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Abstract. We investigate the effect of an ambient fluid on the dynamics of collapse and
spread of a granular column simulated by means of a recently developed model which takes
into account both fluid forces that act on each grain and contacts between grains. The
model couples the contact dynamics method for discrete element modeling of the grains
and their interactions with the finite element method for the integration of Navier-Stokes
equations in 2D. The coupling is based on the fictitious domain approach in which the fluid
domain is extended to that of grains, and the rigid-body motion of the grains is imposed
by means of distributed Lagrange multipliers. As in similar numerical and experimental
works with dry grains, we focus here on the run-out distances and avalanche durations
for different column aspect ratios (height vs width). We consider three options for the
surrounding fluid: 1) no fluid, 2) water and 3) a viscous fluid that allows us to perform
our simulations in the grain-inertial, fluid-inertial and viscous regimes, respectively. The
run-out distance is found to increase as a power law with the aspect ratio of the column,
and surprisingly, for a given aspect ratio and packing fraction, it may be similar in the
grain-inertial regime and fluid inertial regimes but with considerably longer duration in
the latter case. We show that the effect of the fluid in viscous and fluid-inertial regimes is
both to reduce the kinetic energy during the collapse and enhance the flow by lubrication
during the spread. Hence, the run-out distance in a fluid may be below or equal to that
in the absence of fluid due to compensation between those effects.
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1 INTRODUCTION

Most natural destructive events (slurries, submarine avalanches and debris flows) in-
volve the destabilization and flow of dense granular materials (sand, gravels or rocks)
saturated by or immersed in water [1–4]. The prediction of the runout distance and
duration of such flows according to their initial composition and geometry is crucial for
risk assessment. Likewise, the dispersion of fuel fragments in the coolant water during a
hypothetic nuclear accident is another example of the intricate grain/fluid mixing process
in extreme conditions, which remains a real unknown for the design of modern pressur-
ized water reactors [5]. The presence of a fluid phase in a granular medium has profound
effects on its mechanical behavior. In dry granular media the rheology is governed by
grain inertia and static stresses sustained by the contact network. As the fluid inertia and
viscosity come into play, complications arise as a result of competing effects. The fluid
may delay the onset of granular flow or prevent the dispersion of the grains by developing
negative pore pressures [3, 6, 7]. The fluid also lubricates the contacts between grains,
enhancing in this way the granular flow, and it has a retarding effect at the same time
by inducing drag forces on the grains [8]. In this paper, we rely on extensive numerical
simulations to analyze the relative importance of grain inertia, fluid inertia and viscous ef-
fects on the dynamics of a granular column allowed to collapse and spread on a horizontal
plane under its own weight. This choice was motivated by well-documented experimental
and numerical data for similar tests with dry granular materials, showing that the runout
distance grows in a nontrivial manner with the initial aspect ratio [9–12]. Our simulations
reveal a nearly similar behavior in the presence of a suspending fluid but with a complex
dependence on the fluid inertia and viscosity.

2 NUMERICAL METHOD

The simulations were performed by means of a recently developed model coupling the
contact dynamics method [13–15] for discrete-element modeling of grain dynamics with
the finite-element method for the integration of Navier-Stokes equations in 2D. The grains
are treated as no-slip boundary conditions for the fluid and the fluid forces are applied at
the boundaries of the grains for the calculation of their motions. This coupling was imple-
mented by means of the fictitious domain approach in which the fluid domain is extended
to that of grains, and the rigid-body motion of the grains is imposed by means of dis-
tributed Lagrange multipliers [16]. This approach has been tested and applied previously
with the molecular dynamics method [17] and recently extended to the contact dynamics
method [7]. A technical problem requiring special treatment is the zero permeability of a
2D granular system when the grains are in contact. This problem was fixed by allowing
the grains to move during a short lag of time within the time step with no feedback from
the fluid. The Lagrange multipliers are applied only after the grains have moved to their
new positions so that the fluid physically never penetrates the grains. Note that, due to
a broad fluid domain with frictional contact interactions and long spreading dynamics,
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these simulations are cpu-intensive and take several days with a parallelized version of
the software running on several tens of processors. Sample movies of the simulations are
available at www.cgp-gateway.org/ref013.

