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Abstract.In this paper, Discrete Least Squares meshless method (DLSM) is developed to
analyze cracked structures in an elastostatic problem. DLSM is a new really meshless method
that does not use any mesh in computation. The method is based on the minimization of the
least squares functional with respect to the nodal parameters. The least squares functional are
formed as the weighted summation of the residual of the differential equation and its
boundary conditions. In this method, the domain of problem is discretized by some nodes that
are used to produce Moving Least Squares shape functions. This type of discretization
eliminates the Finite Element Method shortcomings. In this study, diffraction method was
used to produce continuous shape functions around the crack. In diffraction method, the
domain of influence wrap around the crack tip and it results in continuous derivatives of shape
functions. Finally, the DLSM high efficiency and accuracy is presented by comparing the
analytical results with numerical ones.

1 INTRODUCTION
One of the most important advances in the field of numerical methods was the

development of the Finite Element Method (FEM) in the 1950s. In FEM, a continum with a
complicated shape is divided into elements. The FEM is a robust and thoroughly developed
method, and hence it is widely used in engineering fields due to its versatility for complex
geometry and flexibility for many types of linear and non-linear problems. However, the FEM
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has the inherent shortcomings of numerical methods that rely on meshes or elements that are
connected together by nodes in a properly predefined manner.

This method encounters some difficulties when dealing with problems involving moving
boundaries, crack propagation or extremely large deformation due to their need for remeshing
of the domain. This problem, to a lesser degree, is also faced when exploiting the most
important advantage of the FEM over other mesh based numerical methods, namely adaptive
refinement of the solution, where the mostly used method of h-refinement requires adding
and/or repositioning of the nodal points.
For the elimination of at least part of the structure under consideration by constructing the
approximation entirely in terms of nodes, a class of meshless has been developed. These
include some important examples of these methods are the smoothed particle hydrodynamic
(SPH) method , reproducing kernel particle method (RKPM), element free Galerkin (EFG)
method, meshless local Petrov–Galerkin (MLPG) method, local boundary integral equation
(LBIE) method, and hp-cloud method. As a consequence, they are totally free from the mesh
entanglements and distortions commonly associated with the use of the finite element method
in the computational simulation of large deformation problems.
Arzani and Afshar [1] proposed the discrete least squares method (DLSM) for solving
Poisson’s equation. Firoozjaee and Afshar [2-3] developed this method by using collocation
points to solve elliptic partial differential equations and studied the effect of the collocation
points on the convergence and accuracy of the method. DLSM was later used by Naisipour et
al. [4] to solve elasticity problems on irregular distribution of nodal points.

In this paper DLSM used for solving two-dimensional elasticity crack problems. In this
method, the problem domain is discretized by distributed field nodes. The field nodes are used
to construct the trial functions by employing the moving least-squares interpolant. This
method is based on minimizing a least squares functional with respect to the nodal
parameters.

In most of meshless methods using the smooth and high continuous approximation
function, difficulties arise, in nonconvex bodies such as cracks. Therefore, meshless methods
used some techniques in encountering these problems. Krysl and Belytschko [5] described
some techniques so called visibility criterion that lead to discontinuous weight function, and
consequently shape functions which are discontinuous within the domain. And later they used
the two approaches so called diffraction and transparencymethods [6] that lead to continuous
weight functions around the crack tip.

In this paper, diffraction method used for constructing continuous MLS approximation in
DLS meshless method around the crack tip.In diffraction method, domain of influence wraps
around concave boundary similar to the way light diffracts.
The purpose of this paper was using DLSM for fracture (mode I) analysis of crack in
homogenous, isotropic, linear-elastic two-dimensional solid.

