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Abstract. We adopt the discrete element method (DEM) to study the fracture behav-
ior of brittle materials. We propose an approach which relates crack initiation to crack
growth. The material consists of a set of particles in contact, which allows us to de-
rive an expression for the stress intensity factor as a function of the contact forces and
displacements. A classical failure criterion, based on the material’s toughness, is then
adopted for the analysis of crack propagation, represented by the loss of cohesion forces
between particles. Afterwards, we apply our discrete criterion to uncracked materials
under homogenous stress conditions, obtaining a Rankine like behavior. The work results
in a simple discrete model which is totally compatible to continuum mechanics, where no
calibration tests are required, in contrast to most of discrete approaches.

1 INTRODUCTION

The linear elastic fracture mechanics remains one of the most used approaches to model
crack propagation in a structure. Many numerical schemes were derived from continuum
mechanics to analyse material rupture like finite differences, finite element method (FEM),
integral quations, extended finite element method (XFEM), etc. The most popular are
FEM based schemes, adopted in many different conditions (static, dynamical, thermal,
etc.). However some difficulties like the mesh refinement at the crack tip (and during
its progression) do exist. The XFEM schemes simplify the refinement problem with
enrichment functions describing the crack behavior, though convergence problems may
appear. Another important intrinsic issue, associated to continuous approaches is the
integration of macroscopic failure criteria (i.e. for uncracked structures) with classical
fracture mechanics.

In order to minimize these disadvantages, we propose to apply the discrete element
method (DEM) [2, 4] to study the rupture of brittle materials. The description of the
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material as a group of particles in contact makes the propagation of cracks technically
easy and intuitive. The efforts are transmitted by forces, while the material properties
are described at the (microscopic) contact level. Macroscopic behavior like elasticity,
plasticity, viscosity, etc. are strictly related to contact constitutive laws.

The main goal of our work is to propose a discrete approach where macroscopic rupture
is naturally related to crack propagation (fracture mechanics). At the same time, we
intend to avoid calibration procedures keeping the model totally compatible to continuous
approaches. We begin with a description of the contact behavior in elasticity on section
2, followed by the resulting material behavior on section 3. On section 4, we discuss the
description of the stresses and strains on the discrete approach, which is fundamental
for the crack propagation analysis in mixed mode, presented on section 5. We examine
an extension of the discret rupture criterion for uncracked materials under homogeneous
stresses on section 6. Finally, we present the conclusions of the work.

2 CONTACT MODEL

The basic interaction between two particles can be described by the simple model
shown in Figure 1. We may define nij, the normal vecteur, oriented from the center of a
particule i to the center of a particule j, and tij, the tangential vecteur, orthogonal to nij

and positively oriented. The contact force between particles i and j has a normal and a
tangential component (Figure 2), respectively N ij = N ij

e +N ij
v and T ij = T ij

e + T ij
v , both

depending on two contributions.

kn
ct

kt

d

cn

Figure 1: Contact model.

The elastic term of the normal force, N ij
e = knδ

ij
n n

ij, is a function of the normal
displacement δijn and of the normal stiffness kn. Similarly, the elastic term of the tangential
force, T ij

e = ktδ
ij
t t

ij, is a function of the tangential displacement δijt and of the tangential
stiffness kt.

The inelastic term of the normal force N ij
v = cnδ̇

ij
n n

ij depend on a normal viscous
damping parameter cn and on the time derivative of the normal displacement δ̇ijn . In the
same way, the inelastic term of the tangential force T ij

v = ctδ̇
ij
t t

ij is based on a tangential
viscous damping parameter ct and on the time derivative of the tangential displacement
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δ̇ijt . The viscous parameters cn and ct are defined as small fractions of
√
mkn (where m is

the particle mass) and induce negligible inelastic effects.
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Figure 2: (a) Normal displacement, (b) tangential displacement and (c) associated contact forces between
two particles.