3 SYSTEM PARAMETERS

The granular samples are composed of disks of mean diameter d = 10−3m with a
weak size polydispersity ∆d/d = 0.8. The disks are assembled in a rectangular domain of
width R0 and heightH0. The fluid domain is rectangular with dimensions varying between
150d×60d and 300d×150d. The grains are assumed to be perfectly rigid with normal and
tangential restitution coefficients set to zero. The Coulomb friction coefficient is fixed to
0.3 between grains and with the walls. The fluid density ρf is that of water ρH2O and we
set the density of grains ρs = 2.6ρf , roughly corresponding to rock debris in water. For
each aspect ratio a = H0/R0, three simulations were performed: one without fluid and
two with fluid for two values of the viscosity η = ηH2O and 103ηH2O. These simulations
correspond to grain-inertial, fluid-inertial and viscous regimes, respectively [18, 19]. The
largest values of the Reynolds number Re vary in the range 0.12 < Re < 1.26 in the
viscous regime and in the range 560 < Re < 2340 in the inertial regime. The width of
the column is fixed to R0 = 11.5d and a varies in the range ]0; 10]. The largest number
of grains is 1360 for a = 10. Since we focus here on the influence of the column aspect
ratio and grain/fluid regimes on the runout, the packing fraction is set to φ = 0.8 in all
simulations. Note that only d, the grain mass m and the gravity g keep the same values
in all regimes, and for this reason we normalize the lengths by d, the times by

√
d/g, the

velocities by
√
gd, the energies by mgd and the viscosities by m

√
g/d.

4 COLLAPSE DYNAMICS

Figure 1 displays successive snapshots of the collapse and flow of grains for a = 8
in the three grain/fluid regimes. The grains collapse vertically and jam in a heap that
spreads along the plane and finally stops. Convective rolls are induced in fluid by granular
flow. The three phases (collapse, heap and spread) can clearly be distinguished in the
simulations, as shown in Fig. 2 where grain trajectories are shown together with the mean
kinetic energy per grain Ecx = 〈mv2x/2〉 and Ecy = 〈mv2y/2〉 carried by the horizontal
and vertical grain velocity components, respectively, as a function of time. The vertical
collapse is characterized by the fast growth of Ecy and negligible Ecx. The latter begins
to increase only at the peak value of Ecy, and in a short time interval extending from this
point to the peak value of Ecx, most of the kinetic energy is transformed from vertical
direction to horizontal direction. This short interval defines unambiguously the heap
phase. Finally, the spread phase is reflected in the long tail of Ecx falling off from its
maximum to zero. For small aspect ratios (a < 4), we observe no distinct collapse phase
and only two steps are observed: the flow is first initiated by the failure of the right flank
along a fracture surface above which material slides down and below which grains remain
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(a)

(c)

(b)

Figure 1: Successive instants of the collapse of a column of aspect ratio a = 8 in (a) fluid-inertial, (b)
viscous and (c) grain-inertial regimes. The grains and fluid are colored according to the amplitude of
their velocities.
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Figure 2: Grain trajectories (main plots) in the fluid-inertial (a), viscous (b) and grain-inertial (c)
regimes for a = 8. Only 10 % of trajectories are plotted. The insets show the evolution of the mean
kinetic energy per grain carried by the horizontal (x) and vertical (y) components of grain velocities.
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Figure 3: Normalized runout distance (a) and duration (b) as a function of the aspect ratio in different
grain/fluid regimes.

static.
The evolution of Ecy indicates that the grains do not reach their Stokes velocity in

the fluid. Following the mean vertical velocity of the ten highest grains we find that,
regardless of the grain/fluid regime, the collapse obeys a power law 〈Vy〉10 ∝ tβ over
nearly one decade with β � 1 in the grain-inertial regime, corresponding to a ballistic
fall, β � 0.95 in the fluid-inertial regime and β � 0.75 in the viscous regime.

