
Mireia Llauradó Costa,

NFC extension for Catrobat

Master’s Thesis

to achieve the university degree of

Master of Industrial Engineering

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Slany, Wolfgang

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Slany, Wolfgang

Graz, May 2020

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Abstract

“How does our daily routine look like nowadays? We wake up to an alarm
set on Amazon Alexa, get a ride to work with Uber, message our team
through Slack, buy a coffee and pay for it using Apple Pay, organize a
to-do list on Trello, order food through Foodler, chat with employees via
Google Hangouts, book our vacation through Kayak and Airbnb and load
up Netflix and watch TV on demand before heading to bed.”1

All those tasks didn’t exist or would have been performed in a very different
way ten years ago, and that’s the best way to realise the world of software
technology is growing really fast and so the need of people with program-
ming skills and software developers. The aim of Catrobat project is to bring
this programming first contact to kids and to make learning enjoyable for
them.

The goals of this thesis are to widen the big amount of extensions that Catro-
bat already has, by adding the capabilities of Near Field Communication
(NFC) so Catrobat users can learn something about NFC and its usage,
and to ensure the automatise testing of the hardware features that cannot
be tested on an emulated device. Within the implemented features, users
should be able to read the content and the ID of NFC tags, as well as using
them to handle conditions in the program logic and developers should be
able to test these hardware features automatically.

1https://www.forbes.com.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1

1.2 Problem statement . 2

1.3 Thesis outline . 2

2 Background 4
2.1 Catrobat . 4

2.2 Test-Driven Development . 5

2.3 Hardware automatic testing method 6

2.4 Near Field Communication . 7

2.4.1 Reader/Writer Operating Mode 9

3 Implementation 10
3.1 Testing Sensor Box . 10

3.2 NFC Programming: Reader/Writer Mode 11

3.2.1 NFC properties in the Android Manifest file 11

3.2.2 NFC packages in Android 11

3.2.3 Foreground dispatch system 12

3.2.4 Tag reading and writing 13

3.2.5 Implemented features 13

3.2.6 Files of interest . 15

4 Conclusion and Outlook 16
4.1 Lessons Learned . 16

4.2 Future Work . 16

Bibliography 18

iv

List of Figures

2.1 Example of categories in the ’add brick’ menu distinguised
by colors. 5

2.2 TDD cyclic process. 6

2.3 Sensor Box created by Joachim Lesser. 7

2.4 Reader/Writer operation mode. 9

3.1 NFC tag adding process in Pocket Code. 14

3.2 When NFC trigger brick. 14

v

1 Introduction

The number of smartphones used worldwide is increasing year by year1.
Smartphones offer advantages as better mobility and easy access than lap-
tops and the number or users is by far much higher than computer users,
especially in developing countries. Catrobat project offers the opportunity
to show teenagers how to take advantage of this situation by using smart-
phones not only for posting or gaming but also for learning in an enjoyable
way.

Moreover, the need of people with developing skills is also increasing, and
Catrobat offers a good oportunity for starters, as the user doesn’t need to
learn any language commands to start programming. On the contrary, it
works with blocks, and the user just have to drag and drop these blocks
to create their own application. Easy as it sounds, Catrobat can have a
thousand of possibilities by using its extensions such as code blocks for the
Lego robot NXT, Arduino or using many features that are found in the same
smartphone.

1.1 Motivation

Catrobat philosophy is to make young people approach to programming
knowledge and get some new skills by enjoying and having fun while
learning. Motivation and enjoyment in the learning process is crucial to
make it as much effective as possible, and this utopia became true through
Catrobat project.

1https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/.

1

1 Introduction

Among the many possibilities that Pocket Code offers to children, it is
interesting to widen the programming skills by using extensions, the aim of
this thesis is to make able to children to get to know and experiment with
the Near Field Communication (NFC) technology. NFC is already integrated
into the daily life, some examples would be mobile payments, wirelessly
transferring data or quickly downloading information by approaching a
phone instead of scanning a QR code.

As priorly introduced, testing is indispensable to ensure the quality of
a software. Test-Driven Development (TDD) guidelines are a must when
contributing to Pocket Code development. For this reason another big
concern among the developers is how to be able to automatically test some
hardware features that cannot be tested in an emulated device, so part of
the time dedicated on this thesis will be focused on ensuring that these tests
are currently available and operative for developers.

1.2 Problem statement

It can be considered that this thesis is divided in two main goals.

