the management of the
cluster and a network file system (NFS).

Dibona runs Red Hat Enterprise Linux Server release 7.5
with kernel v4.14.0 and it uses SLURM 17.02.11 as job
scheduler. The Arm system software ecosystem also includes
an Arm compiler based on LLVM and a set of optimized
arithmetic libraries called Arm Performance Libraries (Armpl).
Both are distributed in a single package that we leverage for
some of the applications. See Table I for more details.

B. The HPC applications

For our study we use four scientific parallel applications:
Pennant, OpenFOAM, CP2K, and Grid. Table I summarizes
relevant details about each application. We want to stress the
fact that in the current work we evaluate a set of applica-
tions that are used in a daily basis either for procurements
of large HPC systems (e.g., the Pennant mini-app) or for
performing cutting edge research in academia and industry
(e.g., OpenFOAM, CP2K, and Grid). The selection of the
applications has been inspired by the challenges proposed to
the teams participating in the Student Cluster Competition
held at ISC Conference (Frankfurt) in 2018 and 2019. We
consider the application selection representative of different
HPC workloads and heterogeneous scientific fields.

IV. METHODOLOGY FOR PERFORMANCE ANALYSIS

In this paper we leverage the metrics for modelling the
performance of parallel applications developed and promoted
by the European Center of Excellence Performance Opti-
mization and Productivity’ (POP) defined in [9]. For this
reason we often call the efficiency metrics used for our
performance analysis POP metrics. These metrics determine
the efficiency of the MPI parallelization and can be computed
for any MPI application. While they are objective, they are
not conclusive: POP metrics represent indicators that guide a
following detailed analysis to spot the exact factors limiting
the scalability.

In this work we focus only on analyzing the parallel
efficiency of the MPI parallelization. Also, all the analysis are

Zhttps:/pop-coe.eu

performed on traces obtained from real runs. A trace contains
information about all the processes involved in an execution,
and they can include, among others, information on MPI or
I/O activity as well as hardware counters.

We followed the same steps to analyze each application:

- Run the application with a relevant input and core count
and obtain a trace from this run.

- Based on this trace, determine the focus of the analysis.
This is step is performed disregarding the initialization and fi-
nalization phases, identifying the iterative pattern (if possible)
and selecting some representative iterations.

- Compute the performance metrics for different number of
MPI processes in a single node, in our case from 1 to 64.
Based on these metrics we analyze in detail the main limiting
factors and performance issues when scaling inside a node.

- Compute the performance metrics when using multiple
nodes, in our case from 1 to 16 nodes (corresponding to 64
to 1024 MPI processes). Note that for the multi node study
we used always full nodes (i.e., 64 MPI processes per node).
Guided by the results on the metrics determine the issues that
limit the scalability of the code on multiple nodes.

All the studies in this paper are done with strong scalability,
but the methodology and metrics can be applied also to weak
scaling codes.

A. Metrics for Performance Analysis

For the definition of the POP metrics needed in the rest of
the paper we use the simplified model of execution depicted
in Figure 1.

Process 1 | I
Process 2 | NN I N
Process 3 [N N

Fig. 1: Example of parallel execution of 3 MPI processes.

. Useful

. Not-useful

We call P = {p1,...,pn} the set of MPI processes. Also
we assume that each process can only assume two states
over the execution time: the state in which it is performing
computation, called useful (blue) and the state in which it
is not performing computation, e.g., communicating to other
processes, called not-useful (red). For each MPI process p
we can therefore define the set U, = {u],u},... 71th|} of
the time intervals where the application is performing useful

https://github.com/lanl/PENNANT
https://github.com/cp2k
https://www.openfoam.com/releases/openfoam-v1812/
https://github.com/paboyle/Grid
https://pop-coe.eu

computation (the set of the blue intervals). We define the sum
of the durations of all useful time intervals in a process p as:

|Up|

Dy,=> B=> uf . (1)
Up j=1

Similarly we can define U,, and Dy for the red intervals.

