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Abstract. As a Lagrangian particle method, smoothed particle hydrodynamics (SPH) has 
been applied into the problems of fluid-structure interaction (FSI) more and more. However, 
the transient fluid-structure interactions characterized by severe reactions and wide spreads 
are very expensive to be carried out with three-dimensional SPH method due to the approach 
of solid modeling, especially when the structure is subjected to the shock loads from mid-field 
or far-field, which is almost impossible to achieve. Therefore, based on the previous research, 
the coupled SPH-BEM method is put forward and applied to underwater explosion in this 
paper. The structure is modeled and solved with SPH method while the fluid boundary only 
required is coped with a boundary element method (BEM), the second-order doubly 
asymptotic approximations (DAA2). The FSI method will reduce the elements of structures 
and fluid greatly so as to solve the problems of fluid-structure interactions feasibly and 
efficiently. The mid-plane of a plate only discretized into a layer of particles is taken as the 
study object in the SPH shell element and the related physical quantities is integrated in the 
thickness direction to capture the dynamic response of structures; the fluid boundary only 
discretized into a piece of boundary elements is employed in the BEM method to solve fluid 
dynamics based on the retarded potential equation; treatments of the coupled fluid-structure 
interface are made to satisfy the compatibility conditions and the messages related to motions 
and loads are well delivered. Finally, two standard examples are carried out to test the above 
algorithm.

1 INTRODUCTION 
The transient FSI is always a troubling and headachy problem and is regarded as a hotspot 

issue [1-2]. Generally, the transient FSI process is a complicated and difficult one involving 
the fluid dynamics and structural responses, etc. The solutions of the FSI problems can be 
classified into two categories: the monolithic one and the partition one [3-8]. The differences 
between them are the structure and fluid solvers and the treatments of the coupled surface. 
The monolithic one [3-5] is a synchronous solver solving the structures and fluid 
simultaneously with the complexly coupled governing equations of structures and fluid, while 
for the partition one [6-8], it is asynchronous and the equations are uncoupled. The coupled 
surfaces of the partition one need to be imposed implicitly and yet it is satisfied automatically 
for the monolithic one. Though many numerical algorithms [9-13] have been raised, such as 
the method based on mesh as Finite Element Method (FEM), Spectral Element Method 
(SEM), BEM and the method based on meshless as Element Free Galerkin method (EFG) and 
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SPH, there is not a method singly coping with these difficulties completely. Accordingly, 
many FSI methods based on the partition approach emerge [6-8], including the SPH-FEM 
coupling, the FEM-BEM coupling, etc. The approach is featured by simplicity and good 
operability and thus has appealed many scholars. However, in the partition approach, the 
treatments of coupled surfaces are vital for the stability and accuracy of the coupled method. 
In this paper, the coupled SPH-BEM method based on the partition approach is proposed for 
the transient FSI problems. 

In the coupled SPH-BEM method, the SPH shell is selected to discretize the thin structures 
via only a layer of particles; the fluid boundary is only needed and is discretized into a piece 
of polygonal elements, which will make the simulations of the mid- and far- field underwater 
explosion feasible and save the costs of the computation greatly. What’s more, the coupled 
method will integrate the advantages of the above two methods and make the simulation of 
underwater explosion efficient: the SPH shell will provide the structural solver of nonlinearity 
and the BEM will act as the fluid dynamics solver of larger fluid domain. In the following, 
based on the previous studies of Zhang and Ming et al. [14], the SPH shell and the BEM 
method will be presented firstly, followed by the details of the coupled method and finally 
two examples will be carried out to test the above algorithm. 

