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Abstract. The paper presents a novel hybrid approach developed to improve the resolu-
tion of concentrated vortices in computational fluid mechanics. The method is based on
combination of a grid based and the grid free computational vortex (CVM) methods. The
large scale flow structures are simulated on the grid whereas the concentrated structures
are modeled using CVM. Due to this combination the advantages of both methods are
strengthened whereas the disadvantages are diminished. The procedures of the separation
of small concentrated vortices from the large scale vortices is based on LES filtering idea.
The flow dynamics is governed by two coupled transport equations taking two way interac-
tion between large and fine structures into account. The fine structures are mapped back
to the grid represented large structures if their size grows due to diffusion. Algorithmic
aspects of the hybrid method are discussed.

1 INTRODUCTION

Insufficient resolution of vortex structures is one of the key problems in Computational
Fluid Dynamics (CFD). In our recent paper [1] we propose the hybrid grid- and particle
based method, based on a combination of the finite volume and computational vortex
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element [2] methods. In this paper we continue to describe the main principles of the new
method not presented in [1].

In fact, the idea to combine the grid based and vortex methods is not quite new. As
noted in [2]: ”The motivation for such techniques stems from the observation that the
strengths and the weaknesses of grid-based and vortex schemes can be seen as comple-
mentary, depending on the physical problem”. Guermond et al. [3] proposed domain-
decomposition technique based on subdividing the computational domain into two over-
lapping regions. The grid based method is applied in the region close to the body whereas
the vortex method is utilized in the wake region. The matching of the solution between
two domains is attained by Schwarz alternating method. The domain- decomposition
technique is implemented in pure velocity- vorticity and velocity-pressure and velocity-
vorticity [4] formulations. This idea is also well known for experts working in industrial
aerodynamics. For instance, the grid based Navier Stokes solvers, applied for the calcula-
tion of flow around airfoils, are coupled with potential vortex method, used for simulation
of tip vortex dynamics in the far field.

All these works use decomposition of the domain in near and far fields. The wall
bounded flows around the bodies are smooth and don’t contain large scale vortex struc-
tures. To reproduce accurately the flow gradients in the boundary layer the resolution
should be very high. The wall bounded flows are modeled using the grid based techniques
due to following reasons. Though the procedures for fulfillment of boundary conditions
on solid walls within vortex schemes based on original works of Wu [5] has been developed
for a long time (see [6]), there are still remaining many problems of algorithmic and prin-
cipal characters. Among them are high costs of boundary element procedures necessary
to calculate the vortex sheet on solid walls, artificial noise caused by discretization of con-
tinuous vortex fields through elements which results in the spurious turbulence close to
the wall, etc. This is the reason why the most of vortex method computations especially
in three dimensions have been performed for boundary free flows. A few impressive three
dimensional calculations of complex geometries can be found in papers of Bernard et al.
[7] and Kamemoto et al. [8]. Proper resolution of the concentrated vortex structures on
grid is a big challenge for grid based method and can be easily done using their explicit
representation within the vortex schemes.

Within the vortex- in- cell (VIC) method referred also to as the hybrid method, the
grid is utilized for fast calculation of the velocities and for remeshing. First, due to
application of the Poisson equation and Fast Fourier Transformation (FFT) instead of
direct summation using the Biot-Savart integral the computations are sufficiently accel-
erated, especially when combined with Fast Multipole Method (FMM) for determination
of boundary conditions. Second, and it is probably more important, the instability of the
numerical simulation is sufficiently damped by using the remeshing procedure resulting in
the redistribution of irregularly located vortex elements onto regular grid. In both cases
the grid caused numerical diffusion, which absence is considered as the main advantage
of vortex methods, is involved to reduce the stochastization of numerical solution. In
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some VIC versions the grid is also used for calculation of convection and diffusion op-
erators. Although the grid introduction the VIC method is classified as Lagrangian or
semi-Lagrangian approach since the vortices are tracked in Lagrangian way. However,
the loss of the most important advantages of pure Lagrangian methods, i.e. grid inde-
pendency, raises the big question about the efficiency and competitiveness of VIC with
respect to common grid based methods.

