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Université de Rennes 1
Institut de Physique de Rennes - UMR CNRS 6251

Campus de Beaulieu
35042 Rennes Cedex FRANCE

sean.mcnamara@univ-rennes1.fr

Key words: Granular Materials, DEM, Acoustics, Attenuation, Boundary Conditions

Abstract. The boundary conditions of soft-sphere DEM are usually perfect reflectors
of acoustic waves, leading to an unrealistic accumulation of energy. This situation is
usually dealt with by global damping. In some situations, this solution is undesirable,
so we present an alternative. If the grain-wall contact is made soft and dissipative, most
acoustic energy incident on the boundary will be trapped and dissipated there. We show
that these boundary conditions can efficiently damp both high and low frequency waves.

1 INTRODUCTION

1.1 Motivation

In DEM simulations, the numerical domain is usually bounded by periodic boundary
conditions, or fixed or movable walls. These boundary conditions are all nearly perfect
reflectors of acoustic waves. In contrast, in experimental or natural settings, a large part
of the acoustic energy can usually escape into the environment. This means that acoustic
energy is usually trapped unrealistically in granular simulations. This problem is usually
dealt with by global damping [1]: a viscous-like force, proportional and opposed to the
particle velocity, is applied to each grain, and efficiently removes energy from the system.

Global damping is often effective solution to this problem. But if we wish to study
granular acoustics numerically, it has the disadvantage of artificially attenuating waves
as they travel through the system. This is why pioneering simulations of granular acous-
tics [4] concerned quasi-one-dimensional systems that allow one to postpone boundary
interactions for a long time. But if one wishes to study more complex systems, such as
acoustic emission by destabilized granular material [6] or interactions between acoustic
waves and shear bands [7], another solution is needed.

How is this problem solved in related fields? Experimentally, one can isolate an exper-
iment acoustically by layer of some soft, absorbing material. Numerically, when solving
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the wave equation, sophisticated boundary conditions exist that can absorb almost all
the energy incident on boundaries. As we will see, the solution proposed in this paper
resembles both of these examples.

1.2 Organization

This paper is structured as follows. Sec. 2 sketches boundary conditions used in numer-
ical studies of waves in continua. Sec. 3 describes the numerical simulations used in this
paper. Sec. 4 describes long-lived free oscillations present in simulated granular packings.
This oscillations are a consequence of the energy-conserving boundary conditions. Sec. 5
presents a one-dimensional model of the (two-dimensional) packings that is analytically
accessible, yielding a theoretical prediction for the decay of the free oscillations. Sec. 6
presents a highly dissipative boundary condition, and Sec. 7 shows that it effectively
absorbs sound waves.

2 BOUNDARY CONDITIONS FOR WAVES IN CONTINUA

The most effective absorbing boundary condition for waves in numerical continuum
studies are “perfectly matched layers”. They were first introduced for electromagnetic
waves [2]. They have since been modified and adapted to acoustic waves [3]. But the
original reference [2] gives a clearer physical picture, and we therefore sketch the proposed
method in this section.

Ref. [2] begins by considering transverse electric waves, where the electric field is in the
plane of propagation. Acoustic waves obey the same equations, as one can see by simply
renaming variables:

ε0
∂Ex

∂t
+ σEx =

∂Hz

∂y
⇒ ρ0

∂uy

∂t
+ σuy = −∂p

∂y
, (1a)

ε0
∂Ey

∂t
+ σEy = −∂Hz

∂x
⇒ ρ0

∂ux

∂t
+ σux = −∂p

∂x
, (1b)

µ0
∂Hz

∂t
+ σ∗Hz =

∂Ex

∂y
− ∂Ey

∂x
⇒ 1

ρ0c2
∂p

∂t
+ σ∗p =

∂ux

∂x
+

∂uy

∂y
. (1c)

On the left, we have written the electromagnetic wave equations [2], and on the right,
the equations describing acoustic waves in a fluid with density ρ0, pressure p0, and a
linearized equation of state p = c2(ρ− ρ0)+ p0. The acoustic equations are obtained from
the electromagnetic ones by the substitution ε0 → ρ0, µ0 → 1/ρ0c

2, Ex → uy, Ey → −ux,
Hz → −p. The constants σ and σ∗ provoke the decay of waves. In the electromagnetic
case, they are conductivities, and in empty space, σ = σ∗ = 0.