3 PARTICLE STRUCTURE AND ELASTIC BEHAVIOR

We adopt a 2D close-packing distribution of particles, as shown on Figure 3a, to
represent a linear elastic isotropic material (Figure 3b). On a discret approach, the
relation between relative position of the particles and contact forces is analogous to strain
and stress relation in a continuous approach. It can be shown [6, 8] that normal and
tangential stiffness kn and kt are directly related to Young’s modulus E and Poisson’s
ratio ν. In plane stress, for a close-packing structure, we have:

kn = 1√
3(1−ν)

E,

kt =
1−3ν
1+ν

kn = 1−3ν√
3(1−ν2)

E.
(1)

(a)

k , kn t

(b)

E,ν

Figure 3: (a) Periodic structure of the discrete material and (b) its continuous equivalence.
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4 MEAN STRESSES AND STRAINS ON THE DISCRETE MEDIUM

We determine mean values of the components of the tensors of stress and strain based
on the behavior of one pair of contacts associated to three particles (i, j and k) in contact:
ki and kj (Figure 4a), near a crack under a given loading (Figure 4b). We define a local
coordinate system (n, t), where t virtually connect both contacts and for which n is an
orthogonal axis.

(a)

�
�
�

i

jk

(b)

Figure 4: (a) Adjacent contacts at the (b) crack tip in a discrete medium.

The components of the resultant contact force in (n, t) coordinate system (respectively
fn and ft, see Figure 5) can be written:

fn =
(
Nki

√
3 + T ki +Nkj

√
3− T kj

)
/2,

ft =
(
−Nki + T ki

√
3 +Nkj + T kj

√
3
)
/2.

(2)

(a)

k

j

i

d

n

t

k

N
ki

T
ki

N
kj

T
kj

(b)

j

i

fn

ft

d

k

Figure 5: (a) Contact forces and (b) their resultants for an adjacent pair of contacts.

4



641

G. Koval, B.D. Le and C. Chazallon

We can associate mean stresses to these forces, considering a length of a particle diame-
ter d:

σn = fn/d,
σt = ft/d.

(3)

The contacts ki and kj may present normal and tangential displacements (respectively
δkin and δkit , δ

kj
n and δkjt ). Mean strain values (Figure 6a) can be derived from these contact

displacements, considering the dimensions of the particle structure (Figure 6b):

εnn =
(
δkin

√
3 + δkjn

√
3 + δkit − δkjt

)
/(2d

√
3),

εtt =
(
δkin + δkjn − δkit

√
3 + δkjt

√
3
)
/(4d).

(4)
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Figure 6: (a) Contact displacements, mean strains and (b) associated dimensions of the particle struc-
ture.

4.1 Principal stresses and strains

The complete stress tensor (in 2D) can be expressed by the principal stresses σI and
σII and their orientation. Let us call β the angle between (n, t) and the coordinate system
associated to the principal stresses. This principle can be extended to the mean stress
values on the discret medium (Figure 7a). After a force balance (Figure 7b), the principal
stresses may be calculated as:

σI = σn + σt tan(β),
σII = σn − σt/ tan(β).

(5)

For an isotropic elastic material, principal stresses are directly related to principal
strains (εI and εII) by the expression:
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[
εI 0
0 εII

]
=

1 + ν

E

[
σI 0
0 σII

]
− ν

E
(σI + σII)

[
1 0
0 1

]
. (6)
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Figure 7: (a) Mean stresses σn and σt, and (b) their relation to the stress field of an equivalent continuous
medium.

Stress and strain tensors have the same orientation defined by β. It means that mean
strain values εnn and εtt are equal to

εnn = εI cos
2 β + εII sin

2 β,
εtt = εI sin

2 β + εII cos
2 β.

(7)

After some algebraic work on Equations 5, 6 and 7, β can be simply expressed by
quantities related to the force and displacement on the discret medium (σn, σt, εnn and
εtt):

β = −1

2
arctan

(
2σt

E
1−ν

(εnn + εtt)− 2σn

)
. (8)

Thus the values of the principal stresses are easily evaluated by Equation 5.