2 THE SPH SHELL METHOD 
The SPH shell method is firstly proposed by Combescure et al. [15-16] and then studied by 

Ming et al. [17]. The SPH shell method devotes itself to solving two problems: stability and 
accuracy, which always exist in the traditional SPH method, especially when dealing with 
solid. The instability mainly comes from the stress instability including the tensile and 
compression instability which cannot be solved simultaneously as shown in many researches. 
The SPH shell method has taken many measures to overcome the instability, including the 
Lagrangian kernel function [18], total Lagrangian equation [19], stress point [20], 
conservative smoothing [21], artificial stress [22] and viscosity [23], etc. The poor accuracy is 
mainly from the traditional kernel function and the approximation method of itself, especially 
the boundary defects. The SPH shell method focuses on the approximation function of high 
accuracy, e.g. moving least square (MLS) function [24] and normalized SPH function (NSPH) 
[25], which satisfy the consistency of different orders. 
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Figure 1: Three configurations of a SPH shell; the local configuration is defined by the normal of the shell 
and two orthogonal tangents 
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The SPH shell is only discretized into a layer of particles and the mid-plane is taken as the 
study object. Three configurations should be defined, namely, the global configuration, the 
initial local configuration and the current local configuration. The local configuration is 
defined with the two orthogonal tangents and the normal the shell, as shown in Figure 1. The 
MLS function and the total Lagrangian governing equation described in the initial 
configuration are selected as the approximation function and the approximation equation 
respectively. The position, the translational displacement of a given point in cross-section and 
the angular displacement of the shell’s normal can be respectively noted as T( , , )x y zx , 

T( , , )u v wu , T( , ,0)x y  in the local configuration and T( , , )X Y ZX , T( , , )U V WU , 
T( , , )x y z   Ψ in the global configuration. The displacement in local configuration can be 

expressed as: 
m x

m y

m

u u z
v v z
w w




  


 
 

, [ / 2, / 2]z t t                      (1) 

where the subscript ‘ m ’ indicates the quantities of mid-plane; t is the thickness of the shell. 
The Green strain E described in the initial local configuration can be expressed by the 

gradient of displacement [19]: 
T T

0 0 0 0 0 0 0 00.5 ( ) ( ) ( )C L z         E u u u u E E                (2) 
the subscript ‘0’ indicates the quantities in the initial configuration and the high-order 
nonlinear terms 2z are ignored in the present shell model; CE and LE denote the constant and 
linear components respectively. According to the transformations of different configurations, 
the Almansi strain ε in the current local configuration turns to be: 

 T T 1 T
0 0( )C L C Lz          ε ε D F D E E D F D                 (3) 

where 0D and D are orthogonal rotation matrices linking the initial and current local 
configuration with the global configuration respectively [17]; F is the gradient tensor 
standing for the structural deformation [19]. Considering the constitutive relation of elasticity 
or elastoplasticity in shell plane, the Cauchy stress  C Cgσ ε  and  ( )L Lz gσ ε  can be 
drawn.  g x is the function of constitutive relation. Hence, the membrane force C and 
moment L in a unit length are:  

/2

/2

t

Ct
dz


 C σ , 

/2

/2
( )

t

Lt
z z dz


 L σ                         (4) 

According to the properties of force, respectively the membrane force Λ , the moment Ω and 
the transverse shear forceΤ can be noted as: 

 ; ; 0xx xy xz yx yy yz zx zyC C C C C C C C        Λ                     (5) 

 0; 0; 0 0 0xx xy yx yyL L L L         Ω                           (6) 

 xz yzC C   Τ                                     (7) 
so the nominal force in the global configuration is: 

1 T
g J  Λ F D ΛD                                    (8) 

1 T
g J Ω F D ΩD                                    (9) 
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T
g J T D T                                       (10) 

where J  F ,the subscript ‘ g ’ indicates the quantities in the global configuration; thus the 
total Lagrangian formulas of SPH shell expressed by nominal force [19] are obtained:  

0 0 g gt   U Λ Q                                 (11) 

0 0 g g gI    Ψ Ω T M                              (12) 
where 0I  indicates the coefficient related to the rotation of particles; Q and M denote the 
external loads; ‘   ’ is the second derivative versus time; thus, the discretized forms of the 
above total Lagrangian formulas are expressed as[26]: 

00 ,=
j

a b ab a
i ij X i

b
tU N Q                                 (13) 

00 , j

a b ab a a
i ij X i i

b
I N T M                               (14) 

herein, the superscript ‘ a ’and‘ b ’ denote a pair of interactional particle; the subscript ‘ i ’ 
indicates the coordinate direction; , XN equals /N X  . Hence, the position and the angle can 
be updated by the time integration schemes and the explicit central difference scheme is 
adopted here, see [19]. Besides, the Rodrigue formula [27] is employed to rotate the normal.  