One way to implement an absorbing boundary is to set σ �= 0, σ∗ �= 0 in a narrow
strip next to the boundaries. To avoid reflections at the inner boundary or the strip, the
relation σ/σ∗ = ε0/µ0 = ρ20c

2 is required. Could this boundary condition be implemented
in a particle method? Setting σ �= 0 is what is done in global damping, but setting σ∗ �= 0
is not possible, for we do not directly manipulate the stress in particle methods.
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In any case, this method has problems because it damps waves traveling parallel to the
boundaries in the same way as incident waves, leading to distortion. “Perfectly matched
layers” fix this problem. In this method, the pressure field is split into two parts px and
py, where px couples to waves propagating in the x-direction, and py to y-directed waves.
Furthermore, the damping coefficients are also split: σ → σx, σy, σ

∗ → σ∗
x, σ

∗
y The wave

equations become

ρ0
∂ux

∂t
+ σxux = −∂px

∂x
− ∂py

∂x
,

1

ρ0c2
∂px
∂t

+ σ∗
xpx =

∂ux

∂x
, (2a)

ρ0
∂uy

∂t
+ σyuy = −∂px

∂y
− ∂py

∂y
,

1

ρ0c2
∂py
∂t

+ σ∗
ypy =

∂uy

∂y
, (2b)

Note that if σx = σy and σ∗
x = σ∗

y , then the pressure equations can be added together,
leading back to Eq. (1). Thus Eqs. (2) are a generalization of Eqs. (1). Note also that a
wave traveling in the x-direction is governed solely by Eq. (2a), while a y-directed wave
solely by Eq. (2b). Thus setting σx, σ

∗
x �= 0 and σy = σ∗

y = 0 leaves y-directed waves
unmolested. This cures the remaining problems of Eqs. (1).

The absorbing boundaries proposed in this paper contain two features of the methods
presented here:

1. A global-damping-like coefficient that is nonzero only near the boundaries, and

2. Anisotropic damping such that waves propagating parallel to the boundaries are
undamped.

3 NUMERICAL SETUP

This section describes the numerical simulations used in this paper. We first discuss the
particle interactions, and then the system parameters, such as size, number of particles,
etc.

3.1 Particle interactions

We use the very common “Molecular Dynamics” or “Soft-Sphere DEM” method. The
forces between the grains are calculated, and Newton’s second law is integrated to obtain
their motion. With the exception of the rolling torque, we use standard linear contact
forces. Even though these forces have been presented many times before, we present a
rapid review to define our symbols.

The normal contact force Fn is given by

Fn = −KnDn − γnḊn, where Dn = |xi − xj| − ai − aj. (3)

Here, x1 and x2 are the grain positions, and a1 and a2 are their radii. Kn and γn are
constants that describe grain stiffness and energy dissipation. We require Fn ≥ 0, that is,
that the normal force be repulsive. If Eq. (3) yields a negative number, we set Fn = 0.
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N = 16× 16 = 256 N = 32× 32 = 1024 N = 64× 64 = 4096

Figure 1: Numerical setup: The upper, lower, and left walls are fixed (heavy lines). A con-
stant pressure p∗ is applied to the right wall (thin line). We study five “generations” with N =
256, 1024, 4096, 16384, 65336 grains. The first three generations are shown above. From one generation
to the next, N is multiplied by four.

A tangential interaction force Ft is implemented in an analogous way:

Ft = −KtDt − γtḊt, where Ḋt = −aiωi − ajωj + (vi − vj) · t, (4)

where ωi and ωj are the angular velocities of the touching particles, and t is a unit vector
tangent to the particle surfaces at the point of contact. Kt, γt are analogous to Kn, γn.
Note that Dt must be found by integrating the differential equation given above.

The tangential force must obey the Coulomb friction law: |Ft| ≤ µFn, where µ is the
friction coefficient. If Ft calculated from Eq. (4) does not satisfy this inequality, Ft is set
equal to ±µFn, and Dt is adjusted as well.

