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Abstract. The behavior of interfaces and contact lines arises from intermolecular interac-
tions like Van der Waals forces. To consider this multi–phase behavior on the continuum
scale, appropriate physical descriptions must be formulated. While the Continuum Sur-
face Force model is well–engineered for the description of interfaces, there is still a lack of
treatment of contact lines, which are represented by the intersection of a fluid–fluid inter-
face and a solid boundary surface. In our approach we use the “non compensated Young
force” to model contact line dynamics and therefore use an extension to the Navier–Stokes
equations in analogy to the extension of a two–phase interface in the CSF model. Be-
cause particle–based descriptions are well–suited for changing and moving interfaces we
use Smoothed Particle Hydrodynamics. In this way we are not only able to calculate the
equilibrium state of a two–phase interface with a static contact angle, but also for in-
stance able to simulate droplet shapes and their dynamical evolution with corresponding
contact angles towards the equilibrium state, as well as different pore wetting behavior.
Together with the capability to model density differences, this approach has a high poten-
tial to model recent challenges of two–phase transport in porous media. Especially with
respect to moving contact lines this is a novelty and indispensable for problems, where
the dynamic contact angle dominates the system behavior.
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1 Introduction

Mass balances and momentum balances are the fundamental equations for modeling
phase behavior in a wide range of chemical and mechanical processes. One usually con-
siders bulk phases, and as long as interface phenomena are negligible, the volumetric
description of the governing equation is straight forward. However, many interesting ef-
fects in multi–phase systems just happen at interfaces or even at intersections of interfaces,
which are called contact lines. Balance equations can also be formulated for interfaces or
contact lines, as Hassanizadeh and Gray [1] showed. If such a condition is incorporated
into the governing eqations, one should be aware of the units in this condition. The bal-
ance of an interface is written in terms of an area, which has to be transformed into a
volumetric description for a complete three–dimensional model. With respect to a contact
line condition, a transformation from a force per line to a force per volume is necessary.

2 Two–phase model

The Navier-Stokes equations for an incompressible, Newtonian fluid in Lagrangian
formulation are given by:

ρ
D�v

Dt
= −∇p+ µ∆�v + ρ�g (1)

1

ρ

Dρ

Dt
= ∇ · �v = 0, (2)

where ρ, p and µ are density, pressure and dynamic viscosity. The vectors �v and �g
represent velocity and gravitational acceleration. For a complete description of surface
tension we extend (1) by two further terms:

ρ
D�v

Dt
= −∇p+ µ∆�v + ρ�g + �F vol

wn + �F vol
wns. (3)

Here �F vol
wn represents the contribution from the interfacial balance equation, which results

in the Continuum Surface Force by Brackbill et al. [3]. This force is exerted on the

Figure 1: Two-phase system, composed of wetting (w) and non-wetting (n) phase, constrained by solid
walls (s) with further key quantities: the contact angle α and the curvature κ.
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wn–interface, where w denotes the wetting phase and n the non-wetting phase. With the
same nomenclature we write the contribution of the momentum balance equation for a
contact line as �F vol

wns, where the indices wns stand for the contribution of all three phases,
see fig. 1 and fig. 2.

2.1 Continuum Surface Force (CSF)

The Continuum Surface Force for a wn–interface was introduced by Brackbill et al. [3]
and the result is first a force per area:

�fwn = σwnκwn�̂nwn. (4)

σwn denotes the surface tension coefficient, κwn the curvature of the wn–interface and �̂nwn

its unit normal. The normal is calculated by a weak formulation of

�nwn =
∇c

[c]
. (5)

c is the “color”-function, which is constant within each phase, but has a jump at the
interface. The curvature can then be calculated through

κwn = −∇ · �̂nwn (6)

and all quantities for (4) are determined. The remaining step is the volume reformulation

of �fwn, which will be explained later.

