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Abstract. For a realistic description of the mechanical behaviour of concrete, which is a 
strongly inhomogeneous and non-linear, microstructure should be taken into account. The 
size, volume and shape of aggregate have a pronounced influence on the concrete behaviour 
at the macro-level. In this paper, the discrete element method (DEM) is used as a tool to 
describe the concrete behaviour under uniaxial compression and uniaxial tension. 

1 INTRODUCTION 
To model realistically the behaviour of concrete, its micro-structure should be taken into account. 
It can be achieved by means of the discrete element method DEM [1-5]. The method is based on 
modelling of aggregate particles and cement matrix particles as rigid discrete elements, which 
interact with each according to a tangential contact elasto-plastic Mohr-Coulomb law with 
cohesion and an elastic normal contact law. 

The existing DEM models for concrete indicate some disadvantages as e.g.: they use a non-
physical aggregate distribution and aggregate size or they use an additional degradation term to 
obtain a more smooth response of concrete in a post-peak regime. Our goal is to describe the 
concrete behaviour at the global level in agreement with laboratory tests by taking its realistic 
internal structure into account.  

In this paper we studied the concrete behaviour under uniaxial compression and uniaxial 
tension with spherical elements. The influence of the aggregate size and aggregate volume, the 
specimen thickness and the presence of interfacial transitional zones was investigated on the 
global behaviour. The discrete modelling results were directly compared with the corresponding 
experimental tests results. 

2 DISCRETE ELEMENT METHODS FOR CONCRETE
To simulate the behaviour of concrete, a three-dimensional spherical discrete model 

YADE, developed at University of Grenoble [6,7], was used by taking into account the so-
called soft-particle approach (i.e. the model allows for particle deformation - modelled as an 
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overlap of particles). The aggregate and cement matrix structure was modelled as spheres. The 
force vector  between spheres in contact was decomposed into two vectors: a normal and 
tangential one. The normal and tangential forces were linked to the displacements through the 
normal stiffness Kn and tangential stiffness Ks (Figs.1a and 1b) 

 = , (1)

 =  + Δ + 	 ,	 (2)

where U is the overlap between spheres, 	denotes the normal vector at the contact point, ∆
is the incremental tangential displacement and  is the cohesive force between particles. 

            

  

Figure 1: Mechanical response of DEM: a) tangential contact model, b) normal contact model and c) loading 
and unloading path in tangential contact model 

The stiffness parameters were computed with the aid of the modulus of elasticity of the grain 
contact Ec and two neighbouring grain radii RA and RB (to determine the normal stiffness Kn) 
and with the aid of the modulus of elasticity Ec and Poisson’s ratio νc of the grain contact and 
two neighbouring grain radii RA and RB (to determine the tangential stiffness Ks), respectively 

 = 	 



                   and                  	 = 	 



. (3) 

If the grain radius RA=RB=R, the stiffness parameters were equal to: Kn=Ec R and Ks=νc Ec

R, respectively (thus Ks/Kn=νc). The frictional sliding started at the contact point if the contact 
forces  and   satisfied the frictional Mohr-Coulomb equation (Fig.1a) 

	≤	 + 	× tan ,	 (4) 
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where µ denotes the inter-particle friction angle. The normal force may be negative even if a 
geometrical contact between elements does not exist. When spheres are separated, the normal 
force is negative up to the minimum value (≥); later the contact between 
spheres is completely broken and no forces are transmitted. If the contact between grains 
again happens, no cohesion between them is considered afresh. A choice of a very simple 
linear elastic normal contact (Fig.1b) was intended to capture in average various contact 
possibilities possible in real concrete. The following five main local material parameters were 
needed for discrete simulations: Ec, νc, µ,	 and 	. In addition, the particle radius R, 
particle density ρ and damping parameters α were required.  