On one hand, one of them is that Pocket Code will be able to offer the
possibility to scan NFC tags and subsequently use them to trigger any
desired action as well as reading and writing into them, so users can get
familiar with NFC technology.

On the other hand, the other goal of the thesis is to ensure that developers
of Pocket Code are able to test some hardware features that are not able
to be tested on an emulated device. For this aim it has been necessary to
work with the sensor box designed by Lesser to automatize testing by using
external hardware sensors.

1.3 Thesis outline

The aim of this chapter is to explain the structure of this thesis and make a
short description of every chapter. All the background information and the

2

1 Introduction

introduction to the topic can be found in Background. Its structure consists
firstly to introduce the project itself called Catrobat, the Test-Driven Devel-
opment method that is used by its developers followed by explaining which
method is used for automatically testing hardware features that cannot be
tested on an emulated device, therefore the Sensor Box is introduced . To
finish this chapter Near Field Communication main features are provided.

Afterwards, the implementation process of the thesis is explained in Im-
plementation. Information is mostly about the features concerned to NFC
because there are very clear rules that need to be followed. When talk-
ing about the test related to the Sensor Box, accessing related information
is given, as the tests were prior written and during this thesis just some
mistakes have been corrected. However, the working methods and the im-
plementation is exactly the same as the one implemented by Lesser in 2018,
and his thesis can be checked for further details.

Finally and in Conclusion and Outlook, the lessons learned along this thesis
and some ideas for possible future work are presented.

3

2 Background

Techniques and hardware information used in this master thesis are pro-
vided in this chapter. It describes the free open source software (FOSS)
project Catrobat, the Test-Driven Development method and therefore, the
hardware automatic testing method created by Lesser. Finally, technical
details about the Near Field Communication are given.

2.1 Catrobat

Catrobat is a Free Open Source Software (FOSS) non-profit project that allows
users to create and publish their own apps using only their smartphones. As
explained in the abstract, the needed of computer science skills is everytime
more demanded and Catrobat project aim is to introduce young people to
the world of coding (Slany, 2014).1

Throughout the integrated development environment (IDE) Pocket Code
the user can directly create programs on Android and iOS mobile devices,
both phones or tablets.

The app is very intuitive and easy to work with but it has a lot of different
possibilities and extensions to be able to develop more complex apps, using
the same device sensors or using external hardware, such as Arduino,
Raspberry Pi, Lego NXT or remote control flying drones, so it allows
teenagers to make the most of their imagination.

Catrobat is strongly influenced by MIT’s Scratch project2 as it is a block
based visual programming language where each block represents a separate

1https://arxiv.org/ftp/arxiv/papers/1808/1808.06292.pdf.
2https://scratch.mit.edu/.

4

2 Background

functionality. These blogs are classified depending on their functionality
and are easily distinguishable by colors as can be seen in Figure 2.1.

Figure 2.1: Example of categories in the ’add brick’ menu distinguised by colors.

For developing of Catrobat project Test-Driven Development by Beck and
Clean Code by Martin are strictly used, and every task, bug fix or other
issues are stored as a ticket in Jira3 and visualised in a Kanban board4,
ensuring a clear and up-to-date documentation.

2.2 Test-Driven Development

When talking about developing first thing anyone would do is go straight
to coding, and that’s a huge mistake. Test-Driven Development (TDD) is a
software development process that requires writing very specific test cases
before the code is improved, so the sequence would be the next one:

• Add a test: making a developer write a test before starting coding
makes him focus on the requirements before writing the code.

• Write enough code to fail the test.
• Run all the tests and watch that the new test fails to make sure the test

is going to be executed.
3https://www.atlassian.com/software/jira.
4https://www.atlassian.com/agile/kanban.

5

2 Background

• Write the code to make the test pass.
• Run the tests and see that they all pass, if not, the new code must be

adjusted until they do.
• Refractor code: the growing code base must be cleaned up regularly

using Clean Code rules and of course re-running the test cases after
every refractoring phase.

• Repeat the steps above until you can’t find anymore tests that drive
writing new code.

A visual scheme of the TDD cyclic method is represented in Figure 2.2.

Figure 2.2: TDD cyclic process.

Although working with the Test Driven Development method can be a little
time consuming at first, it has a lot of benefits, like allowing programmers
to focus on the task as the first goal is to make the test pass or ensuring
that all written code is covered by at least one test. This method gives the
programming team a greater level of confidence in the code, reduces time
spent on rework and in the debugger and forces the radical simplification
of the code, in order to create a solid code.

