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Abstract. The following paper presents a new approach for the Discrete Element Method
(DEM) with polyhedral particles. The geometry of convex polyhedra is represented by
a set of half spaces. An algorithm for contact detection for these particles is developed.
Furthermore a model for the interaction forces of polyhedra in contact is suggested. The
model includes elastic and damping forces in normal direction, as well as Coulomb friction
in tangential direction. The feasibility of DEM with sharp edged particles is demonstrated
by some engineering applications.

1 INTRODUCTION

The Discrete Element Method (DEM) is a numerical method for calculating the me-
chanical behaviour of particle systems, which have a range from powders to large rock
formations. The method mainly consists of calculating the motion and the interaction
of the particles. A major difference in various implementations of the discrete element
method consists in the choice of the particles. While spherical particles provide a very
high numerical efficiency, nonspherical particles give a better approximation to the real
particles in many cases. Among the nonspherical particles, convex polyhedra are able to
reproduce many characteristics often found in real particles like irregular shape or sharp
edges. These features play an important role in many processes like grinding, polishing
or lapping.

In the present paper an approach for modelling convex polyhedra by a set of halfspaces
is presented. Based on this geometry representation, an algorithm for contact detection is
developed. This algortihm does not only detect the contact, but also provides a complete
geometric description of the overlapping region [1]. This information is directly used to
calculate the interaction forces [2].
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2 GEOMETRY REPRESENTATION

Lee et al. [3] have suggested a method to represent convex particles by a set of half
spaces. The particle is defined as the space that belongs to all half spaces. In the following
part index notation and Einstein’s summation convention will be used, i.e. the subscript
index denotes the spatial direction. This doesn’t include superscript indices, which are
only used to specify the variables in this paper.

Each half space is described by an equation of the form

(xi − ci − ai)ai ≤ 0 (1)

where ci is the center of mass of the particle, ai is a vector from the center of mass to the
boundary face in normal direction and xi is an arbitrary point inside the halfspace. In a
local coordinate system located at the center of mass of the particle, equation (1) reduces
to

(xi − ai)ai ≤ 0. (2)

All further geometrical information can be calculated from this database as described in
the following.

The first step is to find possible corner points of the polyhedron. This is done by
calculating the intersection points of all combinations of three boundary faces out of all
faces. We consider the set of half spaces to be given in a coordinate system x̃i, with the
origin inside the particle. With the vectors of the three faces ãji , where the superscript j
indicates the number of the used plane, this leads to the system of equations

(x̃i − ã1i )ã
1
i = 0

(x̃i − ã2i )ã
2
i = 0

(x̃i − ã3i )ã
3
i = 0,

(3)

which can be arranged to



ã11 ã12 ã13
ã21 ã22 ã23
ã31 ã32 ã33





x̃1

x̃2

x̃3


 =



ã1i ã

1
i

ã2i ã
2
i

ã3i ã
3
i


 . (4)

The expressions in the right hand side vector are scalar products. Equation (4) is solved
for all combinations of faces.

In the second step the points have to be checked whether they belong to all half spaces.
Only in this case they are corner points of the polyhedron.

To calculate geometrical characteristics like volume, mass or moments of inertia, the
faces have to be triangulated using the afore calculated corner points. Each triangle forms
a tetrahedron with the origin of the coordinate system, while the polyhedron is the sum
of these tetrahedra. Thus the calculation becomes trivial.
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The volume V , the surface A and the center of mass c̃i of the polyhedron can be
calculated as

V =
m∑
k=1

V k =
m∑
k=1

1

6

∣∣(εiklp̃k1k p̃k2l
)
p̃k3i

∣∣ (5)

A =
m∑
k=1

1

2

∣∣εikl
(
p̃k3k − p̃k2k

) (
p̃k1l − p̃k2l

)∣∣ (6)

c̃i =
1

V

m∑
k=1

V kc̃ki , (7)

where m is the number of tetrahedra respective triangles. p̃k1i , p̃k2i and p̃k3i are the corner
points of the tetrahedron respective triangle k. εikl is the Levi-Cevita permutation tensor
and εiklakbl denotes the cross product of the vectors ak and bl. V

k and c̃ki are defined as

V k =
1

6

∣∣(εiklp̃k1k p̃k2l
)
p̃k3i

∣∣ (8)

c̃ki =
1

4

(
p̃k1i + p̃k2i + p̃k3i

)
. (9)

3 CONTACT DETECTION

In order to detect the contact, the overlapping region is defined as that region belonging
to all half spaces of the two polyhedra in contact, [3]. The same algorithm as for the
description of a particle can be applied. This way an exact geometric representation of
the overlapping region is obtained, which can be used for the calculation of the interaction
forces. A separate treatment of the different contact types, like corner to face, edge to
edge or face to face, is not necessary. In the following the contact algorithm is described
in detail.

• To each particle j a radius rj is assigned, which defines a sphere completely sur-
rounding the polyhedron. In a first step of the contact algorithm it is checked
whether these spheres are in contact. This means the inequality

|c2i − c1i | < r1 + r2 (10)

has to be fulfilled, where cji are the centers of the particles. Otherwise the contact
detection is terminated.