2.2 Contact Line Force (CLF)

From the Microscale Momentum Balance Equation for a Contact Line [1] one can
derive the unbalanced Young Force [6]. We use this formulation as driving force for the
dynamics of the contact line:

�fwns =


σns − σws + σwn (�̂νns · �̂νwn)︸ ︷︷ ︸

− cos(α)


 �̂νns. (7)

σij again denotes the surface tension coefficient of the corresponding interface. The unit

vectors �̂νij are defined to point away from the contact line, along the ij–interface and
orthogonal to the contact line itself, see fig. 2. This formulation, where the interfacial
stresses are out of balance, was already introduced by de Gennes [6]. Later on Brochard-
wyart and de Gennes published a constitutive relation for the dynamic contact angle in
dependence of the contact line velocity [2].

3
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Figure 2: Contact line with contact angle α

2.3 Volume reformulation

If we consider line forces or area forces everything is fine in an analytical imagination.
But when we change to a discrete, numerical formulation, we experience problems, because
in three-dimensional space each discrete voxel or particle has an extension. This volume
reformulation has two functions. On the one hand it “activates” the force at the region
of interest, e.g. an interface, and takes care of setting the contribution to zero away from
this region. On the other hand it is responsible for preserving the integral quantity of the
e.g. interfacial force.
The volume reformulation of the CSF is described in [3]. In general the transformation is
given by

�F vol
wn = �fwnδwn, (8)

where the Dirac delta distribution δwn is non-zero on the wn–interface and zero everywhere
else. Moreover it fulfills the condition

∞∫

−∞

δwn(x− x0)dx = 1, (9)

to preserve the quantity. Brackbill et al. showed, that |�nwn|, if defined by (5), can be
used as numerical realization for the Delta distribution. In this way one obtains

�F vol
wn = σwnκwn�nwn. (10)

In the same way we define the volume reformulation of the contact line force by

�F vol
wns =

�fwnsδwns, (11)

where δwns in this case is responsible for a transformation from a force per line to a force
per volume and therefore fulfills the condition

∞∫

−∞

∞∫

−∞

δwns(x− x0, y − y0)dxdy = 1. (12)

4
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3 Implementation in SPH

The basis of every SPH interpolation

Aa (�r) =
∑
b

mb

ρb
AbWab(�rab, h) (13)

is the utilized smooting kernel W . Here �rab denotes the disctance vector from particle b
to a and h is the so-called smoothing length. Due to stability issues of cubic formulations
we use the quintic spline by Wendland [12] in this two-dimensional model:

W (�r, h) =
7

4πh2

{(
1− q

2

)4
(2q + 1) if q < 2

0 else
. (14)

This form gives rise to a more regularized particle ordering in dynamical processes com-
pared to a cubic version. Here q is given by q = |r| /h.

3.1 Discretization of the Navier–Stokes equations

The pressure term in the Navier-Stokes equation is calculated using the formulation of
Morris [4]: (

1

ρ
∇p

)

a

=
∑
b

mb
pa + pb
ρaρb

∇aWab. (15)

This was later also used by Colagrossi & Landrini [7]. The viscous formulation is taken
from Szewc et al. [5]:

(∇(η∇ · �v))a =
∑
b

8mb
ηa + ηb
ρa + ρb

�vab · �rab
|�rab|2 + ζ2

∇aWab, (16)

where η = µ/ρ is the kinematic viscosity and �vab = �va − �vb is the velocity difference of
particle a and b. ζ = 0.01h is a small numerical parameter, preventing the denominator
to become zero. The density is calculated in the way of Hu & Adams [8]:

ρa = ma

∑
b

Wab. (17)

Although this formulation is not variational consistent according to Bonet & Lok [9], the
result is in good agreement with some verifications we made.