Figure 3 shows the total normalized runout distance (Rstop−R0)/R0 and runout dura-
tion tstop as a function of a. The behavior is similar in all regimes: for small aspect ratios
(a < 4) the runout distance increases linearly: (Rstop − R0)/R0 = λ1a with λ1 � 2.45 for
the grain-inertial and fluid-inertial regimes and � 1.21 in the viscous regime. For larger
aspect ratios, the runout distance follows a power law Rstop ∝ λ2a

α with α � 0.6±0.1 and
λ2 � 4.3 in the grain-inertial and fluid-inertial regimes and α � 0.87±0.1 and λ2 � 1.5 in
the viscous regime. It is remarkable that the values of λ1, λ2 and α in the grain-inertial
and fluid-inertial regimes are identical to those reported in the dry case for narrow or 2D
flows [9–12]. The equality of the runout distance between grain-inertial and fluid-inertial
regimes contradicts at first sight the fact that underwater avalanches have a longer runout
distance [4]. The change of behavior between small and large aspect ratios also appears
in tstop, which seems to increase linearly but with two different slopes as a function of
a. However, unlike the runout distance, the duration is significantly shorter in the grain-
inertial regime than in the fluid-inertial regime for all values of a. Moreover, unexpectedly,
the runout duration is shorter in the viscous regime than in the fluid-inertial regime.
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5 VISCOUS DISSIPATION VS. LUBRICATION

The spatio-temporal evolution of the grains and their kinetic energy, evidenced in Fig.
2, suggests that the runout results from the transformation of (part of) the initial potential
energy into the peak kinetic energy Emax

cx that controls in turn the subsequent runout along
the plane. This process can thus be split by analyzing separately the dependence of Emax

cx

with respect to a, on one hand, and Rstop as a function of Em
cxax, on the other hand.

These functions are plotted from all simulation data in Fig. 4. We see that, irrespective
of the grain/fluid regime, Emax

cx is a growing function of a with a transition around a � 4.
This is consistent with the fact that the grains do not reach their Stokes velocity in the
fluid since otherwise the kinetic energy per grain would not depend on a unless probably
at low a. Emax

cx is considerably higher in the grain-inertial regime, indicating that part of
the potential energy in the presence of the fluid is dissipated during vertical collapse due
to viscous friction and contact interactions. Figure 4(b) reveals a very simple dependence
of the runout distance with respect to the maximum kinetic energy at large aspect ratios.
In all regimes, in exception to low energies in the grain-inertial regime, the runout distance
increases as a power law Rstop ∝ (Emax

cx )γ with γ = 0.50±0.05. When the runout distance
is compared among the three regimes not for the same initial aspect ratio as in Fig.3,
but rather at the same level of Emax

cx , it has its lowest value in the grain-inertial regime,
largest value in the fluid-inertial regime and intermediate values in the viscous regime.
This result is plausible as the fluid has a lubricating effect at the contacts and fluidizes
the grain/fluid mixture. These effects are more pronounced in the fluid-inertial regime
where the viscosity is lower. For this reason, Rstop is larger in the fluid-inertial regime
than in the viscous regime. In this way, the paradox observed in Fig. 3 can be understood
in the light of the collapse and runout data of Fig. 4. For a given aspect ratio, the grains
acquire the highest kinetic energy in the grain-inertial regime due to the lack of fluid
dissipation during vertical collapse. This energy is high enough to propel the heap, in
spite of a high frictional dissipation, over a distance that can be longer than the runout
distance in the fluid-inertial regime. In the latter case, the grains begin to spread with
a lower kinetic energy but dissipate much less energy due to contact lubrication. In the
viscous regime, for the same aspect ratio, the kinetic energy available for spreading is still
lower and the dissipation due to viscous drag is higher, leading thus to a much shorter
runout distance. The scaling of Rstop with Emax

cx at large aspect ratios is consistent with
a simple physical picture in which each grain in the spread phase is on average subject to
an effective viscous drag force [20].

6 CONCLUSION

In this paper, we used the dam-break configuration to simulate and analyze the collapse
dynamics of a granular column immersed in a fluid. The effect of fluid in both viscous
and fluid-inertial regimes is to reduce the kinetic energy during collapse and to enhance
the flow by lubrication (in the generic sense of forces exerted by the fluid on the grains
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Figure 4: (a) Peak value of the mean horizontal kinetic energy per grain in different grain/fluid regimes
as a function of aspect ratio. (b) Normalized runout distance as a function of the peak value of the
horizontal kinetic energy per grain.

in proportion to their relative velocities) during spread. Hence, the runout distance in a
fluid for a given geometry of the column may be below or equal to that in the absence of
fluid due to compensation between those effects.
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