2.3 Hardware automatic testing method

Emulated device testing is undoubtedly necessary for testing Android
software through continuous integration method as the Jenkins servers have
to be able to make multiple test code executions simultaneous when several

6

2 Background

pull requests are made. When talking about hardware testing though, a real
device comes to the need. One of the multiple possibilities that offer Pocket
Code is to be able to use almost all the sensors and features of a smartphone,
but of course they need to be tested. The solution for testing those features
and sensors was made by Lesser (”NFC extension for Catrobat”, May 2018)
and it consists in building a SensorBox (see Figure 2.3) which currently can
test five hardware features of a smartphone: vibration, audio signal via the
auxiliary output, LED light, NFC and network access. All the details about
the fabrication process can be found in Lesser Thesis and the details of every
test can be found in RasperIno: Testing Hardware Features of PocketCode using
Arduino and some Sensors.

Figure 2.3: Sensor Box created by Joachim Lesser.

2.4 Near Field Communication

Near Field Communication is a bidirectional and short-range wireless com-
munication technology that requires approaching two NFC-compatible
devices together over a few centimeters and it’s been designed for secure
data transfer. However, it can be used to accomplish many other targets.

7

2 Background

NFC technology uses the following smart devices:

• NFC-enabled mobile phone: the integration of NFC technology with
mobile phones creates a big opportunity for the ease of use, acceptance,
and spread of the NFC ecosystem.

• NFC reader: it is capable of data transfer with another NFC compo-
nent.

• NFC tag: it is actually an RFID tag that has no integrated power source,
each NFC tag has its unique ID (UID) which cannot be changed or
deleted.

Depending on if the devices have a power source or not, we can call them
active or passive. An initiator of the communication always needs to be an
active device because it requires a power source to initiate the communica-
tion. On the contrary, the target can be both active or passive. In case the
target is active, it is going to use its own power source to respond, while
if the communication is being towards a passive device, it uses the energy
created by the electromagnetic field, which is generated by the initiator.

Due to these three types of devices and depending on their interactions,
there are three operating modes: reader/writer, peer-to-peer, and card
emulation.

If the initiator of the communication is a mobile and the target is a tag,
the reader/writer mode is used. Nevertheless, if the communication is
between two mobiles, the operating mode is peer-to-peer, and finally, the
card emulation mode is used when the initiator is a reader with a mobile as
a target.

The main operating mode for this project is the reader/writer operating
mode, as Pocket Code aim is that users can use NFC tag both to read and
write their content or use the ID to be able to trigger actions, so as previously
described, the user in our case is using their mobile phone devices to initiate
the communication and a passive NFC tag as a target, and that’s the reason
why delve into this mode is necessary.

8

2 Background

2.4.1 Reader/Writer Operating Mode

As described before, the reader/writer mode (see Figure 2.4) is about the
communication of an NFC-enabled mobile phone with an NFC tag for the
purpose of either reading data from or writing data to those tags. As the
name indicates, there are two internal modes to make the communication,
the reader and the writer.

Figure 2.4: Reader/Writer operation mode.

In both modes the mobile acts as the initiator. Concerning on the reader
mode, the mobile device reads data from a NFC tag, which consists of
the requested data and the program that returns the requested data to the
initiator. However, in the writer mode the mobile phone writes data to the
tag and replies with the acknowledgment data, informing the user about
the success of the operation. If the tag already contains any data prior to
the writing process, it is overwritten.

The key point of this type of communication is that a mobile phone can
perform several actions after it reads the data from the tag, and this provides
many opportunities for both users and service providers as the applications
are countless and can be very innovative.

9

3 Implementation

3.1 Testing Sensor Box

As mentioned in Hardware automatic testing method, the idea of the hard-
ware testing box was created by Lesser and further details can be found in
his thesis: “NFC extension for Catrobat, May 2018”.

The requirements to run hardware tests can be found in Confluence1 but
the main are the following:

• Nexus must be on and connected to slave1

• Nexus must NOT be locked
• Nexus must be connected to hidden WLAN access point “robo-

arduino”.