• In order to speed up the algorithm all corner points of one particle are checked
whether they are close enough to the other particle for being in contact. This is
performed by the following algorithm, which is visualized in figure 1:
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particle 2

particle 1
pui

pvi

c1i
c2i r12i

min(d2v)

max(d1u)

Figure 1: An area (dotted lines) is defined which encloses the overlapping region (red). All points

(black) and planes (green) of the polyhedra in this area are taken into account for contact calculation.

All other points and planes are excluded from the calculation (2D simplification).

– First the vector between the centers of the particles r12i is calculated.

r12i = c2i − c1i (11)

– The distance d1u of a corner u of particle 1 to the center of particle 1 in direction
of r12i is

d1u =

∣∣∣∣
r12i pui
r12i r12i

∣∣∣∣ , (12)

where pui is the vector from the center of particle 1 to the corner u.

– In the same way the distance d2v of a corner v of particle 2 to the center of
particle 1 in direction of r12i reads

d2v =

∣∣∣∣
r12i pvi
r12i r12i

∣∣∣∣ , (13)

where pvi is the vector from the center of particle 1 to the corner v.

– All corners of particle 1 that fulfill the inequality

d1u > min(d2v) (14)

are considered valid.
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– All corners of particle 2 that fulfill the inequality

d2v < max(d1u) (15)

are considered valid.

– If no valid corners are found the contact detection is terminated.

• All boundary planes of the particles that contain at least one valid corner are con-
sidered as valid for contact detection.

• New points are found by the intersection of two planes of one particle and one plane
of the other particle. All possible combinations of valid planes have to be considered.
The system of equations for one combination reads



a1g1 a1g2 a1g3
a2g1 a2g2 a2g3
a3g1 a3g2 a3g3





xg
1

xg
2

xg
3


 =



(
c1i + a1gi

)
a1gi(

c2i + a2gi
)
a2gi(

c3i + a3gi
)
a3gi


 , (16)

where ajgi are the vectors of the faces in global coordinates and cji is the center of
the particle the face belongs to.

• The points belonging to the overlapping region have to be found.

– All corners of particle 1 are checked whether they are inside particle 2.

– All corners of particle 2 are checked whether they are inside particle 1.

– All new points are checked whether they are inside particle 1 and particle 2.

• All planes that include at least 3 points of the overlapping region are part of the
region.

• Volume and center of mass of the overlapping region can be calculate as described
above for the particles. For this purpose a new coordinate system is introduced
that results from translating the coordinate system of the first particle to a point coi
inside the overlapping region, which is defined by

coi =
1

n

n∑
w=1

powi , (17)

where powi are the corners of the overlapping domain and n is the number of valid
corners.

For a more detailed description of the geometry representation and contact detection the
reader is referred to [1].
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4 INTERACTION FORCES

4.1 Elastic normal force model

The most important part of the interaction forces is the elastic normal force F n
i . The

force is characterized by defining its magnitude, its direction and its application point.
The magnitude F n of the force is defined as

F n = E�k
√
V d (18)

1

E�
=

1− ν2
1

E1

+
1− ν2

2

E2

, (19)

where Ei and νi are the Young’s modulus and the Poisson’s ratio of particle i, respectively.
d is the indentation depth and V is the volume of the overlapping region. The constant k
is defined as k = 0.62. This model is related to the Hertzian contact. Like in the Hertzian
contact model, the deformation zone has to be small with respect to the particle size. A
comparison of the proposed new force law (18) with FEM results shows good agreement,
independent of the geometries and materials in contact [2].

The application point is simply defined as the center of mass of the overlapping region.
The normal force direction nf

i is defined as the normalized vector obtained by integrating
the surface normal nA

i over the part A of the surface of the overlapping region that belongs
to one particle (see figure 2). For polyhedra this means, nf

i is obtained as the sum of the
surface normals nAj

i over all parts Aj of A, weighted by the area.

nf
i =

∫
A
nA
i ds∣∣∫

A
nA
i ds

∣∣ =
1∑
j A

j

∑
j

AjnAj
i (20)

Thus the force vector F n
i is obtained as

F n
i = F nnf

i . (21)

If A is part of particle 1, then F n
i is applied to particle 2 and −F n

i is applied to particle
1. For a detailed explanation see [1]. The indentation depth d is defined as the extension
of the overlapping region in direction of the force. It can be calculated as the difference
between the maximum and the minimum of the projection of the coordinates of the corners
of the overlapping region pci on the normal vector nf

i .

d = max
(
nf
i p

c
i

)
−min

(
nf
i p

c
i

)
(22)

4.2 Damping

Material damping in normal direction is modeled with a viscous approach. Including
the damping term in equation (18) for the normal force gives

F n = E�k
√
V d(1 + cḋ), (23)

where c is a constant for the damping and ḋ is the magnitude of the relative velocity
between both particles in the direction of the normal force.
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V
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nf
i

Aparticle 2
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nA
i
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Figure 2: The overlapping region (red) is used as the database for the calculation of the contact forces.
The force application point is defined by the center of mass ci. The magnitude is defined by the volume
V and the indentation depth d. The direction nf

i is defined by integrating the surface normal nA
i over

the surface belonging to particle 1 (bold black line) (2D simplification).