3 THE DAA2 METHOD 

In the coupled FSI system, the pressure Q on the surface of structures can be categorized 
as the incident pressure incQ and the scattering pressure scaQ . The incident pressure is always 
obtained from the propagation laws of the incident waves. As shown in Figure 2, it is a 
time-varying pressure at a spatial point jx of the form [28]: 

0( , ) ( ) ( )j
inc j t x j

d d
Q t Q t Q

c


 x x                        (15) 

where 
0 0sd   x x                                      (16) 

for planar waves, 
0 0( ) ( ) /j j s s sd     x x x x x x , ( ) 1x jQ x              (17) 

However, the solution of the scattering pressure is always a challenge.  

sx

Source point
Standoff point

0x

jx

 
Figure 2: The propagation of incident waves 

In this paper, the scattering pressure is solved with DAA2. As a BEM method, it is 
appealing for the only requirement of the boundary discretization. The DAA2 is first proposed 
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by Geers et al. [36-38] based on the principle of the retarded potential [29-30]: 

  3

1( , ) , ( , ) ( , )pq q pq
p q q q q q q

pq pqS S

r
t t dS t t dS

r r c
   

  
           

 
 

r n
r u r n r r     (18) 

where S is the FSI surface; u is the displacement of the FSI surface and the superscript ‘  ’ 
indicates the partial derivative versus time ; p and q represent two elements; is the potential 
of velocity; r is the position; /pqr c  is the retarded time; qn  is the unit normal at q  
pointing outward;  is the three-dimensional angle. In the deducing of DAA2, a linear 
assumption of the scattering pressure scaQ (a component of scaQ ) of boundary nodes is 
introduced, namely: 

sca scaQ                                      (19) 
Therefore, the core of DAA2, the discretized boundary approximate equation about scattering 
pressure of fluid can be derived [31]:  

1 2 1 1[ ]sca sca sca sca scac c c c       H GQ Q G HQ H Gu u              (20) 

herein,
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H r
r r
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( )q

S q p

f
dS


r

G
r r , ( )f r is a scalar function related to the 

position. The terms of scau , scau on the right of equation (20) can be obtained through the 
treatments of the coupled surface, as shown in Section 4. In this way, through the numerical 
integration scheme, scaQ and scaQ  on the left of equation (20) can be expressed by scaQ and 
thus scaQ  is solved. 

4 THE COUPLED SPH-BEM METHOD FOR FSI 
The coupled SPH-BEM method is a partition approach which is apt to model the fluid and 

the structure separately and operate modularly. Nevertheless, the SPH shell is a particle-based 
meshless method but the DAA2 is a mesh-based method, so the treatments of the coupled 
surface are crucial for the SPH-BEM method. The mappings between the structure and the 
fluid at the coupled surface are various, including the boundary nodes corresponding to the 
SPH particle, see in Figure 3(a), the elements corresponding to the SPH particles, see in 
Figure 3(b), and other irregular correspondences, see in Figure 4. No matter what mapping 
schemes are employed, the treatments of the coupled surface are almost same. It is similar to 
the idea of the stress point in SPH shell: the SPH shell particles and the boundary nodes are 
put together and the MLS function is introduced to link them. Because the coupled model is 
only discretized into a layer of shell particles and a piece of boundary elements, the MLS 
function is constructed in the local configuration, which is defined by two orthogonal tangents 
and the normal of the coupled surface [14]. It is indeed a two-dimensional case. As for an 
SPH shell particle or a boundary node, the MLS function of itself is constructed by boundary 
nodes or SPH shell particles in its support domain, which is plotted in Figure 4, the radius of 
which is selected as 1.5 times of the characteristic length in the present research. 