The present method differs principally from all vortex and hybrid methods mentioned
above. It is based on the decomposition of the velocity and vorticity fields into the dis-
tributed large scale and concentrated small scale fields. The large scale field is represented
on the grid, whereas the small scale one is calculated using the grid-free computational
vortex method. The domain decomposition is not applied. The method is pure Lagrangian
one for small structures and pure grid based one for large scale structures. The simula-
tion with CVM is embedded into the grid simulation. There exist a permanent exchange
between grid and particle represented vortices. Since we use the formalism different from
the classical CVM method many of its weaknesses become irrelevant.

Generation of the set of vortex elements from the grid distributed vortices is described
in sections 2.1 and 2.2 in [1]. The governing equations are derived in sec. 2.3 [1] and
described shortly below along with boundary condtions for the grid based solution. In
this paper we present experimental data supporting the idea of the method and address
a very important question concerning the interaction between scales.

2 SOME RECENT EXPERIMENTAL RESULTS SUPPORTING CONCEPT
OF THE HYBRID METHOD

Main concept of the hybrid method is that the fine scale vorticity in full developed
turbulent flows is concentrated in a finite number of vortices which can be represented
by single axisymmetric vortex elements. In this subsection we prove this concept using
high resolved PIV measurements data. The flow under consideration is the turbulent
axisymmetric jet developing in a coflow confined by a pipe of diameter D = 50mm and
length 5000mm schematically given in Fig. 1. Medium in both flows is water. The
inner tube had diameter d = 10mm and the length 600mm chosen from the condition
that perturbations caused by the knee bend are suppressed near the nozzle exit. The
test section of the mixer was installed in a Perspex rectangular box filled with water
to reduce refraction effects. More detailed information about the hydrodynamic channel
can be found in [9]. Since the Reynolds number based on the jet exit velocity Ud is
Red = dUd/ν = 104 the jet can be considered as a fully- developed turbulent jet. PIV
measurements were performed within the window 3.232mm×2.407mm with pixel distance
of ∆ = 68.8µm. The laser thickness estimated as ∼ 40µm is very thin. The measurement
window was located on the centerline of the jet mixer at the distances x/D = 1 and 7 from
the nozzle. The vorticity was calculated using the central differential scheme (CDS). The
snapshots of the vorticity component squared ω2

z/ < ω2
z >, where <> stands for quantity

averaged over the window, is shown in Fig.2. Strong uneven distribution of ω2
z pointed
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Figure 1: Sketch of the flow. 1- knee bend of nozzle, 2- plate for damping of vortices shed from knee
bend 1, 3- outer tube, 4- support plates, 5- nozzle, 6- test section, 7- water box.

Figure 2: Snapshot of the field ω2
z/ < ω2

z > within the measurement window in jet mixer. The averaged
< ω2

z > was 1.19s−2 and 0.459s−2 at, respectively, x/D = 1 and 7.

clearly out, that the vorticity is concentrated in a relatively small number of spots or
vortices. This character of the distribution is typical for both initial development of the
confined jet at x/D = 1.0 with weak anisotropy (R11 = 0.092, R22 = 0.0732) and in the
region of its strong decay at x/D = 7.0 where the flow is almost isotropic (R11 = 0.0362,
R22 = 0.0352).