5 CRACK PROPAGATION IN MIXED MODE

The stress field near a plane crack can be described based on a polar coordinate system
with its origin conveniently placed at the crack tip (Figure 8). For an isotropic elastic
material, we may write [5]:
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σθθ(r, θ) =
Kθθ(θ)√

2πr
,

σrθ(r, θ) =
Krθ(θ)√

2πr
,

σrr(r, θ) =
Krr(θ)√

2πr
,

(9)

where Kθθ, Krθ and Krr are the effective stress intensity factors and θ is the relative angle
defined by the tangent direction at the crack tip.
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Figure 8: Stresses near a crack tip.

The maximum circunferential tensile stress [3], states that a crack may potentially
propagate following a direction θ0 which maximizes the circumferential stress σθθ(r, θ)
(and minimizes the tangential stress σrθ(r, θ) = 0). The crack is stable if Kθθ(θ0) remains
lower than the material toughness KIC and propagates if Kθθ reaches KIC [5].

5.1 Determination of the effective stress intensity factor Kθθ

The stress intensity factor Kθθ must be obtained for a certain direction θ0, orthogonal
to the direction of the principal stress. The maximum circumferential tensile stress σθθ(θ0)
is then defined as (see Figure 7a):

σθθ(θ0) = σI , if β ≤ π/4,

σθθ(θ0) = σII , if β > π/4.
(10)

The mean value of σθθ(r, θ0) (Equation 9), is obtained by integration over 0 ≤ r ≤ d.
The equality of this result to Equation 10 allows us to determine Kθθ(θ0):

7



644

G. Koval, B.D. Le and C. Chazallon

Kθθ(θ0) = σθθ(θ0)

√
πd

2
. (11)

In practice, we calculate the stress intensity factor Kθθ(θ0) for each pair of neighbor
contacts. The analysis of all contact pairs eliminates any difficulty of finding crack tips.
When Kθθ(θ0) reaches the value of the material toughness KIC , the cohesion forces of the
most tensioned contact of the pair are set to zero, giving rise to the propagation of the
crack at the proximity of this contact.

5.2 Numerical results of pre-cracked samples

Numerical test of pre-cracked samples allow us to verify the convergence of the formu-
lation for fracture analysis by the comparaison to theoretical results.

We adopt a system of units defined by some fundamental parameters. The diameter
d and the mass m of the particles are the units of length and mass, respectively. To
simplify, we suppose that the 2D systems present a thickness equal to d. We take KIC

as toughness unit, consequently we get T =
√
m/(KIC

√
d) as time unit, and KIC/

√
d

as stress unit. For the normal stiffness, we choose kn = 104KIC/
√
d, consistent with the

small strain hypothesis. The ratio between tangential and normal stiffness kt/kn = 0.2
implies in a Poisson’s ratio ν = 0.25 (without any considerable effect in plane fracture

problems). Finally, a small value of viscous damping cn = ct = 0.65
√

mKIC

√
d is adopted

in all simulations.
The samples (with simple and double cracks) are subjected to vertical tensile stress Σo

(Figure 9). Horizontally, they are not subjected to any external stress. Their height is
equal to three times their length L to avoid any disturbing boundary effect. We study
four different values of a/L: 3/22, 4/22, 5/22, and 6/22, where a is the crack initial size.
The effect of the quality of the discretization is characterized by the ratio L/d (11, 22, 44
and 88).

The ultimate tensile strength Σmax, the loading limit of each sample, is evaluated and
compared to theoretical results [1]. This comparison is shown in Figure 10 and indi-
cates a convergent behavior of the discrete model towards the predictions of the fracture
mechanics. The propagation of cracks in more complex conditions is presented in [7].