The Load Balance measures the efficiency loss due to
different load (useful computation) for each process. Thus it
represents a meaningful metric to characterize the performance
of a parallel code. We define L,, the Load Balance among n
MPI processes as:

avgpy |)M
J— Up

L, =

> o
=1

- n
n - max;_; Dy,

max|P‘ E |
Up

The Transfer efficiency measures inefficiencies due to data
transfer. In order to compute the Transfer efficiency we need
to compare a trace of a real execution with the same trace
processed by a simulator assuming all communication has
been performed on an ideal network (i.e., with zero latency
and infinite bandwidth). We define T,, the Transfer efficiency
among n MPI processes as:

max | p|t;,
n— ___ 5
max,p|tp

Where ¢, is the real runtime of the process p, while t; is the
runtime of the process p when running on an ideal network.

The Serialization Efficiency measures inefficiency due to
idle time within communications (i.e., time where no data is
transferred) and is expressed as:

g — max‘ plDUp
" max pt;,

Where Dy, is computed as in Eq. 1 and t;, is the runtime
of the process p when running on an ideal network.

The Communication Efficiency is the product of the Transfer
efficiency and the Serialization efficiency: C,, = T, - Sp.
Combining the Load Balance and the Communication effi-
ciency we obtain the Parallel efficiency for a run with n MPI
processes: P, = L, - C},. Its value reveals the inefficiency in
splitting computation over processes and then communicating
data between processes. A good value of P, i) ensures an
even distribution of computational work across processes and
ii) minimizes the time spent in communicating data among
processes. Once defined the Parallel efficiency, the remaining
possible source of inefficiencies can only come from the blue
part of Figure 1, so from the useful computation performed
within the parallel applications when changing the number of
MPI processes. We call this Computation Efficiency and we
define it in case of strong scalability as:

_ ZP@ DUP

U, =
ZP DUP

where >, Dy, is the sum of all useful time intervals of all
processes when running with Py MPI processes and) _ , Dy,
is the sum of all useful time intervals of all processes when
running with P MPI processes, with Py < P. The possible
cause of a poor Computation Efficiency can be investigated
using metrics derived from processor hardware counters (e.g.,
number of instructions, number of clock cycles, frequency,
Instructions Per Clock-cycle (IPC)).

Finally we can combine the efficiency metrics introduced
so far in the Global Efficiency defined as G,, = P, - U,,.

B. Performance Tools

For the analysis performed in this paper we adopt a set of
tools developed within the Barcelona Supercomputing Center.

Extrae [10] is a tracing tool developed at BSC. It collects
information such as PAPI counters, MPI and OpenMP calls
during the execution of an application. The extracted data is
stored in a trace that can be visualized with Paraver.

Paraver [11] takes traces generated with Extrae and pro-
vides a visual interface to analyze them. The traces can be
displayed as timelines of the execution but the tool also allows
us to do more complex statistical analysis.

Clustering is a tool that, based in a Extrae trace, can
identify regions of the trace with the same computational be-
havior. This classification is done based on hardware counters
defined by the user. Clustering is useful for detecting iterative
patterns and regions of code that appear several times during
the execution.

Tracking helps to visualize the evolution of the data clusters
across multiple runs when using different amount of resources
and exploiting different levels of parallelism.

Combining the metrics defined in Section I'V-A and the tools
just introduced, we are able to summarize the health of a
parallel applications running on a different number of MPI
processes in a heat-map table. Rows indicate different POP
metrics while columns indicate the number of MPI processes
of a given run. Each cell is color-coded in a scale from green,
for values close to 100% efficiency; yellow, for values between
80% and 100% of the efficiency; down to red, for values below
80% efficiency.

V. PENNANT

Pennant is a mini-app that implements unstructured mesh
physics using Lagrangian staggered-grid hydrodynamics algo-
rithms. It is written in C++ by Los Alamos National Labora-
tory [12]. We study the MPI-only version of Pennant. There
is also an optional hybrid implementation with MPI+OpenMP
which we did not study. We used the Arm HPC compiler
for our studies. The application does not require additional
libraries. The input set used in our study is Leblancx4. It is
a multi-node version of the Leblanc problem which contains
3.69 x 105 quad zones within a rectangular mesh.

A. Single-node performance analysis

Figure 2 shows the efficiency metrics introduced in Sec-
tion IV-A for Pennant varying the number of MPI processes

within a compute node. Since all values are above 90% we can
conclude that the parallel performance of Pennant within one
node is good. The only varying factor is the IPC scalability
that drops from 1.17 to 1.11 (—7%) when using 64 MPI
processes. This behavior is expected when several processes
are concurrently using all the resources of a compute node.