Strong concentration of vorticity is especially obvious in Fig. 3. The cells are sorted
in order of descend of ω2

z , i.e. the first cell has the maximum value of ω2
z and the last

one with the number N has the minimum value. The ratio εk =
k∑

i=1

ω2
zi/

N∑
i=1

ω2
zi shows the

contribution of k cells to the total amount Ω =
N∑
i=1

ω2
zi. The ratio along the horizontal

axis shows the fraction of cells containing εk. As seen from this figure, the dependence
εk(k/N) is strongly nonlinear and reaches the saturation very quickly. Five percent of cells
contains more than fifty five percent of the total Ω, twenty percent of cells contains more
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Figure 3: Ratios εk and Ek depending on k/N .

than eighty percent, sixty percent of cells contains less than five percent of Ω. Therefore,
the number of active cells and, respectively, number of active vortices are very small.
Note that the background vorticity obtained as the average over the whole measurement
window is of order of ∼ 10−3 although the maximum and minimum values of a few dozens.

The distribution of Ek =
k∑

i=1

u2
i /

N∑
i=1

u2
i is less nonlinear indicating the fact that the

distribution of the energy is more uniform than that of ω2
z . The reason of more uniform

distribution is that the energy is an integral quantity, whereas ωz is the local one. The
contribution to E is carried out not only by vortices located at adjacent cells within
the measurement plane but also by all vortices of the volume including vortices located
outside of the measurement window.

The vortices are inclined to the measurement window at different angles β. The trace
of vortices on the measurement plane is ω sin β. One can assume that the maximum ω2

z

corresponds to vortices which are perpendicular to the measurement plane (β = π/2).
Already visual analysis of Fig. 2 suggests that the strongest vortices are approximately
axisymmetric. We apply the algorithm proposed below in the section 2.2 in [1] to detect
the vortex structures in the field of ω2

z using two dimensional linear approximation of ω2
z .

Note that the linear approximation is consistent with CDS applied for the calculation of
ωz. Fig. 4 shows the probability density function of the structures of the field ω2

z . The
most frequent structures have radius around ∼ 2.5∆.
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Figure 4: Probability density functions of radius of structures of the field ω2
z (left) and of the axis ratio

a−b√
ab

of structures of the field ω2
z (right)

The p.d.f of the ratio a−b√
ab

indicating the circularity of the vortex cross section is given
in Fig. 4, right. As seen, the circular cross section corresponding to a = b is the most
frequent case. A large fraction of vortices is inclined to the measurement plane. Even if
they are axisymmetric their intersection with measurement plane is not circular. It means
that the true number of circular vortices is sufficiently larger than these corresponding
to a−b√

ab
= 0 in Fig.4, right. Analysis of the circularity should be done with care because

the peak of a−b√
ab

= 0 can be just due to a low resolution. Indeed, if the real size of vortex
is smaller than the cell size ∆, being identified at any node of the grid, it occupies four
adjacent cells. In our algorithm such a vortex is identified as the circle with the radius of
R = ∆. The circularity of vortices with the radius equal to ∆ is indefinable. To exclude
their influence we calculated conditioned p.d.f. of a−b√

ab
at R > m∆ shown in Fig. 5. As

clearly seen the peak- like character of p.d.f. in vicinity of a−b√
ab

= 0 is kept even at m = 4.
Taking the fact into account, that the most frequent vortices have according to Fig. 4
m ≈ 2.5, and results in Fig. 5, one can conclude that the axisymmetric approximation
of fine vortices can be considered as quite appropriate. Increase of the order of spline
approximation of ω2

z field up to three doesn’t change the qualitative conclusions drawn
from the bilinear approximation.

These results agree with these obtained in [10] for the turbulent boundary layer. Even
in the shear flow the number of active vortices is small. The vorticity of the concen-
trated structures is one or two orders higher (see Fig.30 in [10]) than the vorticity of the
background computed by differentiation of the averaged velocity field.
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Figure 5: Condtioned probability density function of the axis ratio a−b√
ab
(R > m∆) of structures of the

field ω2
z .

3 EQUATIONS AND BOUNDARY CONDITIONS (BC) OF HYBRID GRID
AND PARTICLE BASED METHOD

Two governing coupled equations were derived in [1] using the splitting procedure
applied to the Navier- Stokes equation:

∂ug

∂t
+ (ug∇)ug = ∇P + ν∆ug + (uv × ωg) (1)

dωv

dt
= (ωv∇)(uv + ug) + ν∆ωv (2)

The first equation describes the flow of the background ug
i whereas the second one the

flow induced by concentrated vortex structures uv
i . The equations (1) and (2) are solved

sequentially. The first equation is solved on the grid with finite volume method whereas
the second one using the grid free computational vortex method.