When the load information delivered from boundary nodes to SPH shell particles, the 
boundary nodes in the support domain of SPH shell particles will be used to construct the 
MLS function of SPH shell particles, and thus the load message carried by boundary nodes 
will be transformed to SPH shell particles; similarly, when the motion information delivered 
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from SPH shell particles to boundary nodes, the SPH shell particles in the support domain of 
boundary nodes will be used to construct the MLS function of boundary nodes, and thus the 
motion quantities of boundary nodes, such as displacement, velocity and so on, can be 
obtained from SPH shell particles [14]. Due to the consistency of the MLS function is 
completely satisfied and thus the information of the coupled surface will be well delivered, 
which is critical to the stability and accuracy of the coupled algorithm [14]. The flowchart of 
the coupled program is presented in Table 1. 

 

SPH particle Boundary node

 

(a) 
SPH particle Boundary node

 

(b) 
SPH particle Boundary node

 

Figure 3: The mapping relation between SPH particles and boundary 
nodes; (a) SPH particles corresponding to boundary nodes, (b) SPH 

particles corresponding to boundary elements 

Figure 4: The construction of the 
MLS function for SPH particles and 
boundary nodes in the approximation 

process 

Table 1: The flow chart of the coupled program 

(a) Initialize the model and parameters; 
(b) Solving MLS function, containing the function used for SPH shell and the coupled 

surface; 
(c) Solving the discretized boundary equation for fluid dynamics;   
(d) Transforming the fluid dynamics to the external loads of SPH shell by MLS function;  
(e) Solving the discretized total Lagrangian equation of SPH shell; 
(f) Updating the position, velocity and so on of SPH shell; 
(g) Updating the motion quantities of boundary nodes by MLS function; 
(h) Judging the time to end the calculation or go to (c); 

5 RESULTS AND DISCUSSIONS 
To test the above algorithm, a FSI model of underwater explosion is established in the 

coupled way, as shown in Figure 5 (a). A cylinder with two spherical caps at the two ends is 
submerged in water and subjected to incident waves of underwater explosion, which is 
exponentially decaying with the peak of 1.57 MPa. The geometric parameters and the 
material parameters of the model are listed in Table 2. The shell model has a length of L, a 
radius of r and a thickness of t. The engineering material is employed with the elastic 
modules E , Possion ratio and the density s . The fluid field model has the same geometric 
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parameters as the shell model, but it has a density of w  and a sound velocity of c . The 
whole model is discretized into 1983 SPH particles, 1981 stress points and 1981 four-node 
boundary elements.  

Boundary elements
SPH particles

Stress points 

U
V

W

  
(a) (b) 

Figure 5: The calculation model of a cylinder with spherical caps; (a) the discretized SPH-BEM model, 
(b)the ABAQUS model 

In order to carry out the comparative analyses, the FEM model, see in Figure 5 (b), and the 
analyses of the model are also performed with the software of ABAQUS. The four-node hex 
element and the four-node shell element are selected. The whole fluid field is discretized into 
90272 hex elements and 1981 four-node shell elements for the shell model. The nodes of the 
shell model is positioned same as the SPH particles completely. The coupled acoustic-solid 
method and the nonreflecting boundary are applied in the analyses of ABAQUS.  

Table 2: the parameters of the coupled model 

/ mL  / mr  / mt  / GPaE    3/ kg ms
  3/ kg mw

  -1/ m sc   
1.2  0.1  0.01 210  0.3  7850  1026  1528  

5.1 The cylinder with two spherical caps subjected to a longitudinal planar wave  
Firstly, the coupled model subjected to a longitudinal planar wave is established. The 