2 4 8 16 32 64

0
Global efficiency 100%

Parallel efficiency
Load balance
Communication eff.

Serialization eff.
Transfer eff.

L Computation scalability
IPC scalability
Instruction scalability
Frequency scalability

95%

90%

85%

<80%

Fig. 2: Single-node efficiency metrics of Pennant

B. Multi-node performance analysis

Figure 3 shows the efficiency metrics of Pennant when scal-
ing beyond a single node. As with single-node performance,
Pennant presents a good scalability behavior up to 16 nodes.
However, projecting the trend to a higher number of nodes, we
can expect that the most limiting factors for a good scalability
will be Transfer and Serialization efficiency.

64 128 256 512

95.68 93.41
95.47 94.58

96.34 94.19

1024

92.57
93.06

107
Global efficiency 100%

Parallel efficiency
Load balance
Communication eff.

Serialization eff.
Transfer eff.

L Computation scalability
IPC scalability
Instruction scalability
Frequency scalability

95%

90%

96.38

85%

<80%

Fig. 3: Multiple-node efficiency metrics of Pennant

To find the root cause of Transfer, we studied the behavior
of MPI calls during the iterations of Pennant. We observed that
Allreduce calls present an irregular exit pattern in some
cases. This phenomenon can be seen in Figure 4 where we
show a Paraver timeline of Pennant running on 1024 MPI
processes. In this view the z-axis represents time (window
of 300 us) while the y-axis shows one MPI process per line
(256 processes). In this case the color represents the MPI call
executed by a process. Pink corresponds to Allreduce and
white depicts the time spent by the processes running non-MPI
code (also known as useful computation).

The unaligned exit of the Allreduce call is due nei-
ther to load imbalance (all the processes have reached the
collective call) nor to preemptions (we verified in the trace
that the frequency of the processes does not change). We can
conclude that late-exit of some processes is due to the MPI
implementation deployed in Dibona.

We also observe in some iterations a load imbalance that
is produced by a preemption of one or more processes. This
causes a delay in some Waitall calls that are waiting for

I MPI_Allreduce

Rank 0
Rank 31
Rank 63
Rank 95
Rank 127|
Rank 159
Rank 191
Rank 223|
Rank 255|

[1Computation

Time

Fig. 4: Timeline of Allreduce of Pennant.

a message from the preempted process and is affecting the
Serialization efficiency. We consider that these preemptions
are due to some processes from the system software (also
known as system noise). We can say that, although Pennant
has a good scaling in multiple nodes, it is sensible to system
noise and MPI implementation misbehavior.

VI. OPENFOAM

OpenFOAM is an open-source Computational Fluid Dy-
namics (CFD) software. There are different branches of the
OpenFOAM project. We used OpenFOAM-v1812, maintained
by the ESI-OpenCFD company combined with the DrivAer
model® for aerodynamic studies of a car.

This model requires the executions of different binaries
corresponding to different phases of the simulation (e.g., de-
composePar, renumberMesh, checkMesh, potentialFoam and
simpleFoam). We focused our analysis on the simpleFoam
solver®, which uses the SIMPLE (Semi-Implicit Method for
Pressure Linked Equations) algorithm for incompressible, tur-
bulent flow.

A. Single-node performance analysis

Figure 5 shows the efficiency metrics of OpenFOAM when
executing in a single node.

0
Global efficiency 100%

Parallel efficiency
Load balance
Communication eff.
Serialization eff.
Transfer eff.
L Computation scalability
IE IPC scalability

92.33 87.34
95.18 94.94 9211
96.04 94.20

89.31
94.84
94.17
95.38

95%

90%

92.00 86.58
95.83 88.41
95.91

85%
Instruction scalability
Frequency scalability

<80%

Fig. 5: Single-node efficiency metrics of OpenFOAM.