According to Gresho and Sani [11] the boundary conditions for the velocity are sufficient
to allow the determination of both velocity and pressure from the NS equation. The no
slip condition at the wall reads

uv + ug = 0 → ug = −uv (3)

The necessary and sufficient boundary condition for the pressure, which is used in Poisson
equation, is the Neumann BC obtained by the projection of the Navier Stokes equation
onto the normal direction:

∂P

∂n
= ν∆un −

(∂un

∂t
+ (u∇)un

)
(4)
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Commonly, for high Reynolds numbers the first term on r.h.s. of (4) is neglected. The
Neumann BC for grid based part reads

∂P

∂n
= −

(∂ug
n

∂t
+ (ug∇)ug

n

)
+ (uv × ωg)n (5)

There are no explicit boundary conditions for the vortex part. The interaction of fine
vortices with boundaries is considered in boundary conditions for the grid based solution.

4 INTERACTION BETWEEN SCALES

4.1 Influence of large grid based vortices on small vortices

This influence is taken by terms (ωv∇)ug and (ug∇)ωv in Eq. (2). The large vortices
represented on grid contributes to the small vortex convection, rotation and amplification.
Another mechanism of the interaction between scales is the transition of vortices. The
small vortices are generated from grid based vortices using the algorithm described in Sec.
2 of [1]. The small vortices can become larger due to diffusion and be mapped back to
the grid.

4.2 Impact of small scales on grid based solution

The impact of small structures on gird based solution is taken by the term uv × ωg

into account. The physical meaning of this term can easily be explained when applying
the curl operator

∇× (uv × ωg) = −(uv∇)ωg + (ωg∇)uv (6)

The first term on the r.h.s. (6) describes the transport of the grid based vorticity ωg by
the velocity induced by concentrated vortices uv whereas the second term is responsible
for the rotation and amplification of the grid based vorticity in field of uv. Since the
vortices are getting small due to stretching of vortex lines and become invisible on the
grid, two following principal questions should be addressed below:
• Is the term uv × ωg negligible? Is its influence sporadic?
• The impact of this term is local. How to not lose this local impact on the grid with the
mesh size ∆ being much larger than the vortex size?

Let us start with the first question. The dimensionless Navier Stokes equation reads:

L

UT

∂ug

∂t
+ (ug∇)ug = ∇p+

1

Re
∆u+

L

U2
(uv × ωg) (7)

Let us evaluate the last term. The vortex induced velocity is proportional to the vortex
circulation ωvσ2 and inversely proportional to the distance from the vortex center ∼ ∆−1

outside of the vortex core:
uv ∼ ωvσ2∆−1 (8)
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Assuming that the grid based vorticity is finite L
U
ωg ∼ ∂u

∂x
∼ O(1), the term has the

following order
L

U2
(uv × ωg) ∼ κ

(∂u
∂x

)2( σ
∆

)2∆
L

∼ κ
( σ
∆

)2∆
L

The parameter κ = ωv/ωg according to [10] (see Fig. 30) can be of the order of ten far
from the wall. Close to the wall κ ≈ 1.0. The ratio σ/∆ can be of the order of O(1) for big

variety of vortices. The ratio ∆/L is the minimum for DNS simulations ∆/L ∼ Re
−3/4
t .

Finally we have
L

U2
(uv × ωg) ∼ κRe

−3/4
t (9)

Since Re � Ret and κ � 1 the last term in the equation (7) is not smaller than the
diffusion term and can not be neglected even if the vortices are much smaller than mesh
size ∆. Another support to keep this term in Eq.(2) is the fact that the vortices create
clusters in turbulent flows which influence area can be sufficiently larger than that of a
single vortex.