3 DISCRETE RESULTS  OF CONCRETE SAMPLES 
The discrete simulations were manly carried out under quasi-static 2D conditions with the 

specimen depth equal to the aggregate grain size (i.e. only one aggregate particle layer was 
simulated in the perpendicular plane) in order to significantly accelerate calculations.
Aggregate and cement matrix were modelled as rigid spheres of a different diameter. The friction 
angle  was assumed as µ=30o, (ρ=2500 kg/m3). The contact modulus of elasticity was mainly 
Ec=60 GPa and the contact Poisson’s ratio νc=0.2. The cohesive force was equal  =


  and the tensile force  = 	
 , where C – the maximum shear stress , T – the 

minimum normal stress and rmin - the minimum radius of spheres in contact. For compression 
tests , the specimen 10×10 cm2 was assumed (Fig.2a) and for tension tests the 'dog-bone' 
specimen (height 15cm, width 10cm on the top and bottom and 6 cm in the mid-height) was 
chosen (Fig.2b) to compare discrete results with corresponding laboratory experiments by van 
Vliet and van Mier [8,9]. Spheres were non-uniformly distributed with a random diameter, 
mainly between dmin=1.0 mm and dmax=12mm, and with the mean diameter of d50=2 mm. The 
top and bottom of specimens was smooth without wall friction. First, particles were randomly 
distributed inside specimens. Second, after relaxation, all forces acting on particles were 
removed before deformation along the specimen top was prescribed.

3.1 Influence of initial porosity 
Five different specimens were modelled. The specimen area of 75% was always covered by 

aggregate spheres with the diameter larger than 2 mm. Then, cement matrix spheres with the 
diameter below 2 mm were added as p=90%, 95%, 100% and 125%, respectively ( = 


[%], 

where pd - the area of aggregate particles and ps - the specimen area). If p≥100%, there already 
exist some overlaps between particles, which are not taken into account if deformation is 
prescribed. The number of spheres in a specimen under compression was 3992, 5016, 6048 and 
11168 and in a specimen under tension 4935, 6206, 7266 and 13193. The minimum sphere 
diameter was dmin=1 mm with C=160 MPa and T=90 MPa.  

Figure 3 shows the calculated evolution of the vertical normal stress  versus the vertical 
normal strain  as compared to experiments. The higher the initial porosity p , the larger is the 
strength and stiffness, and the smaller is the material ductility. For a high value of p, the response 
of concrete is very brittle. Moreover, the tensile strength is more than twice bigger than in a 
laboratory test [9].  
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Figure 2: Specimens assumed for compression [8] (a) and tension tests [9] (b) 

                                                                 A)                                                                    B) 

Figure 3: Calculated stress-strain curve: A) uniaxial compression or B) uniaxial tension concrete test with different 
initial porosity compared to experiments [8,9] (‘exp), a) p=90%, b) p=95%, c) p=100% and d) p=125% 

3.2 Influence of the minimum sphere size 
Four different specimens were considered (dmin=1 mm, dmin=0.5 mm, dmin=0.25 mm and 

dmin=0.125 mm at d50=2 mm and dmax=12mm). The number of spheres was 1356, 3992, 8791 and 
23488 (with the mean number of contact for one spheres, the so-called coordination number,
equal to 4.51, 4.73, 4.94 and 5.25) during compression, and 1071, 4935, 10949 and 28 862 (with 
the coordination number equal to 4.51, 4.74, 4.90 and 5.28) during tension. The parameters C
and T were equal 160 MPa and 90 MPa, respectively. 

For compression, if smaller spheres are taken (Fig.4A), the concrete response after the peak is 
less brittle. The stress peak and strain corresponding to the peak are almost the same. In turn, for 
tension, the material ductility is not affected, however the strength decreases with decreasing 
minimum sphere diameter dmin (Fig.4B). The concrete strength is too high at dmin=1mm (by about 
50%) and at dmin=0.5 mm (by about 10%). 

3.3 Effect of specimen depth 
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In order to reduce the calculation time, the specimen size was reduced: 5×5×5 cm3

(compression) and 7.5×5×5 cm3 (tension). The calculations were carried out with dmax=12 mm, 
dmin=1.0 mm, dmin=2 mm, C=160 MPa and T=90 MPa.  

For uniaxial compression 30’074 spheres were used (the coordination number was 9.01). An 
increase of the contact number had a significant influence on the macroscopic response (Fig.5A). 
The material indicated more ductility and the stress fluctuations were smaller. The numerical 
material response was very similar to the laboratory test (note that during compression, the size 
effect is almost negligible [8]). 