The most limiting factor for the Global efficiency is the
IPC scalability. We verified that the number of clock cycles
increases with the number of processes while the number of
useful instructions remains constant. This means that each
instruction needs more clock cycles to finish, this effect is
usually caused by the saturation of some of the hardware
resources within the compute node. The memory bandwidth
tends to be the most scarce resource when using all cores

3http://www.aer.mw.tum.de/en/research-groups/automotive/drivaer/
“http://openfoamwiki.net/index.php/SimpleFoam

http://www.aer.mw.tum.de/en/research-groups/automotive/drivaer/
http://openfoamwiki.net/index.php/SimpleFoam

in a single node. To verify if the saturation of the memory
bandwidth is affecting the IPC we could check the L3 cache
misses counters, however this counter is not accessible in
Dibona. While we cannot confirm our hypothesis with a direct
measurement due to the impossibility of accessing the L3
cache misses counter, we can discard other causes for the IPC
drop looking at other hardware counters.

2vpPT 4 MPI saPl 16 vpT B 32 vpr I 64 vipT I
16
\ I I \ I I \
14 — —
— 2 — —
& 1.2
= 10 —
™08
-
£ 06
g o4
= 02
-
0.0
Er O g g g S0 oD
A o o W o e 550
w P ‘.\:\,\’7 e \\’\:-\\

o

Fig. 6: Hardware counters in OpenFOAM single-node.

In Figure 6 we report the cumulative value of different
hardware counters with respect to the values recorded when
executing with 2 MPI processes. We notice that none of the
hardware counters have variation in the bar corresponding
to 64 MPI processes, confirming that none of the hardware
resources monitored with those hardware counters are the
cause of the IPC drop. Another indirect confirmation of the
drop of IPC due to the lack of memory bandwidth come
from the cross check of the IPC values when running 32 MPI
processes pinned on one socket (IPC = 0.58) versus 16 MPI
processes per socket (IPC = 0.80). As a side note, we can point
out that the number of TLB misses can explain the lower IPC
on 32 MPI processes compare to the 64 MPI processes.

We conclude that OpenFOAM saturates the memory band-
width when running 16 MPI processes per socket.

B. Multi-node performance analysis

Figure 7 shows the efficiency metrics measured when
running OpenFOAM on multiple nodes. Several factors are
compromising the efficiency: Load Balance, Serialization,
Transfer and Instruction scalability. The main limiting factor is
the Transfer efficiency so in the rest of this section we focus
on studying it using the case with 512 processes (Transfer
efficiency below 80%). The remaining metrics with low values
are left out of the study due to space constraints.

64 128 256 512 1024 .
Global efficiency 85.47 80.97 71.94 62.21 37.38 100%
Parallel efficiency 85.47 81.69 72.81 61.95 43.33
Load balance 91.97 92.23 91.87 89.52 86.57 | — 95%
Communication eff. 92.93 88.57 79.25 69.20 50.05
Serialization eff. 95.50 93.80 91.01 89.51 83.60 || | 90%
Transfer off. 97.31 9443 87.08 | 77.31 59.06 v
L Computation scalability 100.000 99.12 98.81 10043 86.28
IPC scalability 100.00 100.63 103.26 105.92 114.83 | — 85%
Instruction scalability | 100.00° 98.48 95.74 94.89 75.49
Frequency scalability |/100.00° 100.03° 99.94 99.92 99.52

= <80%

Fig. 7: Multiple-node efficiency metrics of OpenFOAM.

We isolated a section of the iteration corresponding to 36%
of the total iteration time where the Transfer efficiency drops
below 50% and the density of MPI calls is high: 63% of the
MPI time of the iteration is concentrated in this section.

<=1024 Bytes H >1024 Bytes H

100%
80%
60%
40%

% of Isend calls

20%
0%

70.08
Size [MB]

Isend [103]

Duration [ms]

Fig. 8: Duration, number of calls and bytes exchanged with
small Isend.

Figure 8 shows a study of Isend, the MPI call that moves
most of the data among processes. We report the time spent,
number of calls and the number of byte transmitted for all
messages and for messages smaller or equal than 1024 bytes.
We observe that to exchange 7% of the bytes the application
spends 59% of the time performing all Isend calls. Moreover
we note that 61% of the Isend calls are moving 1024 bytes
or less. We conclude that the low Transfer efficiency is due to
the combination of two factors. On one hand, the high number
of MPI calls sending small messages. On the other hand, the
MPI overhead as well as network latency that are paid for
each call.