In addition to the normal and tangential forces we apply a rolling torque:

τr = −a12

(
KrDr + γrḊr

)
, where Ḋr = a12 (ω1 − ω2) . (5)

Here a12 = a1a2/(a1 + a2). Equal and opposite torques of this magnitude are applied to
the grains to oppose the rolling motion. The maximum rolling torque is proportional to
the normal force: |τr| ≤ µrFna12, where µr is a dimensionless number analogous to the
friction coefficient. If this condition is not satisfied, we set τr = ±µrFna12.

3.2 System Description

As shown in Fig. 1, we study two-dimensional packings of N circular grains in two-
dimensions confined by four walls. The top, bottom, and left walls are fixed, and the
right hand wall is mobile. A fixed pressure p∗ is applied to the mobile wall, whose motion
is obtained obtained by integrating Newton’s second law, as if it were a grain.

We will examine a series of packings of with N = 256, 1024, 4096, 16384, 65336 grains.
But the total mass of the grains is always the same and equal to M∗. The density of
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grains also remains constant and equal to ρ∗. Changing the number of grains, therefore,
means that their average radius is divided by 2 every time we multiply N by 4. Some
examples of the packings are shown in Fig. 1.

For all simulations, Kn = 2000p∗ and Dn = 0.2
√
KnM∗/N . This choice gives a

restitution coefficient of about 0.92, independent of N . The other particle interaction
coefficients are proportional to Kn and Dn. In particular, we set Kt = Kn/2, Dt = Dn/2,
Kr = Kn/10, and Dr = Dn/10. The friction ratios are µ = 0.2 and µr = 0.02. The walls
are always smooth, i.e. they exert only normal forces.

The quantities p∗, M∗, and ρ∗ define the units used throughout this paper. We are
working in two-dimensions, so ρ∗ has units of mass divided by length squared, and p∗ has
units of force divided by length. This implies that the unit of length is �∗ =

√
M∗/ρ∗, the

unit of time is t∗ =
√

M∗/p∗. The unit of velocity is v∗ =
√

p∗/ρ∗, and the unit of energy
is E∗ = M∗p∗/ρ∗.

The initial conditions are obtained by compressing a granular gas. The top and right
walls are made mobile, and a pressure p∗ is applied. The grains are compressed into a
stationary packing.

4 FREE OSCILLATIONS

To illustrate the problem that this paper seeks to solve, we will generate a standing wave
inside the packing and examine its decay. The longest lived sound wave is a longitudinal
wave oriented in the x-direction, with a wavelength of four times the system length. The
x-component of the velocity of grain k is approximately

vk = A sin (πxk/(2Lx)) , (6)

where xk is the x-coordinate of grain k, A is a wave amplitude, and Lx is the position of
the right hand wall. (The left hand wall is at x = 0.)

To study the behavior of this wave, we use Eq. (6) with A = 10−4v∗ to set the initial
velocities of the grains (and the mobile wall). The system then evolves without further
injection of energy. Fig. 2 shows the kinetic energy as a function of time for a packing of
N = 32 × 32 = 1024 grains. As shown in the figure, the kinetic energy undergoes rapid
oscillations of gradually decaying amplitude.

Fig. 2 also shows the envelopes of the energy for systems with different numbers of
particles. As one can see, the decay becomes slower and slower as the number of grains
increases, in contrast to the period of oscillation that remains almost constant in all
simulations.

5 ONE-DIMENSIONAL MODEL

In this section, we study a one-dimensional model that gives an analytic prediction of
the oscillation period and decay rate of the free oscillations.
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Figure 2: Left: Kinetic energy as a function of time in a simulation of N = 32× 32 = 1024 grains that
has been gently excited according to Eq. (6). The thin line shows the evolution of the energy and the
thick line shows the envelope of the oscillations obtained by plotting all the local maxima of the thin line.
Right: Energy envelopes for systems of different sizes.

j j+11 2 3 j−1 n

Figure 3: The one-dimensional model of the two-dimensional systems shown in Fig. 1. The wall on the
left is fixed. The n grains are always in contact.