These tests can be run by UiEspressoSensorboxTestSuite.java which runs
a total of seven tests:

• Light test named FlashBrickStageTest.java runs both testActualFlashOnBrick

and testActualFlashOffBrick.
• Audio test named PlaySoundBrickStageTest.java runs both testNoSoundPlayed

and testSoundPlayedFromSoundBrick.
• Vibration test named VibrationBrickStageTest.java runs both

testVibrationHardwareOn and testVibrationHardwareOff.
• NFC test named testWhenNfcHardware testes WhenNfcBrick and the

ability to read both the tag ID and the message.

1https://confluence.catrob.at/display/JENKINS/SensorBox+Troubleshooting+101.

10

3 Implementation

By the end of this thesis, all of them except from the NFC test are proved
available for testing those hardware features in two possible ways: on one
hand it is possible to run these tests into the same local area network using
the smartphone, the testing box and the computer. On the other hand, it
is possible to execute them on the Jenkins server, which is permanently
connected to one box.

3.2 NFC Programming: Reader/Writer Mode

The focus while working with an NFC extension in Pocket Code is to make
a communication in between the mobile device and an NFC tag, and that’s
the reason why it is crucial to get in detail about the reader/writer operation
mode.

3.2.1 NFC properties in the Android Manifest file

First of all, in order to enable NFC technology in an application, the required
permissions should be given to the app to use the NFC hardware and to
handle the intents. This can be done by declaring the following line in the An-
droid manifest: <uses-permission android:name=\android.permission.NFC" />.

In addition, the minimum SDK version should be considered. Experts
suggest that minimum API level 10 should be use and advise that in API 14

extra methods and Android Beam are introduced.

3.2.2 NFC packages in Android

Currently there are two packages for NFC application development in
the Android platform. The first is the main package, android.nfc, which
includes necessary classes to enable applications to read NDEF messages
from tags and write to them. The second package is the android.nfc.tech

package, which includes necessary classes to provide access to different tag
technologies. For the developing of Pocket Code extension, the first package

11

3 Implementation

is used, so it is important to know the six classes that it offers and that are
explained in the following table.

Class Name Description
Tag Represents the discovered NFC tag
NfcAdapter Represents the NFC adapter on the mobile phone
NfcManager Obtains an Instance of the NFC adapter
NdefMessage Represents an NDEF message
NdefRecord Represents an NDEF record
NfcEvent Wraps information associated with an NFC event

Table 3.1: Classes that can be found in android.nfc

3.2.3 Foreground dispatch system

There are actually two types of dispatch systems, which are the tag intent
dispatch system and the foreground dispatch system. On the first one, the
application registered to handle the tag is launched when scanning an NFC
tag, and if more than one applications are registered, a pop-up to select the
application is displayed. If the goal is to handle tags when the application
is running the foreground dispatch system needs to be used and there is
where our goal sticks to.

The foreground dispatch system gives priority to handle the tag to the ap-
plication that is running and in order to implement it the next requirements
must be met:

First thing that needs to be created is a PendingIntent so that Android can
get details of the tag.

Then declaring the intent filters is needed to handle the tags. If the registered
filters in the foreground dispatch system match with the tag, then the active
application handles the intent. There are three intents: ACTION_NDEF_DISCOVERED,
ACTION_TECH_DISCOVERED and ACTION_TAG_DISCOVERED and all three are de-
clared in the Catrobat code.

Finally, it is needed to override the activity lifecycle callbacks and add
logic to enable and disable the foreground dispatch on onPause() and

12

3 Implementation

onResume(). The required code to process the data from the scanned NFC
tag must be implemented in the onNewIntent() method.

3.2.4 Tag reading and writing

For both reading/writing actions the first steps are the same, they both
start when the tag is discovered using one of the previous mentioned
intents it is necessary to retrieve the extended data from the intent using
the getParcelableExtra method.

When the aim is to read the message, the next step that should be done
is to get the NDEF message from the tag, and it can be done through the
Ndefmessage class from android.nfc package mentioned in NFC packages
in Android. After the message is got and before being able to do any kind
of action with the data it needs to be processed and the way of doing it
depends on the contained record types.

On the other hand, when the intention is to write into the tag the procedure
is a little bit different. After getting the instance of the detected tag, the
NDEF message needs to be prepared based on the desired data type on the
NFC Forum standards but once these data is ready, the writing operation is
the same for all of them.

3.2.5 Implemented features

Through this thesis the user can now do the following activities while using
the NFC extension:

• The first implemented feature is that the user is able to scan NFC tags,
so they are registered in a list, where also the option to rename them
is available, as it can be seen in Figure 3.1. This pre-activity is used to
save tags for further uses while programming our application.