2 MOVING LEAST SQUARES APPROXIMATION
Among the available meshless approximation schemes, the moving least squares (MLS)
method is generally considered to be one of the best methods to interpolate random data with
a reasonable accuracy, because of its completeness, robustness and continuity. The MLS
approximation can be constructed as:
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Where ( )kx denotes the approximate value of u(x) and 1 2( ) [ ( ), ( ),..., ( )]T

k mP x P x P x P x is the
basis vector that built using Pascal's triangle and m is the number of monomials in the basis
vector p(x). For a 2D problem we can specify 2 2[1, , , , , ]P x y x xy y for m=6. In the MLS
approximation, the shape functions are obtained by minimizing a weighted residual J to
determine the coefficients a(x) where
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Where ku is value of u(x) at kx , n is the number of nodes in support at kx . The weight function

kW(x-x ) is usually built in such a way that it takes a unit value in the vicinity of the point k
where the function and its derivatives are to be computed and vanishes outside a region
surrounding the point kx . In this research the cubic spline weight function is considered as
follow:
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 and maxd is the size of influence domain of point kx . Minimization of

equation (2) leads to
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Substituting equation (4) in equation (1) gives

1( ) ( ) ( ) ( ) ( ) (7)T
k k k kx P x A x B x u x u   

Where ( )kx contains the MLS shape functions of nodes at point kx .
The full paper must be written in English within a printing box of 16cm x 21cm, centered
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3 DISCRETE LEAST SQUARES MESHLESS METHOD
Consider the following (partial) differential equation

( ) 0 (8)A F in   

Subject to appropriate Drichlet and Neumann boundaries
( ) 0 (9)tB t on   

0 (10)uon   

Where A and B are (partial) differential operators, and F represents external forces or source
term on the problem domain.  and t are vector of prescribed displacements and tractions on
the Dirichlet and Neumann boundaries, respectively, u and t are the displacement and
traction boundaries, respectively. For plane stress, relations (8) to (10) can be written as
follow:
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Where  is the vector of unknowns that defined as [ , ]Tu v  and ,  are the Lame constants
and shear modules, respectively, defined as:
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Upon discretization of the problem domain and its boundaries, using equation (7), the residual
of partial differential equation at a typical nodal point j is defined as:

1
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The residual of Neumann boundary condition at typical nodal point k on the Neumann
boundary can also be written as:

1
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And finally the residual of Drichlet boundary condition at nodes on the Drichlet boundary
could be stated by
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Where n is the total number of nodes, N is the internal nodes of domain of problem, tN is the
number of nodes on the Neumann boundary and uN is the number of nodes on the Dirichlet
boundary. The least squares functional of the residuals is defined as:
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Where t and uα are penalty coefficients for Neumann and Drichlet boundary conditions
respectively.
Minimization of the functional with respect to nodal parameters leads to the following system
of equations

(19)K F 

Where 1 2[ , ,..., ]TN    is the vector of unknown’s nodal parameters and K,F are the stiffness
and right hand side matrices with typical components defined as:
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Where K is stiffness matrix that is both square and symmetric. Therefore, the final system of
equations can be solved directly via efficient solvers.

4 CONTINUOUS APPROXIMATION BY DIFFRACTION METHOD
In meshless methods, the displacement discontinuity due to a crack can be modeled by cutting
the domain of influence. In this approach, discontinuity is defined by diffraction method.
Organ et al. [6] have described a method for construction of approximations around the tip of
a discontinuity. The method is called diffraction since the weight function encloses the crack
surface similar to the way light diffracts around corners. When the discontinuity divides the
domain of influence into two separate parts, the points that located behind the discontinuity
are removed from influence domains. Consider the end of a line of discontinuity as shown in
figure1. In this method the distance S(x) between the node point xI and sampling point x is
modified for all points x for which the line (xI,x) intersects the crack line.
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Figure 1: Diffraction method planning near the crack tip

The modified weight function distance S(x) is given by
1 2

0
0

( )
( ) ( ) ( ) (22)

( )
S S xS x S x

S x




Where s1=||xI –xc||, s2(x)=||x-xc||, s0(x)=||x-xI||, xI is the node, x is the sampling point, xc is the
coordinate of the crack tip, and  is the diffraction method parameter. The exponent  is used
to reduce the size of support behind the crack. Numerical experiments have shown 1  for
problems with a normal nodal distributions and a linear basis to be reasonable choices.
The spatial derivatives of the weight function with the diffraction method are calculated by
the chain rule.
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5 NUMERICAL EXAMPLE
In this section the accuracy of the DLS method for solving crack problem by using diffraction
method for the construction of weight functions near the crack tip is considered. Hence,
example inclusive finite rectangular plates with edge crack and plate have been analyzed. The
obtained results for this example is compared with existing analytical solution that have been
published in the literature. In this approach, the purpose is considering the stress filed near the
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crack tip by using DLS method for mode-I deformation. A detailed expression for the stress
and strain fields in a singularity dominated zone, near the tip of the crack, for mode-I is given
in the following expressions.