VII. CP2K

CP2K is a framework for atomistic simulations written
in Fortran and is part of the Unified European Applications
Benchmark Suite”.

This application uses GNU intrinsics which are incompat-
ible with the Arm HPC compiler. Hence, we used the GNU
compiler suite for our studies. CP2K depends on BLAS and
LAPACK and it can take advantage of FFTW to improve the
performance of FFT operations. We used the Arm Performance
Libraries to cover these software dependencies. The rest of the
dependencies of CP2K are supplied with the package itself and
we used the minimum subset of them to support our input set.

The input set used in our study uses CP2K’s Molecular
Dynamics (MD) module. Specifically, the Quantum Mechan-
ics / Molecular Mechanics (QMMM). The simulation consists
of three distinct phases, FIST, QS/DFTB and QMMM. We
focused our analysis on the QMMM phase which is the most
time consuming part of the execution. QMMM performs the
simulation of the system iterating through multiple steps. Each
step invokes an iterative convergence method called Self-
Consistent Field. Our case study sets a cut-off of 37 iterations.
Since all of them present a similar computational footprint, we
limited our study to four of them.

5 http://www.prace-ri.eu/IMG/pdf/Selection_of_a_Unified_European_
Application_Benchmark_Suite.pdf

http://www.prace-ri.eu/IMG/pdf/Selection_of_a_Unified_European_Application_Benchmark_Suite.pdf
http://www.prace-ri.eu/IMG/pdf/Selection_of_a_Unified_European_Application_Benchmark_Suite.pdf

A. Single-node performance analysis

Figure 9 shows the efficiency metrics of CP2K when
running on one node of Dibona. We observe a dramatic drop in
the Computation scalability due to the Instruction scalability.
Meaning that the amount of instructions executed by each MPI
process does not decrease proportionally when increasing the
number of MPI processes.

0
Global efficiency 100%

Parallel efficiency
Load balance
Communication eff.

Serialization eff.
Transfer eff.

L Computation scalability
IPC scalability
Instruction scalability
Frequency scalability

95%
90%

95.55 92.23 89.26 88.66 87.72 85%

<80%

Fig. 9: Single-node efficiency metrics of CP2K

To identify the cause of the bad Instruction scalability,
we used the clustering tool introduced in Section IV-B. This
allowed us to identify computational regions with similar
behavior (called for brevity clusters) and study them inde-
pendently. The identified clusters cover about 90% of the
execution time regardless of the number of processes.

Cluster 1 M Cluster 2 Il Cluster 3 M Cluster 4 M Cluster 5 [l
200
180
160
140
120
100
80

60

40

20

0

Duration per cluster [s]

4 8 16 32 64
#MPI ranks

Fig. 10: Duration per cluster in CP2K

Figure 10 shows the total duration of each cluster varying
the number of MPI processes. The y-axis represents time
in seconds and each cluster is color-coded. The duration of
clusters one and three do not scale at all disregarding the
number of MPI processes.

Cluster 1 M Cluster 2 Il Cluster 3 M Cluster 4 M Cluster 5 H
300 T T T T T

250
200
150
100
50
0

4 8 16 32 64
#MPI ranks

Instructions per rank [107]

Fig. 11: Instructions per cluster in CP2K

Figure 11 shows the total number of instructions per rank
executed in each cluster. The z-axis represents the number of
processes and the y-axis represents the number of executed
instructions per rank. Each cluster is color-coded. We confirm
that cluster one and two are responsible for the poor Instruc-
tion scalability: the number of instructions executed by each
MPI process remains constant. The duration and the number
of instructions of clusters three and four scale proportionally
only up to 16 MPI processes. When using more than 16 MPI
processes scalability becomes bad also for these clusters. The
next natural step would be to map the clusters in code regions
to address the parallelization leading to the bad Instruction
scalability. We leave this as future work or a hint for the
CP2K developers.

B. Multi-node performance analysis

64 128 256 512

95.67 91.93
93.09

1024

107
Global efficiency 100%

Parallel efficiency
Load balance
Communication eff.
': Serialization eff.
Transfer eff.
L Computation scalability
IE IPC scalability
Instruction scalability
Frequency scalability

95%

90%

85%

<80%

Fig. 12: Multiple-node efficiency metrics of CP2K.