5.1 Analytical model

Let us idealize the disordered packings of poly-disperse grains shown in Fig. 1 as square
crystalline packings of mono-disperse grains. The crystalline packings consist of a square,
n × n array (n =

√
N) of grains all with mass m̄ = M∗/n

2. These packings can be
considered as n rows containing n grains each, as shown in Fig. 3. The grains interact
via Eq. (3), except that attractive forces are allowed. We label the grains j = 1 . . . n, and
assume x1 < x2 < · · · < xn, with xj being the position of grain j. We suppose that grain
n free to move. The equation of motion of grain j is [5]

m̄ẍj = Kn(xj+1 − 2xj + xj−1) +Dn(ẋj+1 − 2ẋj + ẋj−1). (7)

We assume a solution of the form

xj(t) = j∆x+ Aesteiπjm/n, (8)

where ∆x is the equilibrium separation of neighboring grains, and A, s, and m are pa-
rameters to be found. Putting this solution into Eq. (7) and assuming that n � 1 yields

s = −µ±
√

µ2 − ω2, where µ = ε2
Dn

2m̄
, ω = ε

√
Kn

m̄
, ε ≈ πm

n
. (9)
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Figure 4: Left: Periods of the kinetic energy oscillations. Right: The characteristic decay time τ , as a
function of n =

√
N .

Here, m identifies the harmonic mode being studied. Comparing Eq. (8) and Eq. (6)
indicates we should set m = 1/2, where n grains corresponds to one quarter wavelength.
Setting m̄ = M∗/n

2 and using the grain-grain interactions described in Sec. 3 leads to

ω =
π

2

√
Kn

M∗
, µ =

π2Dn

8M∗
=

π2

40n

√
Kn

M∗
, (10)

where the last equality comes from Dn = 0.2
√
KnM∗/n2. Note that µ depends on n, but

ω does not.

5.2 Numerical model

To confirm these calculations, we perform one dimensional simulations corresponding
to the model described above, setting the parameters equal to the two dimensional sim-
ulations. We obtain decaying kinetic energy oscillations, as in the two-dimensional case.
Extracting the maxima of the oscillations yields curves like those in Fig. 2.

In Fig. 4, we show the kinetic energy oscillation period T for one- and two-dimensional
simulations, together with the theoretical prediction π/ω (recall that one period of oscil-
lation in velocity corresponds to two periods in kinetic energy). The oscillation period
depends only weakly on n, in accord with the theory. The numerical one-dimensional
results converge to the theoretical prediction for large n, probably because the approxi-
mation in Eq. (9) is improving. The two-dimensional simulations exhibit longer oscillation
periods, probably because the grains are not organized into straight rows.

To measure the decay rate, we fit the oscillation envelopes, such as those shown in
Fig. 2 to an exponential:

E(t) = E0e
−t/τ . (11)

The theory predicts τ ≈ 1/(2µ). The numerical results, together with the theoretical pre-
diction, are shown in Fig. 4. The one-dimensional results agree closely with the theoretical
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*

Kwall

wallD

Figure 5: Motivation for soft-wall boundary conditions: We consider the one-dimension chain shown in

Fig. 3 as an elastic body attached to the wall by a spring. Kwall and Dwall are adjusted to maximize

energy dissipation.

predictions, but the two-dimensional one are very different. In two-dimensions, τ ∼ log n,
as opposed to τ ∼ n in one-dimension. This is a remarkable result, but unfortunately, we
do not have space to discuss it here.

6 SOFT BOUNDARIES

There is no reason why the walls must have the same stiffness as the grains. Let
us consider the one dimensional system as an elastic body of mass M∗/n connected to
the wall with a spring of stiffness Kwall, as shown in Fig. 5. The mass-spring system
has a resonance frequency ωwall =

√
nKwall/M∗. We adjust Kwall so that this frequency

is equal to the dominant resonance of the elastic body, so that its vibration energy is
transferred to the spring. We then adjust the damping coefficient Dwall of the grain-wall
interaction to rapidly eliminate this energy. This method has the advantage that it can be
implemented by simply modifying the wall-grain interaction. The grain-grain interactions
remain unchanged, and the damping occurs mainly at the boundaries, as in the physical
system.

More precisely, we choose

Kwall = Kn/n, Dwall = 2α
√

KnM∗. (12)

The stiffness Kwall is chosen so that the resonance frequency in Fig. 5 is equal to the free
oscillation frequency studied in Sec. 4. These oscillations should be the longest lived ones,
because they have the longest possible wavelength.

The damping Dwall is proportional to a constant α whose effect we will study. If we
set α = 1, the system in Fig. 5 is critically damped.