3.2 Surface tension formulation

In this paper we use the CSF formulation of Morris [4]. This approach does not conserve
linear and angular momentum, but is well–known for its stability [11]. Therefore following

5
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equations are utilized:

�nwna =
1

[c]

∑
b

mb

ρb
(cb − ca)∇aWab (18)

κwna = −
∑
b

mb

ρb

(
�̂nwnb

− �̂nwna

)
· ∇aWab (19)

�F vol
wna

= σwnκwna�nnwa . (20)

In the case of the CLF, the volume reformulation δwns is composed of

δwnsa =
1

Na

|�nwna |Was (ds, h) , (21)

where ds is the distance to the solid wall and Na is the normalization constant, which
preserves the integral quantity of the CLF in this two-dimensional problem by

Na =
∑
b

mb

ρb
|�nwna |Was (ds, h) . (22)

This integration has to be done over one complete contact line area and results in the
volumetric description of the CLF:

�F vol
wnsa =


σns − σws + σwn (�̂νnsa · �̂νwna)︸ ︷︷ ︸

− cos(α)


 �̂νnsa δwnsa . (23)

In this way we get the forces which are responsible for wetting of a solid surface and

(a) (b)

Figure 3: Droplet shape on a solid wall under the influence of surface tension, a balance for the contact

line, and gravity with a density ratio of 1:10. Arrows show a random set of particles with (a) Continuum

Surface Force and (b) Contact Line Force.
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the dynamics of interfaces, see fig. 3. The idea of this approach is to decouple wetting
dynamics from interface dynamics and obtain two different descriptions. This is advan-
tageous, because in many technical applications the wetting dynamics vary, and hereby
one is able to either exchange the driving force �fwns or the volume reformulation δwns to
utilize different wetting models.

3.3 Time integration

To ensure incompressibility and avoid fitting parameters, a predictor–corrector scheme
after Shao & Lo [10] is applied, following the projection method of Chorin [15]. By this
means one first accomplishes the predictor step, which moves the particles according to
viscosity and external forces with an explicit Euler method. In this way the intermediate
particle position is given by

�rint = �rt + �vint∆t (24)

with �vint beeing the intermediate particle velocity, defined by

�vint =

(
η∆�vt + �g +

1

ρ
�F vol
wn +

1

ρ
�F vol
wns

)
∆t+ �vt. (25)

�rt and �vt are position and velocity of the last complete time step and ∆t is the discrete
time step interval. To accomplish the corrector step, the following remaining term of the
momentum balance is used

�vt+1 =

(
−1

ρ
∇pt+1

)
∆t+ �vint, (26)

where pt+1 is the pressure of the next time step. Thus the complete step is made by

�rt+1 = �rt +

(
�vt + �vt+1

2

)
∆t. (27)

3.3.1 Incompressible formulation

Equation (2) demands the divergence–free velocity field of the complete time step

∇ · �vt+1 = 0. (28)

In this manner by taking the divergence of (26) and using (28), we obtain the pressure
Poisson equation

∇ ·
(
1

ρ
∇pt+1

)
=

∇ · �vint
∆t

, (29)

which is a condition for the pressure to result in an approximate incompressible fluid
behavior of the whole system. This step couples the entire domain in a LES. We follow

7
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Manuel Huber, Winfried Säckel, Manuel Hirschler, S. Majid Hassanizadeh and Ulrich Nieken

the formulation of Cummins & Rudman [13], where the LHS of the LES is calculated by

(
∇ ·

(
1

ρ
∇p

))

a

=
∑
b

mb

ρb

4

ρa + ρb

pab�rab · ∇aWab

|�rab|2 + ζ2
. (30)

pab denotes the pressure difference pab = pa − pb. The RHS of (29) is given by

(
∇ · �vint
∆t

)

a

=
1

∆t

∑
b

mb

ρb
(�vintb − �vinta) · ∇aWab. (31)

3.4 Boundary conditions

On top a no-slip Dirichlet BC is applied for the velocity and a Neumann BC is applied
for the pressure

|�v|
∣∣∣
top

= 0 (32)

dp

dn

∣∣∣∣
top

= 0 . (33)

This is realized with image particles, reflected at the domain boundary, with the proper-
ties:

pa′ = pa and �va′ = −�va . (34)

On the left and right domain boundary, periodic BCs are implemented. A no-slip condition
is applied at the solid–fluid interface in accordance to Morris et al.[14] and the pressure
Poisson equation is also solved on solid particles at the bottom wall. In this manner an
extrapolated pressure gradient is obtained, which prevents the particles from penetrating
the wall, even with a remaining force contribution normal to the wall.