In Table 12, we show the multi-node efficiency figures for
CP2K. As with the single-node study, we observe that the
main limiting factor is the Computation scalability. However,
we also notice a steady decrease in Transfer efficiency when
increasing the number of processes. This metric is likely to
become the main limiting factor when scaling beyond 16
nodes.

MPI processes 256 512 1024
% of MPI time in Alltoallv calls 15.00% 21.51% 43.04%
% of MPI time in Al1lreduce calls 59.47% 58.17% 32.09%
% of MPI time in Alltoall calls 11.28% 7.21% 10.15%
Avg. message size of Alltoallv calls 635 KiB 347 KiB 1.72 KiB
% of MPI time in Alltoallv transfer 0.38% 0.85% 3.37%

TABLE II: CP2K MPI statistics when scaling > 4 nodes.

We analyzed the most called MPI primitives and realized
that they were collective operations. In Table II we show
the percentage of MPI time of the three most relevant MPI
calls with 256, 512 and 1024 processes. We observe that the
Allreduce is the MPI primitive that represents the most
time with 256 processes but A11toallv takes its spot when
scaling up to 1024 processes.

The third row of Table II displays the average message size
of Alltoallv calls. We observe that the average message
size decreases when increasing the number of processes.
As with OpenFOAM in Section VI, overheads of the MPI
implementation when exchanging small messages can be the
cause of the decrease in Transfer efficiency. Moreover, collec-
tive calls with a high number of processes lead to network
congestion.

Lastly, the fourth row in Table II shows the time of the
actual exchange of data in the A11toallv calls with respect
to the total time spent in MPI calls. We measured this time as
the duration of the MPI call of the process that reached last
the communication. Our measurements show that with 256
and 512 processes, the transfer time of all Al1toallv calls
represents under 1% of the total execution time. In contrast,
with 1024 processes, the transfer time reaches 3.37% of the
total execution time.

We conclude that the Transfer efficiency of CP2K keeps
decreasing when scaling beyond 16 nodes because of the high
number of collective calls with small messages. A possible
solution would be to decrease the number of collective oper-
ations by aggregating them into a single MPI call.

VIII. GRID

Grid is an open-source data-parallel C++ mathematical
object library that implements data structures aware of SIMD
architectures [13]. We ran Grid in parallel using MPI. The
program used in our study is a compressed Lanczos hot start
algorithm provided by the Grid repository that makes extensive
use of the Grid library.

A. Single-node performance analysis

Figure 13 shows the POP metrics of Grid within a single
compute node. We recognize that the main limiting factor of
the Global scalability is the IPC scalability, which decreases
when the number of processes increases up to a full node.

8 16 32 64

94.38
93.53 93.90

94.09
94.15

Global efficiency 100%

Parallel efficiency
Load balance
Communication eff.

Serialization eff.
Transfer eff.

L Computation scalability
IPC scalability
Instruction scalability
Frequency scalability

95%
94.58

94.71 90%

84.33
84.43

82.62

82.63 85%

<80%

Fig. 13: Single-node efficiency metrics of Grid.

Using the Clustering tool introduced in Section IV-B, we
distinguished six regions of code with a similar IPC (also
called clusters). The amount of compute time spent in these
clusters is more than 80% regardless of the number of
processes, so they are representative of the actual workload
performed by the application. For each cluster, we studied
the values of IPC when scaling the number of processes. In
Figure 14 we plot on a plane z="“TPC”, y="Number of useful
instructions executed per process” how the centroid of each
cluster moves when changing the number of MPI processes.
Therefore, the ideal situation would be to have vertical lines,
meaning, the number of instructions executed by process is
reduced proportionally to the number of processes and the [IPC
is constant. Our plot shows that three clusters are responsible
for the IPC drop (clusters 4, 5, and 6), i.e. clusters “moving”
to the left. Moreover cluster 4 and 5 show a more abrupt IPC
drop when scaling from 16 to 32 MPI processes.