4.3 Friction

The magnitude of the friction force is assumed by the relation to the normal component

F f =

((
2µs� − µk

) x2

x4 + 1
+ µk − µk

x2 + 1

)
F n. (24)

µs� is calculated from the static and kinetic friction coefficients µs and µk as

µs� = µs

(
1− 0.09

(
µk

µs

)4
)
. (25)

x is defined as

x =
vt

vs
, (26)

where vt is the magnitude of the tangential velocity and vs is the velocity at transition
from static to kinetic friction. The resulting behavior of the friction force with respect to
the tangential velocity is shown in figure 3.

The direction of the friction force F f
i is opposite to the direction of the relative tan-

gential velocity vti , which leads to the equation

F f
i = −F f vti

|vti |
. (27)

7



688

Benjamin Nassauer and Meinhard Kuna

0 1 2 3 4 5 6 7 8 9

vt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
f

µsF n

µkFn

vs

Figure 3: Magnitude of the friction force with respect to the magnitude of the tangential velocity

The presented friction model is controlled by the coefficients of friction µs and µk as
well as the model parameter vs which defines the transition from static to kinetic friction.
The model gives a good approximation of the original Coulomb law for dry friction. Static
friction is approximated by very slow sliding rates. The jumps in the classical Coulomb
friction model are smoothed in order to avoid numerical instabilities. Thus, the evaluation
of equilibrium conditions is avoided to calculate the friction force. No information about
other forces than the normal contact force on the particle or about previous timesteps is
needed. Therefore the model is well suited for implementation in discrete element method.
For a more detailed description of the interaction forces the reader is referred to [2].

5 EXAMPLES

The presented models are implemented in the open source DEM code LIGGGHTS. In
this section the capabilities of the code are demonstrated with three examples, represent-
ing typical applications where the simulation of sharp edged particles is inevitable

5.1 Particle flow through a hopper

In the first example a particle flow through a hopper is simulated. In this example
the particle motion is highly influenced by the particle shape, as a rolling movement is
restrained by the polyhedral shape. To simulate the particle flow through a hopper into a
silo, random particles are placed on a regular grid above the hopper. The walls of hopper
and silo are modeled by non-moving particles. Under gravity the particles drop into the
hopper. The results at several time steps are shown in figure 4.
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t = 0s t = 0.5s t = 1.5s t = 3s

Figure 4: 800 Particles (coloured by id) falling into a hopper at different time steps

5.2 Mixer

The second example deals with the particle movement in a mixer. The mixer is filled
by placing particles on a regular grid inside the mixer. After the particles dropped down
to the bottom of the mixer, the mixer starts rotating. In this example again the particle
shape has a strong influence, as rolling is hindered. The results at several time steps are
shown in figure 5.

t = 0s t = 0.25s t = 1.75s t = 10.25s

Figure 5: Movement of 2048 particles (coloured by id) in a mixer at several time steps

5.3 Lapping

In the third example the lapping process is simulated. In the lapping process the
forces acting on the workpiece are of special interest. Here the model for the interaction
forces provides good results. The workpiece is simulated by non-moving particles. The
tool is modeled by rigidly connected particles. In the lapping direction the tool has a
fixed speed. Perpendicular to the workpiece the tool can move freely, as a result of the
applied lapping pressure and the interaction forces between tool and abrasive particles.
The other degrees of freedom of the tool are fixed. The slurry is simulated by particles
placed between workpiece and tool. For the calculation of the hydrodynamic forces on
these particles laminar flow is assumed between tool and workpiece. In figure 6 a detail

9



690

Benjamin Nassauer and Meinhard Kuna

of the simulation is shown at several time steps. It shows two abrasive particles rolling
over each other and building a force bridge between tool and workpiece. Thus the tool
gets pushed away.

t = 0µs t = 1.75µs t = 3.5µs t = 5.25µs

Figure 6: Lapping process at several time steps. Particles coloured by id. Workpiece (lower part) and

tool (upper part) coloured by force

6 CONCLUSIONS

In the present paper an approach for implementing polyhedral particles in DEM was
presented. Convex polyhedra are able to give a good approximation to various types of
real particles. The geometry of the particles was described by a set of half spaces. The
algorithm provides outstanding flexibility to generate particles with various numbers of
faces, sharpness of edges and aspect ratios. An algorithm was presented which uses this
geometry desription for contact detection very efficiently and also provides a complete
description of the overlapping region. This information is further used to calculate the
interaction forces by an elastic law which is based on a generalized Hertzian contact
model. This law yields contact forces which are calculated in a unique manner valid for
all possible interpenetration geometries. This accelerates the numerical simulations very
much. The elastic forces were completed by models for normal damping and tangential
friction. The friction model avoids the evaluation of equilibrium conditions for static
friction. Thus the numerical demands of the friction model are very low and it is well suited
for implementation in DEM. The capabilities of the presented methods were demonstrated
by several examples.
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