                                              A)                                                                                B) 

Figure 4: Calculated stress-strain curve for uniaxial compression (A) and uniaxial tension (B) with different 
minimum sphere diameter dmin compared to experiments [8,9](‘exp’): a) dmin=1 mm, b) dmin=0.5 mm, c) dmin=0.25mm 

and d) dmin=0.125mm 

                                                     A)                                                                                     B) 

Figure 5: Calculated stress-strain curve for uniaxial compression (A) and uniaxial tension (b) concrete from 3D 
calculations compared to experiments [8,9] (‘exp’) 

In the case of a 3D tensile test, 35686 spheres were used (with the coordination number equal 
to 9.33). The DEM results for tension (Fig.5B) show that the calculated ductility is too small due 
to the lack of small aggregate particles. The calculated strength is too high caused mainly by a 
size effect [9].  
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3.4 Effect of presence of ITZs  
Concrete was assumed as a three-phase material by taking into account interfacial transitional 

zones (ITZs) between coarse aggregate and cement paste [10,11]. All spheres larger than 1mm 
were chosen as aggregate and spheres in the range of 5-12 mm had an interfacial zone around 
them (one-layer wide). All spheres below 1 mm were considered as a cement matrix. The 
parameters of a contact between aggregate grains with interfacial zones and cement matrix were: 
Ec=14 GPa, C=120 MPa and T= 60 MPa. This contact was the weakest one. Next, the contact 
parameters between aggregate particles without interfacial zones and cement matrix were: Ec=70 
GPa, C=200 MPa and T=100 MPa (it was the strongest contact) and between spheres 
corresponding to the cement matrix: Ec=30 GPa, C=160 MPa and T=80 MPa. The maximum 
sphere diameter was dmax=12 mm, the smallest one dmin=0.25 mm and the mean diameter d50=2 
mm. The calculated stress-strain curves correspond well to the laboratory test results (Fig.6). The 
material ductility was improved. To reduce numerical stress fluctuations, the sphere number 
should be larger. 

A)                                                                      B) 

Figure 6: Calculated stress-strain curve for uniaxial compression (A) and uniaxial tension (B) for concrete described 
as three-phase material as compared to experiments [8,9] (‘exp’) 

The deformed specimens from 2D DEM are shown in Fig.7. The calculated failure 
mechanisms are similar as in experiments. For compression, vertical and inclined cracks appear 
(Fig.7A), and for tension, a single crack forms in a narrower specimen region and propagates 
then horizontally across it (Figs.7B).  

3.5 Evolution of micro-structure 
The porosity distribution from 2D discrete calculations is shown in Fig.8. In turn, Fig.9 shows 

the maps of displacement fluctuations which were calculates as 


 = 
 − 

) − 	 	 (5) 

where 
	, 

 are the positions of the sphere i in the steps m and n and  is the mean sphere 
displacement in the specimen. For compression, two cracks develop near the peak stress, 
however after the peak, the left one dominates. For tension, an almost horizontal crack starts 
from the left side of the specimen and propagates next to the right side.  
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A)                                          B) 

Figure 7: Deformed specimens from DEM: A) uniaxial compression and b) uniaxial tension 

a) 

b) 
A)                                      B) 

Figure 8: Calculated porosity distribution in concrete specimens during uniaxial compression (A)  
and uniaxial tension (B), a) before test and b) after peak stress 

The evolution of a contact network in a concrete specimen is demonstrated in Fig.10. The 
force magnitude is expressed by the line width. The distribution of internal contact forces is 
non-uniform and continuously changes. Force chains of heavily loaded aggregate particles 
contacts bear and transmit the compressive/tensile load on the entire system and are a 
predominant structure of internal forces at micro-scale. They build up and collapse. 
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During compression, when a crack appears, vertical force chains vanish in a crack area and 
new vertical ones (stronger) appear on both sides of the crack (Fig.10a). For tension, force 
chains start to colaps on the left specimen side and stronger ones occurs on the right specimen 
side. When a crack is developed, force chains start to change their orientation – from a 
vertical one to a diagonal and a horizontal one. 

A) 

B) 
a)                                                      b)                                             c) 

Figure 9: Calculated displacement fluctuations in concrete specimens during uniaxial compression (A)  
and uniaxial tension (B), a) test begin, b) close to peak stress and c) after peak stress 

4 CONCLUSIONS 
DEM may realistically predict experimental concrete results of uniaxial compression and 

uniaxial tension at the global level. The influence of 3D calculations, and presence of small 
aggregate particles and interfacial transitional zones are of importance. The advantage of the 
model is that it allows for a deep study of micro-structure changes under deformation. 
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A) 
                                a)                                                           b)                                                      c) 

B) 
                                           a)                                                  b)                                    c) 

Figure 10: Distribution of contact normal forces between spheres during uniaxial compression (A)  
and uniaxial tension (B): a) test begin, b) close to peak stress and c) after peak stress 
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