Region 1 M@ Region 3 M@ Region 5 M
Region 2 I Region 4 M Region 6 Il

10°) s
2 : 16
3 :
%108 | R —
3
3
g
=107 1
S
= i

108 ol :3 T T

.6 0. 1.0 1.2
IPC

Fig. 14: Evolution of IPC per cluster in Grid

The natural next step would be to identify the regions of
code represented by each cluster and try to improve their IPC
in collaboration with Grid developers. In the interest of space
we left this out of the paper.

B. Multi-node performance analysis

Figure 15 shows the POP metrics of Grid when running
on multiple nodes of the Dibona cluster. We can see that the
two factors affecting the performance of Grid are Instruction
scalability and Transfer efficiency.

64 128 256 512

93.90
93.90

1024 .
Global efficiency 100%
Parallel efficiency
Load balance
Communication eff.
Serialization eff.
Transfer eff.

L Computation scalability
IPC scalability
Instruction scalability
Frequency scalability

86.83
88.62 83.62

95%
94.58
94.71

89.93
04.34
95.32

85.00
93.04
91.46 90%

85%

<80%

Fig. 15: Multiple-node efficiency metrics of Grid.

To study the Instruction scalability once more we used
the Clustering tool and identified the same six representative
regions that we studied when running on a single node.

4.0 \ \ \ \
3.5 -
3.0 -
2.5
2.0
1.5
1.0
0.5

0.0

Region 1 M Region 3 M Region 5 M
Region 2 M Region 4 M Region 6 H

Instructions [1013]

64 128

256 512
#MPI ranks

1024

Fig. 16: Number of instructions by cluster in an iteration.

In Figure 16, we report the total instructions (y-axis) exe-
cuted by the application for each number of MPI processes
(z-axis) and each cluster is color coded. It is clearly visible
that clusters 2, 3, and 5 are responsible for the increment of
instructions at the highest number of MPI ranks. At this point
a further study would allow us to relate the clusters responsible
to the source code to try to solve the parallelization issue.

500 g 10
é’- 400 8 o0
o 300 6 2
; 5]
o 200 4 g
4 2
£ 100 s ~
=
0 0

1024

128

256 512
#MPI ranks

Fig. 17: Message size vs num. of messages in Grid.

The other efficiency metric with an alarming value is the
Transfer efficiency. To find the cause of its low value, we
analyze the communication pattern of the application. We
observe that communication is mainly done with MPI point-
to-point calls (i.e. ISend and Wait).

In Figure 17 we show the number of ISend calls and
their average message size. We can observe that the size of
the messages sent decreases and the number of point-to-point
messages increases when using more MPI processes. Due to
the MPI overhead, and network latency this trend translates
into a more inefficient communication. The suggestion for
Grid developers would be to try to reduce the number of
messages sent and increase its size by fusing messages when
possible.

IX. CONCLUSIONS

In this paper we analyzed the performance of four parallel
HPC applications using a well established method leveraging
different efficiency metrics for guiding the analysis. We per-
formed our study on a state-of-the-art Arm-based cluster based
on Marvell Cavium ThunderX2, the same CPU technology
powering the Astra supercomputer recently ranked in the
Top500 list. The aim of this section is to provide lessons
learned in our study process and co-design insights, i.e., guide-
lines for both system designers and application developers.

We show the power of having objective metrics such as the
ones defined by the POP Center of Excellence that we can
easily apply to different workflows. This allows us not only to
spot parallel inefficiencies due to poor parallelization strategies
but also to identify problems in the hardware and software
configuration of an HPC cluster. Also, since we applied the
method leveraging POP metrics to data gathered on a cluster
powered by Arm-based CPUs, we proved that such a method
delivers effective insights independently on the architecture.

When deploying an HPC cluster, the tuning of the system
software is of paramount importance. We noticed, e.g., with

Pennant, that OS noise and MPI implementation can heavily
affects the performance of parallel applications. A complete
set of hardware counters accessible via a standard interface,
e.g., PAPIL, is extremely important to identify the root cause
of drops in the POP metrics. For example, the lack of the L3
cache miss counter in the Dibona cluster did not allow us to
confirm the suspect of saturation of the memory bandwidth
with OpenFOAM.