6 BRITTLE RUPTURE

Fracture mechanics is based on the assumption that materials present cracks (visible or
not). If they are not (or cannot be) represented, the material strength grows indefinitely.
Material strength is limited in reality due to intrinsic microcracks, small imperfections,
etc., that can be hardly described in a fracture mechanics approach. Macroscopic rupture
criteria are then adopted to characterize strength of a given material, without the de-
scription of its microstructure. These criteria (Rankine, Mohr-Coulomb, Von Mises, etc.)
indicate where cracks may propagate in case of brittle rupture, but cannot provide other
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Figure 9: Tensile test on pre-cracked plates: (a) simple and (b) double cracks.

(a) (b)

Figure 10: Maximal stress Σmax
√
L/KIC as a function of initial crack lengths a/L for (a) simple and

(b) double cracks. Discretization levels: (�) L/d = 11, (•) L/d = 22, (�) L/d = 44, (�) L/d = 88. The
continuous lines correspond to the theoretical values [1].

important information like size and the number of cracks. This transition between macro
and micro description of the material behavior, during the rupture, is well described by
discrete approaches.

6.1 Tensile and compressive strengths

In absence of explicit cracks, we analyze the rupture of a sample submitted to bi-axial
stresses (Figure 11a). From Equation 11, we can predict the tensile strength Σt, related
to the material toughness:
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Σt = KIC

√
2/(πd). (12)

Tensile cracks are then expected to propagate orthogonally to the direction of the
principal tensile stress σθθ(θ0). However, compression cracks are parallel to the direction
of the principal compression stress. To treat this issue, we define the maximum radial
stress σrr(θ0) as (see Figure 7a):

σrr(θ0) = σII , if β ≤ π/4,

σrr(θ0) = σI , if β > π/4.
(13)

Similarly to Kθθ(θ0) (Equation 11), the stress intensity factor Krr(θ0) is defined as

Krr(θ0) = σrr(θ0)

√
πd

2
. (14)

Compression stress induce a negative value of the stress intensity factor Krr(θ0). This
apparent inconsistency allows us to dissociate the effects of tensile and compression
stresses, at the contact level. The choice of an inferior limit K∗ for the negative val-
ues of Kθθ(θ0) implies for the compressive strength Σc:

Σc = K∗
√
2/(πd), (15)

where is K∗ is completely independent of the material toughness KIC .

6.2 Rupture envelope

We establish a rupture envelope based on bi-axial tests. Figure 11b shows the results
for a material where K∗ = −10KIC (Σc = −10Σt) for different discretization levels L/d:
44, 88 et 176, where L is the length of the square samples. Boundary effects are reduced
for higher values of L/d explaining the convergence of the vertical and horizontal limit
stresses (Σmax

yy and Σmax
xx , respectively) towards the theoretical (tensile and compressive)

strengths. The observed behavior corresponds to the Rankine criterion, simply dependant
on the values of principal stresses.

7 CONCLUSIONS

We present in this study a discrete model to deal with brittle rupture entirely com-
patible to continuous approaches. Hence calibration procedures are not necessary to
characterize the stiffness and the strength of the material.

The analysis of the forces and displacements of a pair of adjacent contacts allow us to
determine the stress and the strain tensors. At a local level, these information is associated
to values of stress intensity factors, which lead to the description of crack propagation
when compared to the material toughness. At a material scale, the crack opening is clearly
related to the failure criterion of Rankine, defined by tensile and compressive strengths.
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Figure 11: (a) Bi-axial load and (b) rupture envelope of the brittle material (K⋆ = −10KIC), for
different discretization levels L/d : (�) L/d = 44, (�) L/d = 88, (•) L/d = 176.

The definition of the contact rupture is physically consistent with the observations,
considering the stress direction: tension induces orthogonal cracks, while compression
induces parallel cracks.

The simulation results seems to converge monotonically to reference solutions depend-
ing on the discretization levels, described by the parameter L/d (number of particles
adopted to represent a sample dimension). Globally, the observed convergence allows a
systematic control of the reliability of the predictions of the model.
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