31 sin sin
2 2

3cos 1 sin sin (27)
2 2 22
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whereKI is the stress intensity factor, r and  are polar coordinates with an origin at the crack
tip, ij are components of the stress tensor, i,j=x,y. The Kolovos constant  is related to
Poisson’s ratio v by

3 4
(29)3

1

v for plane stress
v for plane strain
v




 
 

5.1 Rectangular finite plate with edge crack
The first numerical example that is solved is a rectangular finite plate with edge crack under a
distributed load (figure 2). The load isσ=1kpa , and the other parameters are L=52mm,
b=10mm, a=4mm. The parameters taken in the computation are Young’s modulus E=2×105

MPa and Poisson ratio 0.25v  and plane stress conditions are assumed.

Figure 2: A rectangular plate with a edge crack under a distributed load

The boundary conditions are assigned as follow:
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x=26 : 1
x=-26 : 1

(0,0)=0, (0,16)=0, (0,16)=0 (30)

xx

xx

x x y

on kpa
on kpa

u u u





 

The calculations are carried out using three different irregular nodal distributions, with 795,
1075, and 3166 nodes, see figure 3.

(a)

(b)

(c)

Figure 3:Three nodal distributions for modeling the plate with an edge crack: (a) 795 nodes; (b) 1075 nodes; (c)
3166 nodes.

The mode-I stress intensity factor KI that used in equations (27) and (28), is calculate by

(31)IK C a 

Where C is correction factor for the marginal effect that is given as following:
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2 3 4

1.12 0.231 10.55 21.72 30.39 (34)
2 2 2 2
a a a aC
b b b b

                  
       

Therefore, the exact value of stress intensity factor for this example is computed as the
following value.

1
24.85 .( ) (33)IK kpa mm

By solving system of equations (19), the stress field can be presented. The contours of stress
field xx for the three nodal configurations are shown in figure 4.

(a)

(b)

(c)

Figure 4:Contours of stress xx for three nodal distributions (a) 795 nodes; (b) 1075 nodes; (c) 3166 nodes.

Also, by substituting KI in relation (33) in equations (27) the stress field can be compute. In
figure 5, stress field near crack tip for analytical and numerical solutions for three different
irregular nodal distributions are compared.



743

H. Arzani, M. Mobaraki and M. Torabi

10

Figure 5:The stresses field xx as a function of distance from the crack tip

Having the stress field near crack tip, numerical stress intensity factor using the following
equation is obtained.

0
lim 2 (34)I xr

K r 




Figure 6 presents the comparing of stress intensity factor near crack tip for analytical and
numerical solutions for three different irregular nodal distributions.

Figure 6: The Stress intensity factor as a function of distance from the crack tip

The convergence rate of the method for three nodal configurations is depicted in Figure 7.
The results clearly show that a stable convergence rate is obtained for the present DLSM.
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Figure 7: Rate of convergence for the plate with an edge crack

6 CONCLUSION
A true meshless approach, discrete least square (DLS) method, is extended in this paper,

for solving two-dimensional crack problem. In the present DLSM, a structured mesh is not
required and the problem domains is discretizated by distributed field nodes. The DLS
method is based on the minimization of the least squares functional with respect to the nodal
parameters. The least squares functional are formed as the weighted summation of the
residual of the differential equation and its boundary conditions. The moving least-squares
interpolant is employed to construct the trial functions. The displacement discontinuity due to
a crack is modeled by the diffraction method. In diffraction method, if the domain of
influence divided by discontinuity into two separate parts, the points that located behind the
discontinuity are removed from influence domains. But near the crack tip, the domains of
influence wrap around the crack tip. Since, some points at the back of the crack can be placed
in domain of influence. In consequence, the continuous weight function and its ensued shape
function have been created. The proposed method was applied to calculate stress-intensity
factors and stress field in near crack tip in an example of two-dimensional cracked plate.
Comparing the numerical results with available analytical solutions, revealed to high
efficiency and excellent accuracy of presented method. The results clearly show that a stable
convergence rate is obtained for the present DLSM method.
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