Concerning HPC application development and paralleliza-
tion strategies, we also highlighted that scaling to multiple
processes is not beneficial if there are regions of code that
do not scale. This is kind of obvious, but in CP2K we
proved that this behavior heavily affects the performance of
the application. Also, the study performed on OpenFOAM
demonstrate that collective operations among several processes
can become a serious scalability limitation, with a higher
impact when the amount of data exchanged among processes
is small.

ACKNOWLEDGMENT

This work is partially supported by the Spanish Govern-
ment (SEV-2015-0493), by the Spanish Ministry of Science
and Technology (TIN2015-65316-P), by the Generalitat de
Catalunya (2017-SGR-1414), and by the European Mont-
Blanc 3 project (GA n. 671697) and POP CoE (GA n. 824080).

REFERENCES

[11 F. Banchelli and F. Mantovani, “Filling the gap between education
and industry: evidence-based methods for introducing undergraduate
students to hpc,” in 2018 IEEE/ACM Workshop on Education for High-
Performance Computing (EduHPC). 1EEE, 2018, pp. 41-50.

[2] C. Niethammer et al., Tools for High Performance Computing 2017:
Proceedings of the 11th International Workshop on Parallel Tools for
High Performance Computing. Springer, 2017.

[3] M. Burtscher et al., “Perfexpert: An easy-to-use performance diagnosis
tool for hpc applications,” in SC’10: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2010, pp. 1-11.

[4] L. Stanisic et al., “Performance analysis of hpc applications on low-
power embedded platforms,” in 2013 Design, Automation & Test in
Europe Conference & Exhibition (DATE). 1EEE, 2013, pp. 475-480.

[5] M. Garcia-Gasulla et al., “Runtime mechanisms to survive new HPC
architectures: A use case in human respiratory simulations,” The Inter-
national Journal of High Performance Computing Applications, 2019.

[6] E. Calore et al., “Advanced performance analysis of HPC workloads
on Cavium ThunderX,” in 2018 International Conference on High
Performance Computing & Simulation (HPCS), 2018, pp. 375-382.

[71 S. MclIntosh-Smith, J. Price, T. Deakin, and A. Poenaru, “A performance

analysis of the first generation of hpc-optimized arm processors,” Con-

currency and Computation: Practice and Experience, p. €5110, 2018.

F. Banchelli et al., “MB3 D6.9 — Performance analysis of applications

and mini-applications and benchmarking on the project test platforms,”

Tech. Rep., 2019. [Online]. Available: http://bit.ly/mb3-dibona-apps

[91 M. Wagner, S. Mohr, J. Giménez, and J. Labarta, “A structured approach

to performance analysis,” in International Workshop on Parallel Tools

for High Performance Computing. Springer, 2017, pp. 1-15.

H. Servat et al., “Framework for a productive performance optimization,”

Parallel Computing, vol. 39, no. 8, pp. 336-353, 2013.

V. Pillet, J. Labarta, T. Cortes, and S. Girona, ‘“Paraver: A tool to

visualize and analyze parallel code,” in Proceedings of WoTUG-18:

transputer and occam developments, vol. 44, no. 1, 1995, pp. 17-31.

C. R. Ferenbaugh, “Pennant: an unstructured mesh mini-app for ad-

vanced architecture research,” Concurrency and Computation: Practice

and Experience, vol. 27, no. 17, pp. 4555-4572, 2015.

P. Boyle, A. Yamaguchi, G. Cossu, and A. Portelli, “Grid: A next

generation data parallel c++ qcd library,” arXiv:1512.03487, 2015.

[8

—

[10]

(11]

[12]

[13]

http://bit.ly/mb3-dibona-apps

	I Introduction
	II Related Work
	III Experimental Setup
	III-A The Dibona Cluster
	III-B The HPC applications

	IV Methodology for Performance Analysis
	IV-A Metrics for Performance Analysis
	IV-B Performance Tools

	V Pennant
	V-A Single-node performance analysis
	V-B Multi-node performance analysis

	VI OpenFOAM
	VI-A Single-node performance analysis
	VI-B Multi-node performance analysis

	VII CP2K
	VII-A Single-node performance analysis
	VII-B Multi-node performance analysis

	VIII Grid
	VIII-A Single-node performance analysis
	VIII-B Multi-node performance analysis

	IX Conclusions
	References