Now we turn to the second question. Analysis of terms (uv∇)ωg and (ωg∇)uv shows
that the second term is much larger:

−(uv∇)ωg ∼ uv
max

∂ωg

∂x

(ωg∇)uv ∼ uv
max

σ
ωg

If the linear approximation is used within the grid based method, the first term is zero
(uv∇)ωg = 0. Anyway it is much smaller than the second term, since the latter is
proportional to σ−1. Therefore, the local interaction between the vortices and grid based
flow can be captured using the simplification

∇× (uv × ωg) ∼ (ωg∇)uv (10)

If K is the smoothing function of the vortex element, the following formula are valid:

uv = (γ × x)K(x)

(ωg∇)uv = (ωgx)(γ × x)
∂K

∂r
+ (ωg × γ)K(x) (11)

where r =
√
xixi. The vector (ωg∇)uv describes the local impact of fine vortices on grid

based vorticity. It is the local change of the grid based vorticity ωg at the place of the
fine vortex with the strength γ.

∂ωg

∂t
= (ωgx)(γ × x)

∂K

∂r
+ (ωg × γ)K(x) (12)
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For the vorton introduced in Sec 2.1 of [1] the last expression takes the form:

dωg

dt
= (−Ω2(ωgx)(γ × x) + (ωg × γ))exp(−x2Ω2/2) (13)

Within the computational vortex method the governing equations are satisfied at element
centers, i.e. at x = 0. Since K(0) = 1 we get

∂ωg

∂t
= ωg × γ (14)

The fine vortex influence is reduced to the rotation of the grid based vorticity ωg by
the vector γ. This rotation occurs in the local volume occupied by the vortex element.
Indeed, the vorticity of the vortex element

ωv = 2γK − ((γ × x)× x)
∂K

∂r

has the same asymptotic behavior at large r ∼ r2 ∂K
∂r

as the vector dωg

dt
. Therefore, the

vortex element and the vorticity (12) occupy approximately the same volume.
Therefore, the influence of a small vortex results in the appearance of the local distur-

bance of the background field ωg. The most simple way to account for the local rotation
of the grid based vorticity is to keep ωg unchanged and to introduce a new element with
the vorticity ωg and size of σ turned around the vector γ with the angular velocity γ∆t.
To keep the number of vortices constant it is worth to update the original vortex element
by change its strengths according to

γupdate = γ + |ωg| ω
g + (ωg × γ)∆t

|ωg + (ωg × γ)∆t|
− ωg (15)

Since the small scale vortices produce local disturbances with the same scale the simulation
on the grid can be performed without the term uv × ωg. This term will be taken into
account by updating the exisiting vortices according to (15). Fine vortices can create the
clusters. For this case a special algorithm should be developed to recognize the clusters,
their approximation and mapping them back to the grid.

5 CONCLUSIONS

Resolution of the fine structures is one of the most important and difficult problems
of computational fluid dynamics (CFD). The paper [1] presents the first attempt to cou-
ple grid based and grid free simulations to improve the resolution of fine vortices in
computational fluid dynamics. The method principally differs from the existing hybrid
approaches because the grid free simulation is embedded into the grid based one. With
the other words, two coupled simulations are running simultaneously at each point within
the whole computational domain.
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The general scheme of the presented method is open for all advanced techniques de-
veloped by different authors for vortex methods. Thus, the algorithms presented in the
paper can be sufficiently improved using previous experience. First of all, the procedure
of vortex identification and velocity field approximation through vortex elements can be
optimized in future works. The computations of vorton induced velocities can be suf-
ficiently accelerated with Fast Multipole Method (FMM) implemented on GPU cluster.
Recent work [12] demonstrates advantages of CVM with FMM and GPU over spectral
and common grid based methods for very high resolved simulations on platforms with big
number of cores. Further work on the presented method is aimed at the development of
LES like approach with explicit direct modeling of subgrid motion.
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