We now test this method in one- and two-dimensional simulations, obtaining the damp-
ing time τ as in Fig. 4. The results are shown in Fig. 6. The damping is indeed very
effective. Recall that the oscillation period is about 0.05t∗, so that 1/τ ≈ 20/t∗ corre-
sponds to a reduction of amplitude of 1/e in one period. Note also that most the values
of τ in Fig. 4 correspond to 1/τ < 1 in Fig. 6. Therefore, soft walls dramatically increase
the damping.

There are some differences between one and two dimensions. The dissipation is slower
than in two dimensions. In addition, in two dimensions, 1/τ departs from the approximate
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Figure 6: Left: Observed decay rate of the energy in the one-dimensional model, with Kwall = Kn/n
and Dwall given by Eq. (12). Right: The same for two-dimensional simulations, with Kwall = Kn/n and
Dwall given by Eq. (12). Only points with an energy greater than 10−16E∗ were used to obtain these
decay rates.

straight line at high values of Dwall. There are different causes of this plateau. In the
small system (N = 16×16), a single particle is moving to a new equilibrium position. The
time needed to find this new equilibrium is long compared to the dissipation time. For
large systems, the departure is caused by the appearance at low energies of a complicated
oscillation that couples weakly to the boundaries. We believe that these oscillations are
not physically relevant. They are strongly damped, and only appear here because the
longitudinal oscillations are even more strongly damped.

7 DAMPING OF HIGH FREQUENCY WAVES

To demonstrate the effectiveness of soft wall boundary conditions at higher frequencies,
we show in Fig. 7 the response to a delta function external stress p(t) = p0δ(t), with
p0 = 10−6p∗, applied to the mobile wall. These graphs show the stress on the mobile wall
(top lines), on a vertical line of grains in the middle of the domain (middle lines) and on
the left fixed wall (bottom line). The pulse introduced at the mobile wall at t = 0 can
be traced as it travels through the system. At t ≈ 0.0125, its arrival at the center of the
system is signaled by two peaks in the middle curve. This arrival is marked by a circle.
At t ≈ 0.025, its arrival at the left wall is signaled by a deep minimum and marked by
another circle. Note that the depth of the minimum is not the same in the two panels:
the stress exerted by the soft wall is about half that exerted by the hard wall. This is
because the hard wall reverses the motion of the grains, generating a wave that travels
back towards the mobile wall, but the soft walls simply stop the grain motion.

When the right wall is hard, the pulse is reflected, and returns back to the mobile wall.
It arrives near the middle of the system at t ≈ 0.0375, and arrives at the mobile wall
near t ≈ 0.05. (Note that this time is very close to the oscillation period of the kinetic
energy, as can be seen by examining Fig. 4.) The pulse then reflects off the mobile wall
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Figure 7: Response to a delta function force applied to the mobile wall. Left: conventional boundary
conditions, Right: soft wall boundary conditions. Top curves: stress on the mobile wall. Middle curves:
stress on a vertical line of particles near the center of the system. Bottom curves: stress on the left wall.
The dotted diagonal lines represent the pulse as it travels back and forth through the system. The cuves
are shifted vertically for clarity. Here, the “arbitrary units” are about 10−3p∗.

and continues its journey. It can be followed for a much longer time than shown above.
The pulse gradually spreads, and slowly transforms into a long wave-length standing
oscillation, as described by Eq. (6).

When the right wall is soft, the situation is different. The pulse is almost completely
absorbed at the right hand wall. Examining the expected arrival times of the pulse (circles)
sometimes shows weak disturbances that are close to the noise level. In conclusion, this
figure shows that the soft wall boundary conditions act as absorbing boundary conditions.

8 CONCLUSION

The absorbing boundary conditions presented in this paper resemble those used in other
fields. The softness of the walls recalls the use of soft, acoustically isolating materials in
some experiments. But they also resemble “perfectly matched layers” used in numerical
studies of waves in continua. Damping coefficients are made very large just next to the
boundary, and this damping is also directionally dependent, for walls exert only normal
forces and only normal motions are damped. This means that a wave traveling parallel
to a boundary will not (or only weakly) be damped.

This method should open new possibilities for numerical studies of granular acoustics.
For example, it should be possible to perform “free space” studies, where the simulation
domain represents a small part of an unbounded medium. But open questions remain
such as the effect on shear waves.
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