• Another feature that is available and showed in Figure 3.2 is to use the
former scanned tags or any NFC tag to be able to trigger the desired
following activity.

13

3 Implementation

Figure 3.1: NFC tag adding process in Pocket Code.

Figure 3.2: When NFC trigger brick.

14

3 Implementation

3.2.6 Files of interest

In this chapter the information of the location of these implementations is
given as it might be useful for future related work (see Future Work).

• Android Manifest permission: AndroidManifest.xml
• Pending Intent: NfcTagListFragment.java and StageLifeCycleController.java

• Declared intents: NfcHandler.java
• Override activity lifecycle callbacks and logic to enable/disable fore-

ground dispatch: NfcTagListFragment.java and StageLifeCycleController.java

• Tag reading and writing: NfcHandler.java

If further details are needed in the NFC area, the book Professional NFC
application development for android is a very useful resource and the base of
the NFC related work along this thesis.

15

4 Conclusion and Outlook

In the following sections the learned lessons while working on this thesis
and an outlook for possible future work are developed.

4.1 Lessons Learned

Prior to joining Catrobat team I had no experience at all with Java language
and the app developing world. As an Industrial Engineer, I had been
working with programming but never in this type of environment, and first
of all I would like to thank my supervisor to give me this opportunity. The
IDE Android Studio, Jenkins server and Github development platform are
tools I wasn’t familiar with.

The process at the first was pretty hard and with slow improvements but
after some time I got used to the language and the methods used in the
Catrobat project, achieving goals that at the beginning seemed impossible
to me.

4.2 Future Work

This thesis was planned to complement Lesser master thesis to enhance the
NFC extension for Pocket Code and the hardware tests run in the SensorBox
to make it reliable for the developers of the Catrobat project.

The first goal was to make the hardware tests available so developers could
rely on them. While working on those tests it came out that the NFC
extension was not properly working. That’s the reason why getting deeper

16

4 Conclusion and Outlook

in the NFC requirements was necessary and as formerly mentioned, there
are some activities that are currently working again and are described in
Implemented features. However, there are still some functions that need to
be tested and that may need some further modifications, such as writing
messages on a tag. Of course, the NFC test from the Sensor Box did never
pass because the function itself was not working properly, so the next step
would be to check this test now that the NFC brick is operational and prove
that the test is available to be used for the hardware automatic testing.

17

Bibliography

Association, International Catrobat (2010-2016). Catrobat. url: https://www.
catrobat.org/ (cit. on pp. 1, 4).

Baumann, Bernd (2019). RasperIno: Testing Hardware Features of PocketCode
using Arduino and some Sensors. url: https://confluence.catrob.at/
pages/viewpage.action?pageId=4948088 (cit. on p. 7).

Beck, Kent (2000). Extreme programming explained: embrace change. addison-
wesley professional (cit. on p. 5).

Coskun, Vedat, Kerem Ok, and Busra Ozdenizci (2013). Professional NFC
application development for android. John Wiley & Sons (cit. on p. 15).

Lesser, Joachim (2018). NFC extension for Catrobat. url: https://diglib.
tugraz.at/download.php?id=5bebd9689533d&location=browse (cit. on
pp. 2–4, 7, 10, 16).

Martin, Robert C (2009). Clean code: a handbook of agile software craftsmanship.
Pearson Education (cit. on p. 5).

18

https://www.catrobat.org/
https://www.catrobat.org/
https://confluence.catrob.at/pages/viewpage.action?pageId=4948088
https://confluence.catrob.at/pages/viewpage.action?pageId=4948088
https://diglib.tugraz.at/download.php?id=5bebd9689533d&location=browse
https://diglib.tugraz.at/download.php?id=5bebd9689533d&location=browse

	Abstract
	Introduction
	Motivation
	Problem statement
	Thesis outline

	Background
	Catrobat
	Test-Driven Development
	Hardware automatic testing method
	Near Field Communication
	Reader/Writer Operating Mode

	Implementation
	Testing Sensor Box
	NFC Programming: Reader/Writer Mode
	NFC properties in the Android Manifest file
	NFC packages in Android
	Foreground dispatch system
	Tag reading and writing
	Implemented features
	Files of interest

	Conclusion and Outlook
	Lessons Learned
	Future Work

	Bibliography