incident wave fronts are perpendicular to the center axis of the model. The difficulties of the 
numerical model lie in the vibration of high-frequency along the center axis, which is related 
to the stability closely. The displacement of the head point subjected to the waves is shown in 
Figure 6. It is obvious that the displacement increases linearly within 1ms, and soon it starts to 
climb exponentially up to a stable value accompanied with vibrations of small amplitudes. 
However, the radial displacement of the midpoint of the model vibrates violently, see in 
Figure 7. When the incident waves have not arrived, the midpoint has a small displacement 
due to rigidity of the shell, but it starts to vibrate with a very high frequency under the impact 
the incident pressure. The amplitude of the displacement attenuates gradually and tends to be 
zero, which reveals the effects of the coupling. The typical deformation process of the shell is 
presented in Figure 8. It is obvious that the model vibrate severely. 
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Figure 6: The displacement and the incident 

pressure of the head point 
Figure 7: The radial displacement and the 

incident pressure of the midpoint 

Compared with the results of acoustic-structure approach, the results of the coupled 
SPH-BEM method show a good agreement. The vibration laws are in accordance with each 
other except some deviations of amplitudes, which may be from the treatments of the stability 
of different numerical methods. On the whole, the results are acceptable and appealing.  

(a) (b) (c) (d) (e)
 

Figure 8: The typical deformation of the cylinder; (a) t=0.07ms, (b) t=0.25ms, (c) t=0.50ms, (d) t=0.70ms, (e) 
t=1.00ms  

5.2 The cylinder with two spherical caps subjected to a transverse planar wave 
Compared with the above model, the following model has a more complicated 

phenomenon. The same model is established and the same load is applied but the incident 
direction turns to be transverse. The difficulties of this model lie in the vibration of the shell 
body. The displacement of the head point in the incident direction is plotted in Figure 9. The 
displacement goes up linearly and then tends to be flat with several vibrations. The movement 
of the whole model is similar to a rigid body. However, the displacement of the pole point of 
the spherical cap vibrates violently under the impact of the incident pressure and decays to 
zero slowly, as shown in Figure 10. Moreover, the vibration of the upper point presented in 
Figure 11 is periodical with a large amplitude near zero. The typical deformation of the shell 
model is shown in Figure 12. 
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Figure 9: The displacement and the incident 

pressure of the head point 
Figure 10: The displacement and the incident 
pressure of the pole point of the spherical cap 

 
Figure 11: The displacement and the incident pressure of the upper point 

Comparing the results of the above two methods, they agree well with each other except 
some time shifts and some deviations of amplitudes. Because of the fierce impact in the 
coupling process, the numerical integration scheme takes great effects on the synchronicity of 
the responses of the shell, which may be the main reason. Besides, the smoothing length of 
the shell model and the size of the domain to construct the MLS function are also the possible 
source of the deviations. To sum up, the results of the coupled model shows good feasibilities 
and accuracy, which verifies the effectiveness of the coupled algorithm proposed in this 
paper.  

(a) (b) (c) (d) (e)  
Figure 12: The typical deformation of the cylinder; (a) t=0.07ms, (b) t=0.25ms, (c) t=0.50ms, (d) t=1.20ms, (e) 

t=1.80ms  
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6 CONCLUSIONS 
The coupled SPH-BEM method is proposed to deal with the transient FSI problems like 

underwater explosion based on the previous studies [14]. The SPH shell which is only 
discretized into a layer of particles is applied to provide a nonlinear structural solver in the 
coupled model; the DAA2 method, a BEM approach, is employed to discretize the boundary 
of fluid field and treated as a solver of fluid dynamics of fluid field. In the coupled method, 
only a layer of shell particles and a piece of boundary elements are needed to model, which 
will make the simulations of FSI problems feasible and efficient. The coupled method has 
integrated the advantages of the above two methods.  

This is a partition approach for FSI problem and thus the coupled surface has to be treated 
explicitly. The MLS function is introduced to impose the compatibility conditions of the FSI 
surface. Due to the consistency of the MLS function, the information is well delivered at the 
coupled surface. The final two examples of underwater explosion shows good agreements 
with those of FEM carried out with the acoustic-structure approach, which have verified the 
feasibility, the stability and the accuracy of the proposed method. It is a promising method. 
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