4 Results

This approach is well-suited to model dynamic processes. In the first instance we look
at a less dynamical test case. Starting with an initial phase distribution as shown in fig.
4(a), we obtain the evolution of the system until the final equilibrium state is reached,
see fig. 4(b). The calculation is performed with a static contact angle of 40◦. More
interesting investigations however, can be made under dynamical conditions. Therefore
we model the detachment of a droplet in a gas channel as shown in fig. 5. An inflow
condition is simulated so that for incompressible fluids, the inflowing mass flux equals
the outflowing mass flux. In this manner, with periodic boundary conditions, expensive
memory management can be avoided and only the velocity field for particles close to the
inlet has to be reinitialized according to the inflow/outflow condition. In this way we
look at advancing and receding contact angles of a moving drop. Lam et al. [17] made
comparable experiments, where they studied advancing contact angles of different alkanes

8
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(a) (b)

Figure 4: (a) Initial phase distribution, confined by four solid spheres. (b) Equilibrium state for a

wetting fluid with a static contact angle of 40◦.

(a) (b)

(c) (d)

Figure 5: Detachment of a droplet with inflow and outflow condition in a channel with different static

contact angles of (a) 40◦, (b) 70◦, (c) 110◦ and (d) 140◦. Different advancing and receding contact angles

are the apparent result.

on a coated silicon wafer by constantly injecting the alkane through a needle into a resting
drop. Hence the volume of the drop rises and the contact line is pushed away from the
injecting needle, resulting in an advancing contact angle αadv. In the same way receding
contact angles αrec were investigated by decreasing the drop volume. Results are shown
in table 1. For comparison, the setup of the simulation was chosen as shown in fig. 5

9
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with an inlet velocity of �vin = 0.02 m/s. The surface tension coefficients are calculated
from the experimental data of Lam et al. using the equations of Tadmor [16], see table
1. Hereby advancing and receding contact angles are obtained at once. Fig. 6 shows the
accordance of the SPH model with the experiments of Lam et al.

Figure 6: Contact angle hysteresis. Cross marker denote experiment/simulation of advancing contact
angle, circular marker represent the receding contact angle. Experiment of Lam et al. [17] in blue, SPH
simulation in red. Straight and dashed lines are fitted straight lines.

Table 1: Experimental results from Lam et al. [17], further evaluated with the formulation of Tadmor
[16], to obtain static contact angle αstat and surface tension coefficient σxs = σns − σws.

Liquid σwn [N/m] σxs [N/m] αadv [◦] αrec [
◦] αstat [

◦]

n-Hexane 0.0182 ≈ 0.0124 52.9 40.7 ≈ 46.8
n-Heptane 0.0200 ≈ 0.0123 58.4 45.7 ≈ 52.0
n-Octane 0.0214 ≈ 0.0118 61.9 51.5 ≈ 56.6
n-Nonane 0.0226 ≈ 0.0104 65.4 60.1 ≈ 62.7
n-Undecane 0.0244 ≈ 0.0096 69.6 64.3 ≈ 66.9
n-Tridecane 0.0258 ≈ 0.0091 73.1 65.8 ≈ 69.4
n-Hexadecane 0.0276 ≈ 0.0077 76.7 71.0 ≈ 73.8

10
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5 Conclusions

In this paper we show how momentum balances at interfaces and contact lines can be
incorporated into existing Navier–Stokes models by using a volume reformulation. The
advantage with respect to surface tension modeling is, that in this approach, different
wetting models can be utilized. This approach is capable of describing dynamic contact
angles and in the presence of a drag force it describes droplet movement with accompa-
nying advancing and receding contact angles. The model was validated by experimental
results.
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